
Minimum Time Point Assignment for Coverage by Two Constrained

Robots

Nilanjan Chakraborty

Rensselaer Polytechnic Inst.

Troy, New York 12180

chakrn2@cs.rpi.edu

Srinivas Akella

Rensselaer Polytechnic Inst.

Troy, New York 12180

sakella@cs.rpi.edu

John T. Wen

Rensselaer Polytechnic Inst.

Troy, New York 12180

wenj@rpi.edu

Abstract— This paper focuses on the assignment of discrete
points to two robots, in the presence of geometric and kinematic
constraints between the robots. The individual points have
differing processing times, and the goal is to identify an
assignment of points to the robots so that the total processing
time is minimized. The assignment of points to the robots is
the first step in the path generation process for the robots.
This work is motivated by an industrial microelectronics
manufacturing system with two robots, with square footprints,
that are constrained to translate along a common line while
satisfying proximity and collision avoidance constraints. The
N points lie on a planar base plate that can translate along
the plane normal to the direction of motion of the robots. The
geometric constraints on the motions of the two robots lead
to constraints on points that can be processed simultaneously.
We show that the point assignment for processing problem can
be converted to a maximum weighted matching problem on a
graph and solved optimally in O(N3) time. Since this is too slow
for large datasets, we present a O(N2) time greedy algorithm
and prove that the greedy solution is within a factor of 3/2 of
the optimal solution. Finally, we provide computational results
for the greedy algorithm on typical industrial datasets.

I. INTRODUCTION

Robotic point set coverage tasks occur in a variety of

application domains like electronic manufacturing (laser

drilling [2], inspection [1], circuit board testing [13], [4]),

automobile spot welding [9], and data collection in sensor

networks [11]. The multi-robot point set coverage task that

we consider in this paper has the following characteristics:

(a) the robots have to spend some time at each point to

complete a task (we call this time processing time of each

point) and (b) they have to satisfy given geometric constraints

while covering the point set. The objective is to assign the

points to the robots and find an order of processing the

points to minimize the overall time required. Our work is

motivated by a laser drilling system shown in Figure 1. Here

we need to process (drill) a set of points by a system of

K(= 2) robots. The architecture of the machine imposes the

following geometric constraints: (a) at any instant of time,

each robot can process exactly one point within a square

region in the plane (called processing footprint) although

there may be several points within the region, (b) the

robots are constrained to move along a line while avoiding

collisions, and (c) the points lie on a base plate that can

translate along the y-axis. The processing time at each point

may differ depending on the radius of the hole (e.g., in

drilling by trepanning, where the diameter of the hole to

be drilled is larger than that of the laser beam).

We focus here on the assignment of points to the two

robots such that the processing operations are parallelized as

much as possible while respecting the geometric constraints.

This subproblem is a step to our ultimate objective of

minimizing the overall time required to process all the points,

including the travel time. That overall solution needs both

generation of paths and trajectories for the robots, and is

beyond the scope of this paper. We previously considered

the path planning problem (i.e., the problem of splitting

the points, assigning them to the robots, and finding the

order of processing the points) for multiple robot point set

coverage tasks with the assumption that all points have

the same processing time [2]. We showed that for two

robots the splitting problem is equivalent to a maximum

cardinality matching problem on a graph and can thus be

solved optimally in O(N3) time in general [5], [7], where

N is the number of points to be processed.

The solution for the splitting problem presented in [2] is

not optimal when the processing times are different. In this

paper we show that when the processing times of the points

are different, the splitting problem can be formulated as a

maximum weighted matching problem (MWM) on a suitably

constructed weighted graph. Thus, the splitting problem can

be solved in O(N3) time in general [5], [7]. However,

this is not suitable for large datasets (in our applications,

approximately 105 points). Therefore we present a greedy

algorithm that takes O(N2) time. We prove that the ratio

of the processing time obtained with our greedy algorithm

to that of the optimal processing time is within a factor of

3/2. We also provide a simple example to show that this

is a tight bound. Finally, for the example setup shown in

Figure 1, we provide computational results showing that the

greedy algorithm gives solutions very close to the optimal

solution on typical industrial datasets.

II. RELATED LITERATURE

The path planning problem for covering a point set in

minimum time by multiple constrained robots is NP-hard

and can be divided into a splitting (and assignment) problem

and ordering problem [2]. In [2] we showed that when the

processing times of the points are identical, the splitting

problem can be solved optimally by converting it to a

2∆

Robot 1

Processing Footprint

Base Plate

s

x

z

y

Robot 2

2∆

Fig. 1. Schematic sketch of a 2-robot system used to process points in the
plane. The robots translate along x-axis and the base plate translates along
y-axis. The square of length 2∆ is the processing footprint for each robot.

maximum cardinality matching (MCM) problem on a graph.

The ordering problem can be then solved by formulating it as

a Traveling Salesman Problem (TSP). When the processing

times of the points differ, the MCM solution is not optimal

for the splitting problem. In this paper, we provide solutions

to the splitting problem when the processing times are

different.

The minimum makespan scheduling problem [8] problem

is closely related to our splitting problem. There are various

versions of the minimum makespan scheduling problem [8].

The problem closest to our interest is minimum makespan

scheduling with precedence constraints. This is a NP-hard

problem, even for two machines. However, there are two

important distinctions between the minimum makespan prob-

lem with precedence constraints and our minimum time

assignment problem with geometric constraints.

• Minimum makespan scheduling problem has prece-

dence constraints, which means that if two jobs are

constrained, then one cannot be started before the other

is finished. On the other hand, we have a geometric

constraint that only states that two jobs cannot be done

simultaneously.

• In the basic version of the minimum makespan schedul-

ing we can assign a new job to a machine when it is fin-

ished with the currently assigned job. However here we

can start a new job only when both the jobs are finished.

This is because our problem occurs as a subproblem of

a more general problem where the two robots need to

move from one point to another before processing them

and also maintain the geometric feasibility conditions,

for example, no-collision conditions.

Although the minimum makespan problem with prece-

dence constraints is NP-hard, our problem has a polyno-

mial time solution. We convert the problem to a maxi-

mum weighted matching on a suitably constructed graph.

Maximum weighted matching is a well studied problem

and can be solved in O(N3) time (Edmonds [3]) where

N is the number of vertices of the graph. There are also

algorithms that are slightly faster (e.g., Micali and Vazirani’s

O(
√

|V ||E|) algorithm [6]).

III. SPLITTING PROBLEM

In this section we provide solution algorithms for the

splitting problem. The splitting problem consists of assigning

the set of points to each robot so as to minimize the total

processing time while respecting the geometric constraints.

A solution to this problem ensures maximum parallelization

of the processing operations. To be concrete, we will use the

geometric constraints for the problem shown in Figure 1.

However, the results are valid for constraints specified by

other types of metrics and in higher dimensional spaces. We

call a pair of points a compatible pair (of points) if they

can be processed together while respecting the geometric

constraints. Any two compatible pairs are called a disjoint

compatible pair if the points belonging to the two pairs are

distinct. In a compatible pair of points, the point having the

larger processing time is called the dominant point and the

point having a smaller processing time is called the non-

dominant point. The formal statement for this problem is:

Problem Statement: Let S = {pi} = {(xi, yi)}, i =
1, 2, . . .N , be a set of points in R

2 with the processing

time of point pi being ti. Let P be a set of ordered

subsets of S of size less than or equal to 2 that partitions

S, i.e., P = {(pi,pj)}
⋃

{(pk, ∗)}
⋃

{(∗,pl)}, i, j, k, l ∈
{1, 2, . . . , N}, i 6= j 6= k 6= l, where ∗ denotes a virtual point

and any pair (pi,pj) ∈ P respects geometric constraints

of the form f(xi, yi, xj , yj) ≤ 0. For the system shown in

Figure 1 the constraints are the following:

|xi − xj | ≥ smin − 2∆

|yi − yj | ≤ 2∆
(1)

where smin is the minimum allowable distance between the

two robots and 2∆× 2∆ is the processing footprint of each

robot. Find such a P that minimizes the cost given by

C =
∑

all pairs

max(ti, tj) +
∑

all singletons

tk (2)

The ordered pair (pi,pj) denotes that pi is assigned to robot

1 and pj to robot 2. Moreover (pk, ∗) denotes that pk is a

singleton assigned to robot 1, while (∗,pl) denotes that pl is

a singleton assigned to robot 2. In Equation 1, the constraint

on the x−coordinates ensure collision avoidance between the

robots. The constraint on the y−coordinates indicate that the

robots are constrained to move along the x−axis but have a

square footprint for processing.

Before formulating the problem as a MWM on a graph

we define the related terms from matching theory on graphs.

Definition Let G = (V, E) be a weighted graph where V is

the set of vertices and E is the set of edges. A set M ⊆ E
is called a matching if no two edges in M have a vertex

in common. M is called a maximal matching if there is no

matching M ′ such that M ⊂ M ′. M is called a maximum

cardinality matching (MCM) if it is a maximal matching

of maximum cardinality. M is called a maximum weighted

matching (MWM) if the sum of weights of the edges in M
is maximum among all matchings.

A. Optimal Algorithm for Splitting

The cost of any partition of S given by Equation 2 can be

rewritten as follows:

C =
∑

all pairs

max(ti, tj) +
∑

all singletons

tk, (i 6= j 6= k)

=
∑

all pairs

(ti + tj − min(ti, tj)) +
∑

all singletons

tk

=
∑

all points

tk −
∑

all pairs

min(ti, tj), (i 6= j)

Since the sum of the processing times of all points is

constant, the problem of minimizing C is equivalent to max-

imizing C1 =
∑

all pairs min(ti, tj), i.e., finding a subset of

compatible pairs of points such that the sum of the processing

times of the non-dominant points (in each pair) is maximized.

The solution to this problem is given by the maximum weight

matching on a weighted graph. The construction of the graph

is as follows: Let G = (V, E) be a weighted graph, with

the set of vertices V = {1, 2, . . . , N} corresponding to

the points. An edge (i, j) exists between two vertices if

the corresponding points pi,pj are compatible, i.e., they

satisfy Equation 1. The weight wij on each edge is given

by min(ti, tj). Thus a MWM on this graph gives a set of

disjoint compatible pairs where the sum of the processing

times of non-dominant points is maximized.

The MWM problem on a graph is a well known combina-

torial optimization problem and can be solved in O(N3) time

(Edmonds [3]). However, there are applications where N can

be quite large, and consequently, the matching algorithm

is not practical. For example, N can be of the order of

105 in the laser drilling application of Figure 1. Hence,

we provide a O(N2) time greedy algorithm that gives a

suboptimal solution with the worst case approximation ratio

of 3/2. Note that there are deterministic constant factor

approximation algorithms in the weighted matching literature

that have running time linear in the number of edges, i.e.,

O(N2) in the worst case, (see [12], and references therein).

The simplest such algorithm has a worst case approximation

ratio of 2 which implies that the ratio of the value of C1

in the optimal matching to that in the obtained matching

is upper bounded by 2. For our problem it means that the

ratio of the sum of the processing times of the non-dominant

points in the optimal solution to that of the greedy solution

is less than or equal to 2. This implies that the cost given

by Equation 2 is within a factor of 3/2 of the optimal

cost. However, we can construct simple examples on datasets

of 4 points where our proposed algorithm performs better

than this graph matching approximation algorithm. There

are more sophisticated O(N2) time algorithms that have an

approximation ratio arbitrarily close to 4/3 for our problem.

However, the implementation of such algorithms are more

complicated and it is not clear whether those algorithms have

been implemented in practice. Therefore, we present a simple

greedy algorithm, not requiring explicit construction of the

compatibility graph, whose total cost is provably within 3/2
of the optimal cost.

B. Greedy Algorithm

For our problem, the trivial algorithm where each point is

processed individually takes time at most twice that of the

optimal solution for the two robots (if there were k robots

this bound would be k). Thus any useful algorithm should

have a theoretical worst case bound less than 2. When there

are no constraints between the points the optimal algorithm

to pair up the points is to sort the points in the order of

decreasing processing times and pair up consecutive points

(starting from the top) in this sorted list. When there are

constraints on the points that can be paired, this algorithm

is not optimal. However, we prove that it is within a factor

of 3/2 of the optimal solution. The basic algorithm is:

1) Sort the points in order of decreasing processing times.

2) Start with the point having largest processing time. Pair

each point with a compatible point (that is not already

paired) that has the largest processing time. If there

is more than one compatible point with same (largest)

processing time choose one at random. If there is no

compatible point available make the point a singleton.

The cost of this algorithm is determined by the second

step above. A straightforward implementation compares each

point to every other point in the worst case and thus the

algorithm has a worst case running time of O(N2).

(3)

1
k

2 k
m−1 k

m

i

j

k

k
1

k
2 k

m
k

m−1k
m−2

i

j

k

(2)

k
1

k
2 k

m
k

m−1k
m−2

l
1

l
l

2
l

n−2
l

n−1

l
n

(1)

j

i
k

k

Fig. 2. (1) Schematic sketch of case 1 (2) Schematic sketch of case 2
(3) Schematic sketch of case 3. The bold lines are the pairs in the greedy
solution and the dotted lines are the pairs in the optimal solution

Lemma 3.1: Let TG be the total processing time when the

points are paired according to the greedy algorithm and TO

be the optimal processing time. Then TG/TO ≤ 3/2.

Proof: Let the set PG be the solution of the greedy algorithm

and PO be the solution of the optimal algorithm. The ratio

of the greedy cost to optimal cost can be written as

TG

TO
=

∑

PG
max(ti, tj) +

∑

PG
tk

∑

PO
max(ti, tj) +

∑

PO
tk

(3)

Let P
′

G ⊆ PG and P
′

O ⊆ PO be subsets of the two solutions

that contain the same points. We partition the whole solution

set into such partial subsets. Let (pi,pj) ∈ P
′

G be a pair in

the greedy solution (w.l.o.g. assume ti is the greatest element

in that set; we will explain later why we do not consider that

a singleton can be the greatest element). Then, it suffices to

consider the three forms for the sets P
′

G and P
′

O shown in

Figure 2. For brevity, we use the indices of the points to

denote the points, for example, (pi,pj) is denoted by (i, j).

1) We have a sequence in the optimal pairing given by

j, (i, k1), (k2, k3), . . . , (km−1, km), k (m odd) with the

corresponding pairing in the greedy solution given by

(i, j), (k1, k2), . . . , (km, k), i.e., there are two single-

tons in optimal solution not present in greedy solution.

2) We have a sequence in the optimal pairing given

by j, (i, k1), (k2, k3), . . . , (km, k) with the corre-

sponding pairing in the greedy solution given by

(i, j), (k1, k2), . . . , (km−1, km), k, where m is even.

3) We have a sequence in the optimal pairing given by

(i, k1), (k2, k3), . . . , (km, k), (j, l1), (l2, l3), . . . , (lm, l)
with the corresponding pairing

in the greedy solution given by

(i, j), (k1, k2), . . . , (km−1, km), k, (l1, l2), . . . , (lm−1,

lm), l, i.e., there are two singletons in the greedy

solution that are not present in the optimal solution.

Note that we can have at most two singletons in P
′

G that

may not be a singleton in P
′

O . So, either we can reach

all singletons in the greedy set by this construction or they

are present as singletons in the optimal solution also. The

first case is of interest to us where, if the singleton had the

highest cost it would be paired up (by the nature of our

greedy algorithm) because it has a feasible partner. Thus the

singleton in P
′

G cannot have the highest cost. We now show

that for each case above the partial greedy cost (T p
G) is within

a factor of 3/2 of the partial optimal cost (T p
O).

Case 1: The ratio of partial greedy cost to optimal cost is

T p
G

T p
O

=
ti +

∑(m−1)/2
u=1 max(tk2u−1

, tk2u
) + max(tkm

, tk)

ti + tj + tk +
∑(m−1)/2

u=1 max(tk2u
, tk2u+1

)

If we assume tk1
≥ tk2

, tk3
≥ tk4

, . . . , tkm
≥ tk,

T p
G

T p
O

=
ti + tk1

+
∑(m−1)/2

u=1 tk2u+1

ti + tj + tk +
∑(m−1)/2

u=1 max(tk2u
, tk2u+1

)
(4)

As tj ≤ tk1
(otherwise P

′

G would have the pair (i, k1)) and

max(tk2u
, tk2u+1

) ≥ tk2u+1
), all the terms in the numerator

and denominator of Equation 4 are identical, with tk as an

extra term in the denominator implying that T p
G/T p

O ≤ 1,

i.e., the greedy cost is less than the optimal cost. Therefore

the processing times of the greedy pair cannot be of the

above form. Similarly, we can show that tk1
≤ tk2

, tk3
≤

tk4
, . . . , tkm

≤ tk is not possible. Thus, the sequence in

P
′

G will have alternating subsequences where the first point

dominates and then the second point dominates and so forth.

Now, assume that the greedy pairs satisfy tk1
≤ tk2

, tk3
≤

tk4
, . . . , tkl−1

≤ tkl
, for some l < m and tkl+1

≥ tkl+2
,

i.e., the pairs have their second point dominating upto the

pair (kl−1, kl). We do not assume anything about rest of the

points. We develop the proof in two steps. We first show that

the ratio of the two partial costs upto this pair is less than

3/2. We then argue that if there are more such changes in

the position of the dominant points in the greedy pairs the

ratio of partial costs upto those pairs will also be less than

3/2. Thus we can extend this scheme to the whole set P
′

G

and say that the cost T p
G/T p

O ≤ 3/2. We start with the first

step. The ratio of the costs upto the point where there is the

first change in dominating point is

r =
ti + tk2

+ · · · + tkl−2
+ tkl

+ tkl+1

ti + tj + · · · + max(tkl−2
, tkl−1

) + max(tkl
, tkl+1

)

Without loss of generality assume tkl
≥ tkl+1

(proof with

tkl
≤ tkl+1

is analogous). Then tkl−1
≥ tkl+1

, otherwise

(kl, kl+1) would be in P
′

G instead of (kl−1, kl). Using

max(tk2u
, tk2u+1

) ≥ tk2u
for all u < (l − 2)/2 in the

denominator and C =
∑(l−3)/2

u=1 tk2u
, we have

r ≤
ti + tkl−2

+ tkl
+ tkl+1

+ C

ti + tj + max(tkl−2
, tkl−1

) + tkl
+ C

≤
tkl−2

+ tkl
+ tkl+1

max(tkl−2
, tkl−1

) + tkl

≤
tkl−1

+ tkl
+ tkl+1

tkl−1
+ tkl

assume w.l.o.g tkl−1
≥ tkl−2

= 1 +
tkl+1

(tkl−1
+ tkl

)
≤

3

2
(∵ tkl+1

≤ tkl−1
≤ tkl

)

(5)

If tkl−1
≤ tkl−2

, we could replicate the same arguments

substituting tkl−2
in place of tkl−1

. When the sequence in

P
′

G changes from a second point dominating pair to a first

point dominating pair there is only slight increase in the

cost of the denominator and consequently the bounds are

satisfied. However, when the sequence again changes to a

second point dominating pair, we can write the partial sum

similar to the above derivation. Let the change be at kn, i.e.,

tkn+1
≥ tkn+2

. The second line of equation 5 is then

r ≤
tkl−2

+ tkl
+ tkl+1

+ tkn−2
+ tkn

+ tkn+1

max(tkl−2
, tkl−1

) + tkl
+ max(tkn−2

, tkn−1
) + tkn

with tkn+1
≤ tkn−1

≤ tkn
. The next steps are analogous to

the steps in equation 5. We can proceed likewise until the

whole set P
′

G is covered and the approximation ratio is thus

less than 3/2.

Case 2: Assume that tk1
≤ tk2

, tk3
≤ tk4

, . . . , tkm−1
≤

tkm
in P

′

G w.l.o.g.; if this were not true we could have

proceeded as described in case 1 above. We also have tk ≤
tkm−1

≤ tkm
, otherwise P

′

G would have the pair (km, k)

instead of km−1, km. The ratio of the cost of P
′

G to P
′

O is

less than 3/2 as shown below. The second step is obtained

by using the assumption above in the numerator and using

the fact that max(a, b) ≥ a, ∀a, b > 0 in the denominator.

The fourth step is obtained from the third step using the fact

that if a/b > 1 and c/d < 1 then (a + c)/(b + d) < a/b.

ti +
∑m/2

u=1 max(tk2u−1
, tk2u

) + tk

ti +
∑(m−2)/2

u=1 max(tk2u
, tk2u+1

) + max(tk, tkm
) + tj

≤
ti +

∑m/2
u=1 tk2u

+ tk

ti +
∑m/2

u=1 tk2u
+ tj

≤
ti + tkm

+ tk + C

ti + tkm
+ tj + C

(C =

m/2−1
∑

u=1

tk2u
)

≤
ti + tkm

+ tk
ti + tkm

=1 +
tk

(ti + tkm
)
≤

3

2
(∵ tk ≤ tkm

, tk ≤ ti)

Case 3: Here, it may be possible that (k, l) form a pair in

the greedy solution (see Figure 2 botom). However, for worst

case analysis, it suffices to look at the case when k and l
are singletons. Here again we assume that tk1

≤ tk2
, tk3

≤
tk4

, . . . tkm−1
≤ tkm

, tl1 ≤ tl2 , tl3 ≤ tl4 , . . . , tln−1
≤ tln

without any loss of generality. We also have tk ≤ tkm−1
and

tl ≤ tln−1
because (km−1, km) and (ln−1, ln) are the greedy

pairs. The partial costs T p
O and T p

G are then

T p
G = ti +

m/2
∑

u=1

max(tk2u−1
, tk2u

) +

n/2
∑

u=1

max(tl2u−1
, tl2u

)

+ tk + tl = ti +

m/2
∑

u=1

tk2u
+

n/2
∑

u=1

tl2u
+ tk + tl

T p
O = ti +

(m−2)/2
∑

u=1

max(tk2u
, tk2u+1

) + max(tkm
, tk)

+ max(tj , tl1) +

(n−2)/2
∑

u=1

max(tl2u
, tl2u+1

) + max(tln , tl)

≥ ti +

m/2
∑

u=1

tk2u
+

n/2
∑

u=1

tl2u
+ tj

(6)

The ratio of the partial costs is then

T p
G

T p
O

≤
ti +

∑m/2
u=1 tk2u

+
∑n/2

u=1 tl2u
+ tk + tl

ti +
∑m/2

u=1 tk2u
+

∑n/2
u=1 tl2u

+ tj

=
tkm

+ tkm−1
+ tln + tln−1

+ tk + tl + C

tkm
+ tkm−1

+ tln + tln−1
+ tj + C

(where C = ti +

m/2−2
∑

u=1

tk2u
+

n/2−2
∑

u=1

tl2u
)

≤
tkm

+ tkm−1
+ tln + tln−1

+ tk + tl

tkm
+ tkm−1

+ tln + tln−1

=1 +
tk + tl

tkm
+ tkm−1

+ tln + tln−1

≤
3

2

Using tk ≤ tkm−1
≤ tkm

, tl ≤ tln−1
≤ tln

The greedy solution set can be represented as an union of

disjoint sets of the forms described by the 3 cases above and

each partial sum is less than 3/2 times the corresponding

optimal partial cost. Therefore, we have TG ≤ 3/2 TO. �

The above bound is a tight bound. We give an example on

4 points where the cost of the greedy algorithm is 3/2 times

the cost of the optimal algorithm. Let the 4 points {i, j, k, l}
have unit processing times and the set of compatible points

be {(i, j), (i, k), (i, l), (j, k)}. The greedy algorithm may

pick the pair (i, j) since all the pairs have equal processing

times. Thus, the greedy solution is {(i, j), k, l} with cost 3.

The optimal cost is 2 with solution {(i, l), (j, k)}.

In the preceding discussion we gave algorithms to split

the points among the two robots. However, we did not

make an explicit assignment of the points to the robots. If

the geometric constraints are such that one robot is always

constrained to be on the left of other (as in Figure 1) we can

always assign the point in the pair with smaller x−coordinate

to one robot and its partner to the other. The ordering

problem can then be set up as a multi-dimensional TSP in

the pair space [2]. However, if the geometric constraints

are different, for example, the constraints are based on

maintaining a minimum (or maximum) Euclidean inter-robot

distance, then the above scheme may not be appropriate.

In this case, we need to solve the assignment and ordering

problems simultaneously. Let (pi,pj) and (pk,pl) be two

pairs and the robots have to move from one pair to the other.

The question we need to answer here is: Does the robot at pi

or the one at pj move to pk? If pi moves to pk and pj moves

to pl the travel cost is d1 = max{d(pi,pk), d(pj ,pl)}. On

the other hand if pi moves to pl and pj moves to pk the

travel cost is d2 = max{d(pi,pl), d(pj ,pk)}. The robots

should move so that the cost incurred is minimum of d1 and

d2. Thus, we can define the cost of travel between two pairs

as the minimum of d1 and d2. The cost metric defined above

satisfies the triangle inequality. The TSP tour on the pairs

using this cost metric will give the order in which the pairs

of points should be traversed and hence also the assignment

of points to the robots as they travel. An approach for solving

the multidimensional TSP problem is discussed in [2].

C. Computational Results

We now provide computational results showing the per-

formance of the greedy algorithm on example industrial data

sets. However, the processing time assigned to each point is

randomly generated in the range 0.01 to 0.1 seconds. We

implemented the greedy algorithm in C++. The results of

TABLE I

PERFORMANCE COMPARISON OF GREEDY AND MATCHING

ALGORITHMS FOR SPLITTING, WITH UNIT PROCESSING TIME FOR EACH

POINT.

Greedy Algorithm Matching Algorithm Ratio

Number Processing Running Processing Running
of Time (TG) Time Time (TO) Time TG/TO

points (sec) (sec) (sec) (sec)

1396 788 1 700 5 1.13

11109 8537 8 6972 94 1.22

27810 16569 15 13905 1528 1.19

TABLE II

PERFORMANCE OF GREEDY ALGORITHM ON LARGE DATASETS.

Number Processing Running Sum of all Point Ratio
of Time (TG) Time Processing Times (T) 2TG/T

points (sec) (sec) (sec)

1396 37.66 1 72.05 1.05

11109 407.47 8 554.82 1.47

27810 726.34 15 1390.99 1.04

135300 3435.78 25 6782.24 1.01

167536 4236.38 30 8388.49 1.01

198570 5009.33 40 9919.32 1.01

211856 5336.82 47 10564.50 1.01

the splitting problem using both the greedy algorithm and

optimal (matching) algorithm along with the corresponding

running times are shown in Table I. The value of the parame-

ters used for obtaining the results are ∆ = 8 mm, smin = 96
mm. To compare our greedy algorithm results against the

optimal results, we assumed all the processing times to

be equal (one) and used an implementation of Edmond’s

algorithm available in the Boost Graph Library [10] to solve

the MCM problem (which is equivalent to the MWM in this

case). Table I compares the processing times of the greedy

solution (second column) to that of the optimal solution

(fourth column). It can be seen from Table I that the greedy

algorithm is always within a factor of 1.5 of the optimal

solution (see last column) and is much faster than the optimal

algorithm (compare third and fifth columns). For the larger

datasets, the MCM implementation does not return results

within a reasonable time. So we have provided the greedy

algorithm results for them. Table II shows the results for the

greedy algorithm where the processing times of individual

points vary from 0.01 to 0.1 seconds. The last column of

Table II gives an upper bound on the ratio of the greedy cost

to optimal cost (because the sum of all the point processing

times is always less than or equal to twice the optimal

cost). Table II (last column) shows that the greedy algorithm

performs quite well for the large datasets and takes less than

1 minute (third column). The second dataset gives the worst

result. However, in this point set there are at least 2835 points

that have to be singletons even in the optimal solution (we

can see this from the MCM solution). So the bound on the

approximation ratio for this data set is not tight and the

actual approximation ratio may be better. All the running

times are obtained on an IBM T43p Thinkpad with a 1.8
GHz processor and 1 GB RAM.

IV. CONCLUSION

In this paper we considered the point assignment for pro-

cessing problem for a constrained two-robot system covering

a point set with non-identical point processing times. Since

each robot can process one point at a time, the geometric

(e.g., collision avoidance) constraints and kinematic con-

straints between the robots result in restrictions on points

that can be simultaneously processed. We showed that the

assignment problem can be solved optimally by converting

it into a maximum weighted matching problem on a suitably

defined graph. However, this O(N3) matching algorithm is

too slow for large datasets and so we presented an O(N2)
greedy algorithm and proved that it is guaranteed to return

a solution within 3/2 of the optimal solution. Note that

our approach can handle fairly general geometric constraints

between the robots, and is not restricted to planar point sets.

Future work includes computational comparison of our

greedy algorithm solutions with approximation algorithm

solutions for weighted matching, in terms of both solution

quality and running time. The extension of the algorithms

proposed here for K > 2 robots is also important. Relaxing

the assumption that both robots are simultaneously stationary

(when one or both robots are processing points) and ob-

taining algorithms that have constant factor approximation

guarantees for the overall path planning problem (of point

splitting and point ordering) is another important extension.

ACKNOWLEDGMENTS

This work is supported in part by the Center for Automation
Technologies and Systems (CATS) under a block grant from the
New York State Office of Science, Technology, and Academic
Research (NYSTAR). John Wen was supported in part by the
Outstanding Overseas Chinese Scholars Fund of Chinese Academy
of Sciences (No. 2005-1-11). Srinivas Akella was supported in part
by NSF under CAREER Award No. IIS-0093233.

REFERENCES

[1] B. Cao, G. I. Dodds, and G. W. Irwin. A practical approach to near
time-optimal inspection-task-sequence planning for two cooperative
industrial robot arms. International Journal of Robotics Research,
17(8):858–867, August 1998.

[2] N. Chakraborty, S. Akella, and J. T. Wen. Coverage of a planar point
set with multiple constrained robots. In IEEE International Conference

on Automation Science and Engineering, pages 899–904, Scottsdale,
AZ, Sept. 2007.

[3] J. Edmonds. Maximum matching and a polyhedron with 0,1-vertices.
Journal of Research of the National Bureau of Standards, 69B:125–
130, 1965.

[4] A. B. Kahng, G. Robins, and E. Walkup. New results and algorithms
for MCM substrate testing. In Proc. IEEE Intl. Symp. on Circuits and

Systems, pages 1113–1116, San Diego, CA, May 1992.
[5] E. Lawler. Combinatorial Optimization: Networks and Matroids. Holt,

Rinehert and Winston, New York, 1976.
[6] S. Micali and V. V. Vazirani. An O(

√
(|V |)|E|) algorithm for finding

maximum matching in general graphs. In Proc. Twenty-first Annual

Symposium on the Foundations of Computer Science, pages 17–27,
Long Beach, California, 1980.

[7] C. Papadimitriou and K. Steiglitz. Combinatorial Optimization:

Algorithms and Complexity. Prentice Hall Inc., Englewood Cliffs,
NJ, 1982.

[8] M. Pinedo. Scheduling: Theory, Algorithms, and Systems. Prentice
Hall, 2002.

[9] M. Saha, T. Roughgarden, J.-C. Latombe, and G. Sanchez-Ante.
Planning tours of robotic arms among partitioned goals. International

Journal of Robotics Research, 25(3):207–223, 2006.
[10] J. G. Siek, L.-Q. Lee, and A. Lumsdaine. The Boost graph library:

user guide and reference manual. Addison-Wesley Longman Publish-
ing Co., Inc., Boston, MA, USA, 2002.

[11] I. Vasilescu, P. Corke, M. Dunbabin, K. Kotay, and D. Rus. Data
collection, storage, and retrieval with an underwater sensor network. In
Proceedings of the International Conference on Embedded Networked

Sensor Systems (ACM SenSys 2005), San Diego, CA, November 2005.
[12] D. E. D. Vinkemeier and S. Hougardy. A linear-time approximation

algorithm for weighted matchings in graphs. ACM Transactions on

Algorithms, 1(1):107–122, 2005.
[13] S.-Z. Yao, N.-C. Chou, C.-K. Cheng, and T. C. Hu. A multi-probe

approach for MCM substrate testing. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 13(1):110–121,
January 1994.

