
Reconfiguration Algorithms for Mobile Robotic
Networks

Nilanjan Chakraborty
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA-15213

Email: nilanjan@cs.cmu.edu

Katia Sycara
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA-15213

Email: katia@cs.cmu.edu

Abstract—For a deployed mobile robotic network to function
usefully, the robots should have the capability to adjust their
positions, while maintaining the network connectivity. In this
paper, we present algorithms that allows a robot to decide when
it is feasible for it to move to a desired point by adjusting its own
positions (and the positions of some other robots in the network),
while maintaining all the network connectivity constraints. Under
the assumption of a disc model of communication, we show that
the problem can be formulated as a convex optimization (or fea-
sibility) problem (actually a second order cone program). Thus,
the problem can be solved in polynomial time by centralized
interior point algorithms. However, this requires the robot to
have knowledge of the position of all the nodes in the network.
Our main contribution is the development of an incremental
algorithm, that solves the feasibility problem (of whether the
robot can move to its desired goal) by obtaining the information
about the position of the robots and their immediate neighbors
only if they are required to move. We present simulation results
comparing the performance of the centralized algorithm with the
incremental algorithm for randomly generated networks. From
simulation results, we observe that the time required by the
incremental algorithm to solve the feasibility problem is relatively
independent of the size of the network.

Index Terms—robotic networks, network reconfiguration, sec-
ond order cone program (socp), convex optimization.

I. I NTRODUCTION

Mobile robotic networks with communication capabilities
have received wide attention recently because of their po-
tential applications in environmental monitoring, searchand
rescue operations, extraterrestrial exploration. In a deployed
mobile robotic network, it is desirable for the robots to have
the capability of adjusting their positions according to the
demands of the situation. It is also necessary to ensure thatthe
communication network formed by the robots stay connected
after the adjustments have been made. An example scenario
is presented in Figure 1 where the robots, in order to be
robust to any communication link failure, wants to form a2-
connected network (i.e., at least two edges in the graph need
to be removed for it to become disconnected). One way to do
this is to move the robot1 within the communication range
of robot10 without breaking any of the communication edges
already present in the network.

We note that our problem is different from the formation
control problem of moving the whole robotic network while

Fig. 1. An example network of10 robots. The robot1 wants to move within
the communication range of robot10 to form a2-connected network.

maintaining connectivity (as studied in [1], [2]). The distinc-
tion is in terms of the scale of the distance to be moved. To
get an intuitive understanding of the distinction, let us consider
the convex hull of all the robots positions and let the diameter
of the convex hull polytope be its characteristic length. Inour
problem, the distance to be moved by a robot is much smaller
than the characteristic length of the convex hull while in [1],
[2] it is much larger. Thus, we call the problems that we are
studying network reconfiguration (or repositioning) problems.

In this paper, we consider two related abstract network
reconfiguration problems: (a) design algorithms to decide
whether it is possible to reconfigure the network (i.e., adjust
the position of the robots while satisfying the constraintsof
each robot) to bring a specified robot within a given distance
of a known point, (b) design algorithms to decide whether it
is possible to reconfigure the network to bring at least one
robot within a given distance of a known point. Note that
if we can solve the problem (a), we can solve the problem
(b) by repeating the algorithm for solving (a) for every robot
in the network. Thus, the basic problem that we address in
this paper is problem (a) and it can be written as follows:
Let P = {qj = (xj , yj)}, j = 1, 2, . . . , n, be the set of
positions of n mobile robots (or nodes). Let Cj be a convex
set specifying the communication area of robot j and Sj be
a convex set specifying the processing1 area of robot j. Let
P ′ ⊂ P be the set of robots that has to stay within the

1We use the term processing to denote any generic operation that may be
physically interactive like sample collection or non-physical like sensing.

processing area of their current positions. Is it possible for
the robots to adjust their positions (while maintaining all the
previous network constraints) such that a given point q0 falls
within the processing zone of a given robot i? We assume the
communication area and processing area of each robot to be
discs with possibly different radii.

We show that the above problem is equivalent to checking
the feasibility of a second order cone program (SOCP) and can
thus be solved in polynomial time by a centralized interior
point algorithm. Moreover, within the same framework, we
can also optimize the total distance moved by the robots (so
that the energy expended in repositioning can be minimized).
For the centralized algorithm, the roboti (or the centralized
processor) needs to know the coordinates of all the robots in
the network. Thus, the centralized algorithm may be useful
when (a) the number of robots in the network is small or (b)
the architecture of the deployed mobile robotic system is such
that there is a base station that keeps the updated information
about the position of all the robots in the network. However,
in general, the centralized algorithm is not scalable. Therefore,
we present an incremental algorithm, that solves the feasibility
problem by obtaining the information about the position of the
robots and their immediate neighbors only if they are required
to move. For network reconfiguration problems, usually onlya
small fraction of the total number of nodes need to be moved.
Therefore, as verified by our simulation results on randomly
generated networks, the computation time for obtaining the
feasible solution is relatively independent of network size. This
scalable incremental algorithm is our main contribution.

The paper is organized as follows. After a discussion of
related work in Section II, we review the relevant mathemat-
ical background in Section III. We present the formulation
of the network reconfiguration problems in Section IV and
describe the centralized and incremental algorithms for solving
the problems in Section V. We present our implementation
results in Section VI, discuss the inclusion of obstacles inour
framework in Section VII, and conclude with a discussion of
future work in Section VIII.

II. RELATED WORK

The network reconfiguration problem for improving sensing
quality has been studied by Kansal et al. [3] in the context of
a network of camera sensors. In their problem the cameras
had limited tilt, pan and zoom capability and they wanted
to reconfigure the camera network utilizing this mobility to
improve the resolution or quality of the image obtained.
However, since the cameras were statically located, there
was no issue of loss of connectivity. An alternative body
of recent literature concentrates on maintaining connectivity
of a network of mobile robots while they are moving [4],
[5], [1], [6]. In [4], [6], the authors present control laws
for maintaining the connectivity of the network. The main
goal of the control laws are to move the robots so as to
maintain the connectivity and the objective of any robot having
a desired goal is a secondary objective. In our work, the desired
goal (if achievable) is the primary objective and we want

to ensure that the connectivity constraints are maintainedat
the final positions of the robots. In that sense this work is
complementary to the control theoretic approaches.

Convex optimization techniques have been used in the
literature to solve network localization problems in sensor
networks [7], [8] and shape formation problems [9], [10].
In [7] the authors formulated the sensor network localization
problem as a semi-definite program that is solved using a
centralized algorithm. Thereafter, much effort has gone into
formulating the problem as a SOCP and developing distributed
algorithms to solve the resulting SOCP (see [8] and references
therein). The shape formation problem was proposed as a
SOCP in [9] and a centralized solution was given to the
problem. Thereafter, distributed algorithms were proposed to
solve the problem [10]. Our problem is distinct from that in
[9] because we do not know the positions the robots should
move to, whereas, in the shape changing problem, the final
shape, i.e., final coordinates of the robots are given.

III. M ATHEMATICAL PRELIMINARIES

Undirected graph: An undirected graphG is an ordered
pair, G = (V, E), whereV = {v1, v2, . . . , vn} is a set ofn
nodes, andE ⊆ V × V is a set of edges. Two nodesvi and
vj are calledneighbors of each other if(vi, vj) ∈ E. The set
Ni = {vj |(vi, vj) ∈ E} is the set ofvi’s neighbors, and|Ni|
is defined as thedegree of nodevi.
Connected graph: A path between two nodes in a graph,
G = (V, E), is said to exist if there is a sequence of edges
from E joining the two nodes. An undirected graph is called
a connected graph, if there is a path between any two pairs of
nodes in the graph.
Convex Set: A set U ⊆ Rn is called a convex set if for any
two pointsu1, u2 ∈ U and anyλ with 0 ≤ λ ≤ 1, we have

λu1 + (1 − λ)u2 ∈ U.

Convex Function: A function f : Rn → R is convex if the
domain off (dom f) is a convex set and for allu1, u2 ∈ dom
f and anyλ with 0 ≤ λ ≤ 1, we have

f(λu1 + (1 − λ)u2) ≤ λf(u1) + (1 − λ)f(u2).

Second Order Cone: A setU is called a cone, ifu ∈ U implies
λu ∈ U for all λ > 0. It is called a convex cone, ifU is also
a convex set. A second order cone is a convex cone defined
by the Euclidean norm.

U = {(u, t) ∈ R
n+1| ‖u‖ <= t} (1)

Second Order Cone Program (SOCP): A second order cone
program is a optimization problem where the objective func-
tion is linear and the constraints are either linear or second
order cones. From the definition, it follows that a SOCP is a
convex optimization problem.

IV. N ETWORK RECONFIGURATIONPROBLEMS

The basic problem addressed in this paper can be
formulated in graph theoretic terms. LetG = (V, E) be
the communication graph of the given set of robots, where

each node inV represents a robot and an edgee ∈ E

exists between two nodes (robots) if they are within the
communication set of each other (for simplicity assume the
communication model is a disc model withri being the
communication radius of roboti). We assume thatG is a
connected graph, i.e., any two robots can communicate with
each other. The basic problem that we are considering in this
paper can be stated as follows:

Problem 1 (P1): Consider a set of robots inR2, whose
communication graph2, G = (V, E), is a connected graph.
Let vi ∈ V be a given robot with positionqi, and Q (with
coordinatesq0 ∈ R

2) be a fixed point such that the roboti

needs to come within a distanceρi of Q. Also, let V ′ ⊂ V

be a set of nodes that has to be within the processing zone
of their original position. Determine, if it is feasible forthe
robot i to get within ρi of point Q while maintaining all
the previous network connections and satisfying the other
processing constraints.

If the above problem is feasible, we want to find the
robots that should be moved and their final positions. We
may also want to minimize other objective functions like
the total distance moved by the robots. Note that if the set
V ′ is empty, there always exists a feasible solution to the
problem. The trivial feasible solution is to translate each
robot along the vector fromqi towardq0. The magnitude of
translation is equal to the difference of their current distance
and ρi. However, there may be other feasible solutions for
which the distance traveled (and hence energy consumed)
in reconfiguring may be much lesser, so finding the feasible
solution such that the total distance traveled by the robotsis
minimized is desirable.

We can write the problemP1 as an optimization (or
feasibility) problem and the resulting problem is a convex
optimization problem. Letn be the total number of robots,
i.e., |V | = n, and m be the total number of edges in the
graph, i.e.,|E| = m. Let I be the index set of the robots in
the setV ′. Let qj ∈ R

2 be the coordinates of nodevj after
repositioning and let̃qj ∈ R

2 be the coordinates of the nodes
before moving. The coordinates of each robot,q̃j , is known
in a global reference frame, i.e., the robots are assumed to
be localized and the coordinates of the pointQ, i.e., q0, is
known in the same global frame. Letq, q̃ ∈ R

2n be the vectors
formed by concatenating the vectorsqj and q̃j respectively.
The problemP1 can be then written as:

min f0(q)

s.t. ‖qj − qk‖
2 ≤ djk, ∀(vj , vk) ∈ E

‖qj − q̃j‖
2 ≤ ρj , j ∈ I

‖qi − q0‖
2 ≤ ρ2

i

(2)

wheredjk is the square of the maximum distance between
nodej and k for which connectivity can be maintained, and

2For clarity of exposition, we are implicitly assuming that the communi-
cation graph is undirected. All of the discussion in the paper goes through
for directed graphs, in which case we assumeG to be a strongly connected
graph.

ρj
3, j ∈ I is the square of the processing radii each node in

V ′. The first set of constraints in Equation 2 represents the
communication constraints and the second set of constraints
represent the processing constraints of the robots. The last
constraint represents that roboti should be within a distance of
ρi of the given pointq0. The objective functionf0 : R

2n → R

is assumed to be a convex function. For the feasibility problem,
the objective function is0, and for the minimum motion
problem, the objective function is

n∑

i=1

‖qj − q̃j‖
2 (3)

which is a convex function. It is easy to verify that the
quadratic constraints in Equation 4 are convex quadratic func-
tions. Since both the objective function and the constraints
are convex quadratic functions the optimization problem in
equation 2 is a convex optimization problem or a quadratically
constrained quadratic program (that can be written as a SOCP).

We note that we can also consider other functions apart from
minimizing the total distance traveled by the robots. An alter-
native objective function could be minimizing the maximum
distance traveled by any robot. This function is also a convex
function, hence this problem is also a convex optimization
problem. In other words we can solve all variations of the
problemP1 that keeps the problem as a convex optimization
(or feasibility) problem. Since the problem in Equation 2 isa
convex optimization problem the problemP1 can be solved
in polynomial time using interior point methods.

As mentioned earlier, another problem of interest is recon-
figuring the network such that a given point is within a certain
distance of at least one of the robots in the network. This
problem can be written more formally as:
Problem 2 (P2): Given a connected graphG = (V, E), a
set V ′ ⊂ V in which the robots should remain within the
processing radii around their original position, and a fixed
pointQ, is it possible to bring any robot in the network within
a given distance of the pointQ while maintaining the original
connectivity of the network and satisfying the other proximity
constraints.

As in the problemP1, here also we are interested in finding
the robots to be moved, and their final positions, if the problem
is feasible. An objective of minimizing the total distance or
the maximum distance traveled by a robot can also be used.
We can also write the problemP2 as an optimization problem
as follows:

min f0(q)

s.t. ‖qj − qk‖
2 ≤ djk, ∀(vj , vk) ∈ E

‖qj − q̃j‖
2 ≤ ρj , j ∈ I

minj=1,...,n{‖qj − q0‖
2 − ρj} ≤ 0

(4)

where the notation is same as before. Note that the difference
between the problem defined by Equation 2 and the problem
defined by Equation 4 is in the last constraint. The last

3ρj may also be0; for example in a sensor network with static and mobile
nodes,ρj = 0 for the static nodes.

constraint in Equation 4 is not convex and hence the problem
P2 as written in Equation 4 is not a convex optimization
problem. However, the problem in Equation 4 can be solved
if we solven versions of the problem in Equation 2, one for
each robot, and take the solution in which the optimal value
of the objective function is minimum. Since the problem in
Equation 2 can be solved in polynomial time in the number
of robots, the problem in Equation 4 can also be solved in
polynomial time inn (an additional factor ofn will be present
in the expression of time complexity).

V. SOLUTION ALGORITHMS

In this section, we discuss the solution algorithms for the
network reconfiguration problems described above. We will
present our solutions in the context of problemP1. The
solution of problemP2 involves repeated solution of problem
P1. Since the problem given by Equation 2 is a convex
optimization problem, we can solve it in polynomial time using
a centralized interior point algorithm [11]. For implementation
of the centralized algorithm, a network node needs to maintain
and update the information about all other robots in the
network via message passing. In addition, the computational
cost also increases at least cubically with the number of
robots; hence the centralized algorithms may not be scalable.
Therefore, we present an incremental algorithm, which solves
Equation 2 by solving a series of optimization problems,
collecting information about positions of other robots in the
network only when needed.

A. Centralized Solution

Theoretically, solving the optimization version of Equa-
tion 2 has the same computational complexity as solving
the feasibility problem. Moreover the optimal solution using
Equation 3 as the objective function is also a solution to
the feasibility problem. Therefore, for the rest of this section
we present the discussion in the context of the optimization
version of Equation 2 with the objective function given by
Equation 3.

We can rewrite Equation 2 as a SOCP as shown below:

min
∑

j=1,...,n

sj

s.t. ‖qj − qk‖
2 ≤ djk, ∀(vj , vk) ∈ E

‖qj − q̃j‖
2 ≤ sj , j = 1, . . . , n

‖qi − q0‖
2 ≤ ρ2

i

sj ≤ ρj , j ∈ I

(5)

The objective function above is linear, the first three sets of
constraints are cone constraints and the last set of constraints
is linear; hence the optimization problem in Equation 5 is a
second order cone program. The optimization variable is a
3n × 1 vector,x = [s;q], wheres is a n × 1 concatenated
column vector ofsj , j = 1, . . . , n. The number of constraints
is (1+m+n+ |V ′|). So, the theoretical complexity of solving
this problem isO(m + n)3.5 [11].

For a networked system of mobile robots the utility of
the centralized algorithm depends on the architecture of the
deployed system and the number of robots in the network. If
the architecture of the deployed system is such that there is
one robot that keeps the information about the positions of all
the robots, then a centralized algorithm can be used for solving
the problem. However, the centralized algorithm scales poorly
with the size of the network.

B. Incremental Algorithm

In this section, we present the incremental algorithm. We
will present our discussion in the context of the feasibility
problem version of Equation 2. We first consider the related
optimization problem of minimizing the distance between the
robot i and the pointQ subject to all the constraints. The
problem can be written as

min ‖qi − q0‖
2

s.t. ‖qj − qk‖
2 ≤ djk, ∀(vj , vk) ∈ E,

‖qj − q̃j‖
2 ≤ ρj , j ∈ I

(6)

The difference between the feasibility version of Equation2
and Equation 6 is that the last constraint in Equation 2 is
the objective function in Equation 6. The feasible set for
Equation 6 is non-empty and so Equation 6 always has a
solution (the robots being at the positions where they started
is a trivial feasible solution). When the optimal value of the
objective in Equation 6 is less thanρi, the optimal solution
for Equation 6 is a feasible solution for Equation 2.

In our incremental algorithm, we solve the optimization
problem given by Equation 6, where we do not put all the
constraints at once but put in the constraints as required. Note
that the roboti is constrained by its neighbors only, each of
which is constrained by their neighbors and so on. If it is
possible for roboti to come withinρi of Q with its neighbors
staying at their previous positions, then roboti should do so.
Therefore, we start by putting in the constraints for roboti

only and this results in the following problem:

min ‖qi − q0‖
2

s.t. ‖qi − q̃j‖
2 ≤ dij , ∀(vi, vj) ∈ E

(7)

By not putting in the constraints for the other robots, we are
essentially saying that they cannot move, i.e.,qj = q̃j , j =
1, . . . , n, j 6= i. Let the value of the optimal solution to
Equation 9 bed∗i0. If d∗i0 ≤ ρi we have a feasible solution
with the new position of roboti being qi and other robots
remaining in their original position. Ifd∗i0 > ρi, we can
find the set of constraints in the solution of Equation 9 that
are active at the optimal solution, i.e., thej’s for which
‖qi − q̃j‖2 = dij . For ease of exposition, let us assume
that there is only one active constraint and let this constraint
correspond to thekth robot. The fact that there will be at
least one active constraint in the final optimal solution is
a fundamental fact of convex optimization [12]. Obviously,
the robot i cannot progress further towards the pointQ, if
these active constraints cannot be relaxed, i.e., if robotk

cannot be moved. So, in the next step, we allow the robots
constraining the motion of roboti to move, i.e., we remove
the set of constraints‖qi − q̃k‖2 ≤ dik, k ∈ K from
Equation 9 and add the set of constraints‖qi − qk‖

2 ≤ dik,
‖qk − q̃ℓ‖2 ≤ dkℓ, (vk, vℓ) ∈ E, k ∈ K to Equation 9. The set
K consists of all the robots that were preventing the motion of
robot i at the previous step. Again we solve the optimization
problem, check the value of the optimal solution, identify the
active constraints and repeat the procedure untild∗i0 ≤ ρi.
In the optimal solution of the problem in Equation 9, the
Lagrange multipliers (or dual variables) corresponding tothe
active constraints is positive and so the active constraints can
easily be identified by checking the dual variables.

To illustrate the above mathematical description of the
incremental algorithm, let us consider the example that we
introduced in Figure 1. We consider a network of10 robots,
where the robot1 wants to move within the communication
range of robot10. Now, if we allow only robot1 to move
towards robot10, robot2 and4 will constrain its motion if they
are fixed. This corresponds to the first step of the incremental
algorithm where we will obtain the active constraints as1− 2
and1 − 4. So, in the second step, we will allow1, 2, and4
to move. Now the position of2 and4 will be constrained by
robot 3. Robot1 will then be constrained by either2 or 4 or
both. The new active constraints that will be obtained from the
second step of the incremental algorithm is2 − 3 and4 − 3.
Therefore, in the third step, we will allow robots1, 2, 3, and
4 to move. In this step the robot1 can reach its goal, hence
we obtain the final reconfigured network.

Fig. 2. An example network of10 robots. The robot1 wants to move
within the communication range of robot10 such that the network becomes
2-connected. Only the robots1, 2, 3, 4 need to move to their new position
1′, 2′, 3′, 4′ for the network to be2-connected. The dashed lines shows the
new communication edges after the network has reconfigured.

Once we obtain the feasible solution, we can also obtain
the total distance moved by the robots by adding the distances
moved by the robots that are allowed to move. However, this
is an upper bound on the minimum distance that the robots
need to move since thed∗i0 may be strictly less thanρi.
If we are interested in finding the solution to the minimum
distance problem we can now solve Equation 2 with only the
constraints present in the optimal solution of Equation 9.

Technically, the incremental algorithm described above is
also a centralized algorithm, because the computation is done

by one robot only (the roboti that wants to move). In terms of
computational complexity, the worst case performance of the
incremental algorithm is similar to the centralized algorithm.
However, unlike the centralized algorithm, the nodei does not
need the information about the whole network at once, but can
collect the information as required. At each step, the roboti

collects the position information about only the neighborsof
the robots that need to be moved. Thus, in practical problems,
where the network adjustment can be done by moving only a
few nodes, the incremental algorithm may result in substantial
savings in computational and communication effort. For a
node which is more than1 hop away from the roboti, a
path is known for requesting the required position information,
because within the active set there will be a sequence of active
constraints starting from roboti to that particular robot.

C. Solution Algorithms for P2

For problemP2, it can be easily seen that by solving
problem P1 for all the n robots and finding the solution
with minimum objective value among them we can solveP2.
However, in practice, because of the geometric structure ofthe
network, it may not be required to solveP1 for all possible
robots but only for robots that are within a certain distanceof
Q. We are exploring this further.

VI. SIMULATION RESULTS

In this section we present some preliminary simulation
results showing the performance of the centralized and in-
cremental algorithms on randomly generated networks. We
present simulation results for problem P1 only. We used
YALMIP [13] for modeling the optimization problem and used
Sedumi [14], for solving second order cone programs. All the
coding was done in MATLAB. For simplicity, we assumed
that the communication radii of the robots are identical and
equal to1. Furthermore, in the simulations we considered only
the communication constraints, i.e., the setV ′ was assumed
to be empty. We generated the networks randomly (ensuring
that it is connected at the beginning). For each generated
network, the roboti to be moved was chosen randomly and
the pointQ was also chosen randomly within a distance of7-
hops from the roboti. We ran both the centralized algorithm
and the incremental algorithm for each problem instance and
the average run time over50 instances for each value ofn is
shown in Table I. Note that the choice of7-hops is arbitrary
and is there to ensure that the distance fromi to point Q is
much smaller than the diameter of the convex hull of the robot
positions. As can be observed from table I, the computation
time for the incremental algorithm is relatively insensitive to
the size of the network. Moreover, in all cases the solution was
obtained with less than30 robots moving to new positions.

VII. D ISCUSSION ONOBSTACLE AVOIDANCE

In all of the above discussion, we have assumed that a
robot can move to any point in the environment, i.e., there
are no obstacles in the environment. Presence of obstacles
in the environment can (a) make candidate final positions in

Number of Centralized Incremental
nodes Algorithm Algorithm

Run Time (s) Run Time (s)

1 10 1.4 1.2
2 50 2 1.4
3 100 2.7 1.8
4 200 4.8 3.4
5 500 19 7.6
6 1000 130 8.1

TABLE I
SAMPLE RUN TIMES, IN SECONDS, FOR THE CENTRALIZED ALGORITHM

AND INCREMENTAL ALGORITHM SOLVED USING SEDUMI IN MATLAB.
THE RUN TIMES WERE COMPUTED BY AVERAGING OVER50 RANDOMLY

GENERATED NETWORKS. ALL DATA WAS OBTAINED ON A 2.53 GHZ

INTEL(R) P87000DUAL CORE CPUWITH 2 GB OF RAM.

the environment infeasible and (b) change the feasible path
for moving from initial position to final position. Since our
goal in this paper is to obtain the final feasible positions (and
not on computing the paths to move to the final position)
we will consider the problem (a) above in this section.
We note here that the convex optimization framework and
algorithms presented in this paper can be extended to take
into consideration obstacles. We assume that the obstaclescan
be defined as a union of convex sets where each convex set
is a polytope. Since any obstacleO is a convex polytope,
it can be represented as an intersection of half planes, i.e.,
O = {q ∈ R

2|aT
j q + bj ≤ 0, j = 1, . . . , p}. Assuming

the robots to be point robots, for the robot to avoid being
positioned inside the obstacle, the distance between the robot
and the obstacle should be greater than0. An alternate way
of writing the collision avoidance constraint for roboti and
obstacleO is as follows:

maxj=1,...,p{a
T
j qi + bj} ≥ 0 (8)

Since the constraint above is a pointwise maximum of a
finite number of linear functions inqi, it is a convex function
in qi [11]. Thus, we can write each collsion constraint at
the final position as a convex constraint (actually as a set of
linear inequality constraints). Therefore incorporatingcollision
avoidance constraints would involve adding a collection of
linear inequalities to Equation 2 and the problem remains a
convex optimization problem.

The incremental algorithm for the feasibility problem can
thus be implemented by taking into considerationthe collision
avoidance constraints for all the robots that can move. How-
ever, the solution obtained from the feasibility problem will not
necessarily lead to the solution for minimum distance moved.

VIII. C ONCLUSION

In this paper we have provided algorithms for solving the
network reconfiguration problem of moving a robot in the
network within a specified distance of a given point. We
showed that the above problem is a second order cone program
(SOCP) and can thus be solved in polynomial time by a
centralized interior point algorithm. However, the centralized
algorithm is not scalable. Hence, we presented an incremental

algorithm, that solves the feasibility problem by obtaining
the information about the position of the robots and their
immediate neighbors only if they are required to move. From
our simulation results on randomly generated networks, we
observed that the computation time for obtaining the feasible
solution is relatively independent of the size of the network.

Future Work: We note that both the algorithms that we have
presented are in essence centralized, because only one robot
is doing the computation. Therefore, for problems, where a
large fraction of the robots have to move the incremental
algorithm will perform similar to the centralized algorithm.
The optimization problem given by Equation 2 has a separable
objective function. Hence it may be possible to obtain a dis-
tributed algorithm for this problem using dual decomposition
techniques (analogous to what is done in [2]). The distributed
algorithms will give rise to issues concerning synchronization.
Moreover, if only a small percentage of the nodes are to be
moved, most of the computation of the nodes may be wasteful.
The tradeoff’s associated with the various algorithms is an
interesting question to pursue.

ACKNOWLEDGEMENTS

This research was partially supported by MURI grants
FA9550-08-1-0356 and N00014-08-1-1186. Thanks to S.
Okamoto and R.Zivan for early discussions on a different
version of the problem.

REFERENCES

[1] M. Ji and M. Egerstedt, “Distributed formation control while preserving
connectedness,” inIEEE Conference on Decision and Control, San
Diego, CA, December 2006, pp. 5962–5967.

[2] R. L. Raffard, C. Tomlin, and S. P. Boyd, “Distributed optimization for
cooperative agents: Application to formation flight,” inIEEE Conference
on Decision and Control, Bahamas, December 2004, pp. 2453–2459.

[3] A. Kansal, W. Kaiser, G. Pottie, M. Srivastava, and G. Sukhatme,
“Revonfiguration methods for mobile sensor networks,”ACM Transac-
tions on Sensor Networks, vol. 3, no. 4, pp. 22:1–22:28, October 2007.

[4] M. Zavlanos and G. J. Pappas, “Distributed connectivitycontrol of
mobile networks,”IEEE Transactions on Robotics, vol. 24, no. 6, pp.
1416–1428, December 2008.

[5] M. C. DeGennaro and A. Jadbabaie, “Decentralized control of connec-
tivity for multi-agent systems,” inIEEE Conference on Decision and
Control, San Diego, CA, December 2006, pp. 3628–3633.

[6] A. Muhammad and M. Egerstedt, “Network configuration control via
connectivity graph processes,” inACC, June 2006.

[7] L. Doherty, K. S. J. Pister, and L. E. Ghaoui, “Convex position
estimation in wireless sensor networks,” inProceedings of IEEE Infocom
2001), vol. 3, 2001, pp. 1665–1663.

[8] S. Srirangarajan, A. H. Tewfik, and Z.-Q. Luo, “Distributed sensor
network localization using socp relaxation,”IEEE Trans. on Wireless
Communications, vol. 7, no. 12, pp. 4886–4895, December 2008.

[9] J. Spletzer and R. Fierro, “Optimal positioning strategies for shape
changes in robot teams,” inIEEE International Conference on Robotics
and Automation, vol. 1, Barcelona, Spain, April 2005, pp. 754–759.

[10] J. Derenick and J. Spletzer, “Concex optimization strategies for coor-
dinating large scale robot formations,”IEEE Transactions on Robotics,
vol. 23, no. 6, pp. 1252–1259, December 2007.

[11] S. Boyd and L. Vandenberghe,Convex Optimization. Cambridge, U.K.:
Cambridge University Press, 2004.

[12] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty,Nonlinear Programming:
Theory and Algorithms. New York, USA: John Wiley, 1993.

[13] J. Lofberg, “Yalmip: A toolbox for modeling and optimization in
MATLAB,” in Proc. of the CACSD conference, Taipei, Taiwan, 2004.

[14] J. F. Sturm, “Using sedumi 1.02, a MATLAB toolbox for optimization
over symmetric cones,”Optimization Methods and Software, vol. 11-12,
pp. 625–653, 1999.

