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Abstract—For a deployed mobile robotic network to function
usefully, the robots should have the capability to adjust tleir
positions, while maintaining the network connectivity. In this
paper, we present algorithms that allows a robot to decide wén
it is feasible for it to move to a desired point by adjusting is own
positions (and the positions of some other robots in the netwk),
while maintaining all the network connectivity constraints. Under

the assumption of a disc model of communication, we show that

the problem can be formulated as a convex optimization (or fa-
sibility) problem (actually a second order cone program). hus,
the problem can be solved in polynomial time by centralized
interior point algorithms. However, this requires the robot to
have knowledge of the position of all the nodes in the network
Our main contribution is the development of an incremental
algorithm, that solves the feasibility problem (of whether the
robot can move to its desired goal) by obtaining the informaibn
about the position of the robots and their immediate neighbos
only if they are required to move. We present simulation resits
comparing the performance of the centralized algorithm wit the
incremental algorithm for randomly generated networks. From
simulation results, we observe that the time required by the
incremental algorithm to solve the feasibility problem is relatively
independent of the size of the network.

Index Terms—robotic networks, network reconfiguration, sec-
ond order cone program (socp), convex optimization.
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Fig. 1. An example network of0 robots. The robol wants to move within
the communication range of rob0 to form a2-connected network.

maintaining connectivity (as studied in [1], [2]). The dist-
tion is in terms of the scale of the distance to be moved. To
get an intuitive understanding of the distinction, let uasider
the convex hull of all the robots positions and let the dianet
of the convex hull polytope be its characteristic lengthotm
problem, the distance to be moved by a robot is much smaller
than the characteristic length of the convex hull while i [1
[2] it is much larger. Thus, we call the problems that we are
studying network reconfiguration (or repositioning) perhk.

In this paper, we consider two related abstract network

Mobile robotic networks with communication capabiliieg®configuration problems: (a) design algorithms to decide
have received wide attention recently because of their phether it is possible to reconfigure the network (i.e., atju

tential applications in environmental monitoring, seaeaid

the position of the robots while satisfying the constraiots

rescue operations, extraterrestrial exploration. In aayep ©€ach robot) to bring a specified robot within a given distance
mobile robotic network, it is desirable for the robots to @av°f @ known point, (b) design algorithms to decide whether it
the capability of adjusting their positions according te thiS POssible to reconfigure the network to bring at least one
demands of the situation. It is also necessary to ensuréfthat"0Pot within a given distance of a known point. Note that
communication network formed by the robots stay connectddVe ¢an solve the problem (a), we can solve the problem

after the adjustments have been made. An example scen&PbPY repeating the algorithm for solving (a) for every robo
is presented in Figure 1 where the robots, in order to fja the network. Thus, the basic problem that we address in

robust to any communication link failure, wants to fornz-a thiS paper is problem (a) and it can be written as follows:

connected network (i.e., at least two edges in the graph ndéd £ = {a; = (z,95)},j = 1,2,...,n, be the set of

to be removed for it to become disconnected). One way to 88Sitions of n mobile robots (or nodes). Let C; be a convex

this is to move the robot within the communication range St SPecifying the communication ar ealof robot j and .5; be

of robot 10 without breaking any of the communication edge@ Convex set specifying the processing™ area of robot ;. Let

already present in the network. P’ C P be the set of robots that has to stay within the
We note that our pro-blem is different fom the formatipn 1We use the term processing to denote any generic operatimmiay be

control problem of moving the whole robotic network whilehysically interactive like sample collection or non-piags like sensing.



processing area of their current positions. Is it possible for to ensure that the connectivity constraints are maintaated
the robots to adjust their positions (while maintaining all the the final positions of the robots. In that sense this work is
previous network constraints) such that a given point qq falls complementary to the control theoretic approaches.
within the processing zone of a given robot i? We assume the  Convex optimization techniques have been used in the
communication area and processing area of each robot tolitkerature to solve network localization problems in senso
discs with possibly different radii. networks [7], [8] and shape formation problems [9], [10].
We show that the above problem is equivalent to checkimg [7] the authors formulated the sensor network localorati
the feasibility of a second order cone program (SOCP) and garoblem as a semi-definite program that is solved using a
thus be solved in polynomial time by a centralized interiasentralized algorithm. Thereafter, much effort has gorte in
point algorithm. Moreover, within the same framework, wéormulating the problem as a SOCP and developing distribute
can also optimize the total distance moved by the robots (algorithms to solve the resulting SOCP (see [8] and refagnc
that the energy expended in repositioning can be minimizetherein). The shape formation problem was proposed as a
For the centralized algorithm, the robo{or the centralized SOCP in [9] and a centralized solution was given to the
processor) needs to know the coordinates of all the robotsproblem. Thereafter, distributed algorithms were propaose
the network. Thus, the centralized algorithm may be usefsblve the problem [10]. Our problem is distinct from that in
when (a) the number of robots in the network is small or (9] because we do not know the positions the robots should
the architecture of the deployed mobile robotic system ¢hsumove to, whereas, in the shape changing problem, the final
that there is a base station that keeps the updated infamathape, i.e., final coordinates of the robots are given.
about the position of all the robots in the network. However,
in general, the centralized algorithm is not scalable. &foze,
we present an incremental algorithm, that solves the fisiagib ~ Undirected graph: An undirected grapht is an ordered
problem by obtaining the information about the positionte t Pair, G = (V. E), whereV = {v1,v2,...,v,} is a set ofn
robots and their immediate neighbors only if they are reggiir Nodes, ande C V x V' is a set of edges. Two nodes and
to move. For network reconfiguration problems, usually @nlyv; are calledneighbors of each other if(v;, v;) € E. The set
small fraction of the total number of nodes need to be movell; = {v;|(vi,v;) € E} is the set ofv;'s neighbors, and\V;|
Therefore, as verified by our simulation results on randomi§ defined as thelegree of nodev;.
generated networks, the computation time for obtaining ti¢&nnected graph: A path between two nodes in a graph,
feasible solution is relatively independent of networlesithis G = (V. E), is said to exist if there is a sequence of edges
scalable incremental algorithm is our main contribution. ~ from E joining the two nodes. An undirected graph is called
The paper is organized as follows. After a discussion @fconnected graph, if there is a path between any two pairs of
related work in Section I, we review the relevant mathemafodes in the graph.
ical background in Section 1ll. We present the formulatioffOnvex Set: A setU C R" is called a convex set if for any
of the network reconfiguration problems in Section IV anfv0 pointsu;, uz € U and anyA with 0 < A <1, we have
describe the cgntralizgd and incremental aIgori_thmsme@ _ A+ (1= Nug € UL
the problems in Section V. We present our implementation
results in Section VI, discuss the inclusion of obstaclesin Convex Function: A function f : R™ — R is convex if the
framework in Section VII, and conclude with a discussion gfomain of f (dom f) is a convex set and for ail;, u, € dom
future work in Section VIII. f and any\ with 0 < A <1, we have

Il. RELATED WORK fOur + (1= Nuz) < Af(ur) + (1= A) f(uz).

The network reconfiguration problem for improving sensin§econd Order Cone: A setU is called a cone, ifi € U implies
quality has been studied by Kansal et al. [3] in the context afu € U for all A > 0. It is called a convex cone, F is also
a network of camera sensors. In their problem the camegagonvex set. A second order cone is a convex cone defined
had limited tilt, pan and zoom capability and they wanteldy the Euclidean norm.
to reconfigure the camera network utilizing this mobility to ntl
improve the resolution or quality of the image obtained. U={(ut) e R""| [[u] <=1} @)

However, since the cameras were statically located, thesgond Order Cone Program (SOCP): A second order cone
was no issue of loss of ConneCtiVity. An alternative bOdNrogram is a Optimization prob|em where the objective func-
of recent literature concentrates on maintaining conwégti tion is linear and the constraints are either linear or sécon
of a network of mobile robots while they are moving [4]order cones. From the definition, it follows that a SOCP is a
[3], [1], [6]- In [4], [6], the authors present control lawsconvex optimization problem.

for maintaining the connectivity of the network. The main

goal of the control laws are to move the robots so as to  |V- NETWORKRECONFIGURATION PROBLEMS

maintain the connectivity and the objective of any robotihgv  The basic problem addressed in this paper can be
a desired goal is a secondary objective. In our work, theeési formulated in graph theoretic terms. Lét = (V,E) be
goal (if achievable) is the primary objective and we warthe communication graph of the given set of robots, where

IIl. M ATHEMATICAL PRELIMINARIES



each node inV represents a robot and an edgec E p,3 j € T is the square of the processing radii each node in
exists between two nodes (robots) if they are within thE’. The first set of constraints in Equation 2 represents the
communication set of each other (for simplicity assume tl®mmunication constraints and the second set of constraint
communication model is a disc model withh being the represent the processing constraints of the robots. The las
communication radius of robaf). We assume tha& is a constraint represents that rolicthould be within a distance of
connected graph, i.e., any two robots can communicate wjhof the given poiniy,. The objective functiory, : R?® — R
each other. The basic problem that we are considering in tissassumed to be a convex function. For the feasibility bl
paper can be stated as follows: the objective function is0, and for the minimum motion
problem, the objective function is

Problem 1 (P1): Consider a set of robots iR?, whose n
communication graph G = (V, E), is a connected graph. ZH%’ — g2 ()
Let v; € V be a given robot with positiory;, and @ (with im1
coordinatesyo € R?) be a fixed point such that the robdt yhich is a convex function. It is easy to verify that the

needs to come within a distange of Q. Also, let V' C V' gyadratic constraints in Equation 4 are convex quadratic-fu
be a set of nodes that has to be within the processing zqfs. Since both the objective function and the constsaint
of their original position. Determine, if it is feasible fohe 516 convex quadratic functions the optimization problem in
robot i to get within p; of point @ while maintaining all equation 2 is a convex optimization problem or a quadragical
the previous network connections and satisfying the othgnstrained quadratic program (that can be written as a SOCP
processing constraints. , , We note that we can also consider other functions apart from
If the above problem is feasible, we want to find the,inimizing the total distance traveled by the robots. Aemlt
robots that should be moved and their final positions. Weiive objective function could be minimizing the maximum
may also want to minimize other objective functions likgisiance traveled by any robot. This function is also a cenve
the total distance moved by the robots. Note that if the Sgfyction, hence this problem is also a convex optimization
V' is empty, there always exists a feasible solution to thgopniem. In other words we can solve all variations of the

problem. The trivial feasible solution is to tran;late eacﬂroblemPl that keeps the problem as a convex optimization
robot along the vector fromy; towardqo. The magnitude of (4 feasibility) problem. Since the problem in Equation Zis
translation is equal to the difference of thel_r currentm convex optimization problem the problefl can be solved
an(_j Di- Howgver, there may be other feasible solutions fgg olynomial time using interior point methods.

which the distance traveled (and hence energy consumedjs mentioned earlier, another problem of interest is recon-

in reconfiguring may be much lesser, so finding the feasibig;ring the network such that a given point is within a certai
solution such that the total distance traveled by the rolotsyisiance of at least one of the robots in the network. This

minimized is desirable. L problem can be written more formally as:

We can write the problemP1 as an optimization (Or prgplem 2 (P2): Given a connected grapi = (V, E), a
feagib_ility_) problem and the resulting problem is a convex, v C V in which the robots should remain within the
optimization problem. Let: be the total number of robots, ,ocessing radii around their original position, and a fixed
.e., [V| = n, andm be the total number of edges in the,qint ) s it possible to bring any robot in the network within
graph, "?"|E| =m. L(;,-t T be the index set of the robots in, yiven distance of the poiri while maintaining the original
the setl”. Let q; € R* be the coordinates of nodg after qnnectivity of the network and satisfying the other proigym
repositioning and le§; € R? be the coordinates of the nodes.ynstraints.
before moving. The coordinates of each roligf, is known  aq in the problemP1, here also we are interested in finding
in a global reference frame, i.e., the robots are assumedyi@ yohots to be moved, and their final positions, if the pobl
be localized and the coordinates of the 2po@v,t|.e., 0, IS s feasible. An objective of minimizing the total distance o
known in the same global frame. Lgtq < R*" be the vectors e maximum distance traveled by a robot can also be used.

formed by concatenating the vectays and G; respectively. \we can also write the problei2 as an optimization problem
The problemP1 can be then written as:

as follows:
min fo(q) min  fo(q)
. 2
st flaj — Qk||2 < djk, V(vj, 1) € E @ st. |laj —axll* < dji, V(vj,v) € E 4
laj —a;lI <pj, J€T la; —a;lI> <pj, jeT
2 2
lla; — qol|” < p; minj:l,...,n{qu - QO||2 - pj} <0

whered,, is the square of the maximum distance betwe

. : . N here the notation is same as before. Note that the differenc
nodej andk for which connectivity can be maintained, an

etween the problem defined by Equation 2 and the problem

2For clarity of exposition, we are implicitly assuming thaetcommuni- defined by Equation 4 is in the last constraint. The last

cation graph is undirected. All of the discussion in the pagees through
for directed graphs, in which case we assu@do be a strongly connected 3pj may also bed; for example in a sensor network with static and mobile
graph. nodes,p; = 0 for the static nodes.



constraint in Equation 4 is not convex and hence the problemFor a networked system of mobile robots the utility of
P2 as written in Equation 4 is not a convex optimizationhe centralized algorithm depends on the architecture f th
problem. However, the problem in Equation 4 can be solveltployed system and the number of robots in the network. If
if we solven versions of the problem in Equation 2, one fothe architecture of the deployed system is such that there is
each robot, and take the solution in which the optimal valme robot that keeps the information about the positiondlof a
of the objective function is minimum. Since the problem ithe robots, then a centralized algorithm can be used foirgplv
Equation 2 can be solved in polynomial time in the numbéhe problem. However, the centralized algorithm scaleslpoo

of robots, the problem in Equation 4 can also be solved with the size of the network.

polynomial time inn (an additional factor of will be present

in the expression of time complexity). B. Incr tal Algorithm

In this section, we present the incremental algorithm. We
V. SOLUTION ALGORITHMS will present our discussion in the context of the feaswilit

. . . _ . roblem version of Equation 2. We first consider the related
In this section, we discuss the solution algorithms for t?’%f
f

network reconfiguration problems described above. We w|
present our solutions in the context of probleRi. The
solution of problemP2 involves repeated solution of problem
P1. Since the problem given by Equation 2 is a convex min |lq; — qo*

optimization problem, we can solve it in polynomial timenggi st. |lg; — q,€||2 < djk, Y(vj,v;) € E, (6)
a centralized interior point algorithm [11]. For implematibn la; — ;)2 <pj, jeT

of the centralized algorithm, a network node needs to miainta -
and update the information about all other robots in thEhe difference between the feasibility version of Equation
network via message passing. In addition, the computdtio®®d Equation 6 is that the last constraint in Equation 2 is
cost also increases at least cubically with the number ¥e objective function in Equation 6. The feasible set for
robots; hence the centralized algorithms may not be sealaffguation 6 is non-empty and so Equation 6 always has a
Therefore, we present an incremental algorithm, whichesolysolution (the robots being at the positions where they estiart
Equation 2 by solving a series of optimization problemis, a trivial feasible solution). When the optimal value oé th
collecting information about positions of other robots et Objective in Equation 6 is less than, the optimal solution

timization problem of minimizing the distance betweee th
bot i and the pointQ subject to all the constraints. The
problem can be written as

network only when needed. for Equation 6 is a feasible solution for Equation 2.
In our incremental algorithm, we solve the optimization
A. Centralized Solution problem given by Equation 6, where we do not put all the

Theoretically, solving the optimization version of Equaconstralnts at once but put in the constraints as requirete N

fion 2 has the same computational complexity as solvi that the roboti is constrained by its neighbors only, each of

the feasibility problem. Moreover the optimal solution ngsi Wwhich is constrained by their neighbors and so on. If it is

) L L . ossible for robot to come withinp; of @ with its neighbors
Equation 3 as the objective function is also a solution . s : . )
i~ o Staying at their previous positions, then robathould do so.
the feasibility problem. Therefore, for the rest of thistsat o . _
Therefore, we start by putting in the constraints for robot

we present the discussion in the context of the optimizati%rF]I and this results in the followina problem:
version of Equation 2 with the objective function given by y gp '

Equation 3. . )
We can rewrite Equation 2 as a SOCP as shown below: min |q; - qof| )
st fla; — a;)|* < dij, Y(vi,v5) € E
min Z Sj . . .
P By not putting in the constraints for the other robots, we are
‘ R R _ _ essentially saying that they cannot move, i®.,= q;,j =
st _quQ < djk, Y(vj,ve) € B G) L. # 4. Let the value of the optimal solution to
la; —aq;l" <sj, 7=1,...,n Equation 9 beds,. If d%, < p; we have a feasible solution
llai — qoll® < p? with the new position of robof being q; and other robots

remaining in their original position. I}, > p;, we can
find the set of constraints in the solution of Equation 9 that
The objective function above is linear, the first three séts are active at the optimal solution, i.e., thés for which
constraints are cone constraints and the last set of camstral|q; — q;||> = di;. For ease of exposition, let us assume
is linear; hence the optimization problem in Equation 5 is that there is only one active constraint and let this coirgtra
second order cone program. The optimization variable iscarrespond to théth robot. The fact that there will be at
3n x 1 vector,x = [s;q], wheres is an x 1 concatenated least one active constraint in the final optimal solution is
column vector ofs;,j = 1,...,n. The number of constraintsa fundamental fact of convex optimization [12]. Obviously,
is (1+m+n+|V’|). So, the theoretical complexity of solvingthe robot: cannot progress further towards the poit if
this problem isO(m + n)3-5 [11]. these active constraints cannot be relaxed, i.e., if rdbot

sj<pj, Je1



cannot be moved. So, in the next step, we allow the robdig one robot only (the robatthat wants to move). In terms of
constraining the motion of robatto move, i.e., we remove computational complexity, the worst case performance ef th
the set of constraintdlq; — qi||*> < dix,k € K from incremental algorithm is similar to the centralized alguri.
Equation 9 and add the set of constraifiég — qx||> < d;x, However, unlike the centralized algorithm, the nades not
llax — ael|? < die, (v, v¢) € E,k € K to Equation 9. The set need the information about the whole network at once, but can
K consists of all the robots that were preventing the motion obllect the information as required. At each step, the rabot
robot¢ at the previous step. Again we solve the optimizatiocollects the position information about only the neighbofs
problem, check the value of the optimal solution, identHg t the robots that need to be moved. Thus, in practical prohlems
active constraints and repeat the procedure ufjtil < p;. where the network adjustment can be done by moving only a
In the optimal solution of the problem in Equation 9, théew nodes, the incremental algorithm may result in substhnt
Lagrange multipliers (or dual variables) correspondinght® savings in computational and communication effort. For a
active constraints is positive and so the active conssaiah node which is more than hop away from the robot, a
easily be identified by checking the dual variables. path is known for requesting the required position infoliorat

To illustrate the above mathematical description of thgecause within the active set there will be a sequence afeacti
incremental algorithm, let us consider the example that veenstraints starting from robatto that particular robot.
introduced in Figure 1. We consider a network1df robots, ] ]
where the robotl wants to move within the communicationC: Selution Algorithms for P2
range of robotl0. Now, if we allow only robotl to move For problem P2, it can be easily seen that by solving
towards robot 0, robot2 and4 will constrain its motion if they problem P1 for all the n robots and finding the solution
are fixed. This corresponds to the first step of the increnhenteith minimum objective value among them we can soR2
algorithm where we will obtain the active constraintslas2 However, in practice, because of the geometric structutbeof
and1 — 4. So, in the second step, we will allowy 2, and4 network, it may not be required to soh1 for all possible
to move. Now the position o2 and4 will be constrained by robots but only for robots that are within a certain distaote
robot 3. Robot1 will then be constrained by eith@or 4 or Q. We are exploring this further.
both. The new active constraints that will be obtained from t

second step of the incremental algorithnRis- 3 and4 — 3. VI. SIMULATION RESULTS

Therefore, in the third step, we will allow robots2, 3, and In this section we present some preliminary simulation
4 to move. In this step the robdt can reach its goal, henceresults showing the performance of the centralized and in-
we obtain the final reconfigured network. cremental algorithms on randomly generated networks. We

present simulation results for problem P1 only. We used
YALMIP [13] for modeling the optimization problem and used
Sedumi [14], for solving second order cone programs. All the
coding was done in MATLAB. For simplicity, we assumed
that the communication radii of the robots are identical and
equal tol. Furthermore, in the simulations we considered only
the communication constraints, i.e., the $&twas assumed
to be empty. We generated the networks randomly (ensuring
that it is connected at the beginning). For each generated
network, the robot to be moved was chosen randomly and
the point@ was also chosen randomly within a distancerof
hops from the robof. We ran both the centralized algorithm
Fig. 2. An example network of0 robots. The robotl wants to move and the incremental algorithm for each problem instance and
within the communication range of roba® such that the network becomesthe average run time ovél instances for each value afis
2-connected. Only the robots, 2,3, 4 need to move to their new position shown in Table I. Note that the choice ofhops is arbitrary
1/,27,3', 4" for the network to be2-connected. The dashed lines shows the . . . . .
and is there to ensure that the distance froto point Q) is
much smaller than the diameter of the convex hull of the robot
Once we obtain the feasible solution, we can also obtghositions. As can be observed from table I, the computation
the total distance moved by the robots by adding the dissan¢ine for the incremental algorithm is relatively insensitito
moved by the robots that are allowed to move. However, thise size of the network. Moreover, in all cases the solutias w
is an upper bound on the minimum distance that the robatbtained with less thaB0 robots moving to new positions.
need to move since the;;, may be strictly less tham;.
If we are interested in finding the solution to the minimum
distance problem we can now solve Equation 2 with only theIn all of the above discussion, we have assumed that a
constraints present in the optimal solution of Equation 9. robot can move to any point in the environment, i.e., there
Technically, the incremental algorithm described above @&@e no obstacles in the environment. Presence of obstacles
also a centralized algorithm, because the computationng dan the environment can (a) make candidate final positions in

new communication edges after the network has reconfigured.

VII. DISCcusSION ONOBSTACLE AVOIDANCE



Number of | - Centralized | Incremental algorithm, that solves the feasibility problem by obtagin
nodes Algorithm Algorithm . . " .
Run Time (s)| Run Time (s) the information about the position of the robots and their
1 10 14 12 immediate neighbors only if they are required to move. From
2 50 2 1.4 our simulation results on randomly generated networks, we
3 100 2.7 18 observed that the computation time for obtaining the fdasib
4 200 43 3.4 o . . :
£ =50 19 75 solution is relatively independent of the size of the networ
6 1000 130 8.1 Future Work: We note that both the algorithms that we have
TABLE | presented are in essence centralized, because only one robo
SAMPLE RUN TIMES, IN SECONDS FOR THE CENTRALIZED ALGORITHM IS doing the computation. Therefore, for problems, where a
?ND'NCREMENTALALGOR'THM SOLVED US'NGSEDUMF'ég MATLAB. large fraction of the robots have to move the incremental
HE RUN TIMES WERE COMPUTED BY AVERAGING OVE RANDOMLY . . P . .
GENERATED NETWORKS ALL DATA WAS OBTAINED ON A 2.53 GHr algonthm .WI||- perform S|m|.Iar to the Cer_ltrallzed algorith
INTEL(R) P8700UAL CORE CPUWITH 2 GB OF RAM. The optimization problem given by Equation 2 has a separable

objective function. Hence it may be possible to obtain a dis-
tributed algorithm for this problem using dual decompasiti
techniques (analogous to what is done in [2]). The distefut
the environment infeasible and (b) change the feasible paﬂgorithms will give rise to issues concerning synchrotiira
for moving from initial position to final position. Since ourMoreover, if only a small percentage of the nodes are to be
goal in this paper is to obtain the final feasible positiomsd(a moved, most of the computation of the nodes may be wasteful.
not on computing the paths to move to the final positionhe tradeoff’s associated with the various algorithms is an
we will consider the problem (a) above in this sectiorinteresting question to pursue.
We note here that the convex optimization framework and
algorithms presented in this paper can be extended to take
into consideration obstacles. We assume that the obstzates 1Nis research was partially supported by MURI grants
be defined as a union of convex sets where each convex g$550-08-1-0356 and N00014-08-1-1186. Thanks to S.
is a polytope. Since any obstace is a convex polytope, Okamoto and R.Zivan for early discussions on a different
it can be represented as an intersection of half planes, i¥€rsion of the problem.
O = {q € R’ajq +0b; < 0,j = 1,...,p}. Assuming REFERENCES
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