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Abstract— Distributed algorithms for (re)configuring mobile
sensors to cover a given area are important for autonomous
multi-robot operations in application areas such as surveillance
and environmental monitoring. Depending on the assumptions
about the choice of the environment, the sensor models, the
coverage metric, and the motion models of sensor nodes, there
are different versions of the problem that have been formulated
and studied. In this paper, we consider a system of holonomic
mobile robots equipped with anisotropic sensors (e.g., limited
field of view cameras) that are required to cover a polygonal
region with polygonal obstacles to detect interesting events. We
assume a given probability distribution of the events over a
region. Motivated by scenarios where the sensing performance
not only depends on the resolution of sensing but also on
the relative orientation between the sensing axis and the
event, we assume that the probability of detection of an event
depends on both sensing parameters and the orientation of
observation. We present a distributed gradient-ascent algorithm
for reconfiguring the system of mobile robots so that the joint
probability of detection of events over the whole region is
maximized (i.e., positioning the mobile robots and determining
their sensor parameters). As an example case study, we use
a system of mobile robots equipped with limited field of view
cameras with pan and zoom capabilities. We present simulation
results demonstrating the performance of our algorithm.

Index Terms— Distributed Coverage, Anisotropic Sensing.

I. INTRODUCTION

Multiple robot coverage problems have been studied in the
context of a wide variety of applications such as surveillance,
environmental monitoring, demining, floor cleaning, lawn
mowing, harvesting, and industrial applications (e.g. drilling,
milling, painting). More recently, distributed algorithms for
(re)configuring mobile sensors to cover a given area for
surveillance and environmental monitoring applications have
received widespread attention [1]. In most of this literature
(except [2], [3], [4]), the sensors are either assumed to have
infinite range or to be bounded range isotropic sensors (i.e.,
their performance does not depend on the direction in which
they are sensing the object or event). Many popular sensors
such as limited field of view (FoV) cameras or acoustic
receivers cannot be modeled as isotropic sensors. In such
scenarios, the probability of detection of an event depends
on the resolution of sensing as well as the angle at which the
event is being sensed. Thus, the performance of the sensors
does not only depend on the relative distance between
the sensor and the sensed point, but also on the relative
orientation between them. Motivated by such application
scenarios of mobile sensor networks, we study the problem
of reconfiguring a system of mobile anisotropic sensors to
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optimize a given coverage metric that is also dependent on
the orientation at which a point in the region is being sensed.
We consider a system of holonomic mobile robots equipped
with anisotropic sensors (e.g., limited field of view cameras)
that are required to cover a polygonal area with polygonal
obstacles to maximize the joint probability of detection of
interesting events.

For isotropic sensor models, the sensing region of cover-
age is usually assumed to be a disc of finite or infinite radius.
For anisotropic sensors, they are assumed to be segments of
a disc [2], [3] or an ellipse [4]. In both cases, the sensor
position is always within the region of coverage and the
sensor performance is assumed to be inversely proportional
to the distance of the points being sensed. In our paper, the
region of coverage of the sensors can be any bounded set (we
assume a trapezium in our illustrative example). The sensor
position need not be contained within the region of coverage
(see Figure 1). Thus, in our sensor model, the performance
of the sensor does not necessarily deteriorate monotonically
with distance from the sensor. This sensor model is relevant
in situations where we may not detect an event if it is too
close to the sensor. For example, if an object is too close
to a camera (or if we zoom in too much), such that only
a fraction of the object is in the entire field of view, we
may not be able to detect the object and hence our sensing
performance will be poor. In addition, we assume our sensing
performance depends on the sensor model and the angle at
which an object is being sensed.

Since we do not assume that the sensor positions are
part of the region of coverage of the sensor, there is a
region near the sensor that may lie outside the coverage
region. With this model, regions near the sensor may not
perform well, hence using Voronoi region based distributed
coverage algorithms (as introduced in [5] and also used for
anisotropic sensors in [2]) is not appropriate. Assuming that
we have a probability distribution of occurrence of events
over the entire region, we present a distributed algorithm
that controls the position of the mobile robots and the sensor
parameters to maximize the joint detection performance of
events by all the robots. Like Voronoi region based coverage
algorithms, our gradient-ascent algorithm converges to a
local optimal solution of the objective function. Due to the
presence of obstacles and bounded field of view of our
sensors, our objective function is not continuous and not
differentiable. Consequently, we use tools from non-smooth
analysis to form the generalized gradients of the objective
function at various discontinuities (as also done in [1], [2]).
To illustrate our algorithm, we use an example case study
of a group of mobile robots with pan and zoom cameras



Fig. 1. Examples of anisotropic regions of coverage. The black dots are
the robot positions and the shaded regions are their anisotropic sensing
areas. The rightmost figure shows a coverage region not connected to the
robot positioned at c3. Here, the sensing performance is not a monotonically
decreasing function of the distance from the robot. All these cases can be
treated with the technique presented in this paper.

trying to maximize their performance while operating in an
environment with obstacles.

This paper is organized as follows: In Section II, we give
a brief review of the recent literature on distributed coverage
control. In Section III, we introduce our problem model and
in Section IV we introduce our distributed controller. We
illustrate our concepts using an example with mobile camera
networks in Section V and present simulation results in VI.
Finally, in Section VII we present the conclusion and point
out future research directions.

II. RELATED WORK

Depending on the assumptions about the choice of the
environment, the sensor models, the coverage metric, and the
motion models of sensor nodes, there are different abstract
versions of the coverage problem that have been formulated
and studied for surveillance and monitoring applications.
One of the most well known coverage problems with static
sensors (cameras) is the Art Gallery problem [6] for covering
a given polygonal region with polygonal obstacles with
omni-directional infinite range sensors of constant resolution.
Here, the problem is to find the minimum number of sensors
(and their positions) that are required to cover the region. The
problem in its simplest version stated above is NP-hard and
it is also shown to be APX-hard. Different variations of this
basic problem have been studied with limited FoV sensors
and with resolution metrics [7], where the problem is still
hard to solve. The literature on static sensor placement or
camera placement to cover an area is quite substantive and
we will restrict ourselves to mobile sensor network coverage
problems. Here, the usual assumption is that the number
of mobile sensors is already known and we need to find
their positions (or configurations) for maximizing a given
coverage metric.

Coverage problems with a system of mobile sensors have
been studied intensively in recent years ([5], [8] are two
of the initial papers). In [8], the authors use a potential
field approach for deploying a system of sensor nodes for
maximizing area coverage. In [5], the authors use techniques
from the facility location literature to give a distributed

algorithm for mobile sensor placement. In their approach,
the nodes at each step compute their (generalized) Voronoi
regions and move towards the centroid of their Voronoi
region until they converge. The underlying sensing model is
isotropic and the sensing performance is assumed to decrease
with distance. Although [5] assumed a convex polygonal
environment, this approach has been extended subsequently
to consider nonconvex environments with obstacles and
limited FoV sensors in [1], [9], [10]. In [11], a distributed
technique that aimed to minimize the information in each
pixel was proposed for hovering robots with downward
facing cameras. Optimizing the joint detection probability
of events by a network of mobile robots was proposed in
[10] and the work was extended to regions with polygonal
obstacles in [12]. Game theoretic models for coverage control
have been proposed in [13], [14].

In [2], [3], [4], the Voronoi region based coverage algo-
rithm has been extended to anisotropic sensor models. The
sensor FoV is modeled as a segment of a disc in [3] and
as an ellipse in [4]. For anisotropic sensors, the method
in [5] does not give a distributed algorithm because the
sensing regions of nodes that are not Voronoi neighbors
may overlap. To overcome this problem, the authors in [2]
propose an alternative metric that approximates their cov-
erage metric within a constant factor and it is shown that a
Voronoi region based distributed algorithm can minimize the
alternative metric. In [4], the authors propose to discretize
the possible sensor orientations by assuming fixed, equally
spaced sensor orientations and then show that they can
modify the algorithm in [5] to obtain a distributed algorithm.
However, a common assumption in all of this work is that the
sensing performance decreases monotonically with distance.
In this paper, we remove this assumption of monotonically
decreasing performance functions. Motivated by applications
with mobile camera networks, we assume that there may be a
region close to the sensor that may not be within its FoV. We
note that with this sensing model, it is no longer true that
our coverage metric can be optimized by maximizing the
coverage over the individual Voronoi regions of the robots
(a key property of the metric proposed in [5]).

III. PROBLEM FORMULATION

Here we describe some of the notation used in this
paper. Let R and R≥0 be the set of real and non-negative
real numbers, respectively. Let Rd and Sd denote the d-
dimensional Euclidean and the d-dimensional Sphere space,
respectively. Let int(S) and ∂S denote the interior and the
boundary of set S, respectively. Let n denote the outward
unit normal vector at a boundary of a set.

Let ‖x− y‖2 denote the Euclidean distance between
points x,y ∈ Rd. Let the geodesic distance in S1 be

distg(α, β) = min {distC(α, β), distCC(α, β)} x, y ∈ S1 (1)

where distC(α, β) = (α − β) mod 2π is the clockwise
distance and distCC(α, β) = (β − α) mod 2π is the
counterclockwise distance.



Let the closed segment between the points x,y ∈ Rd be
denoted by [x,y] = {λx + (1− λ)y | λ ∈ [0, 1]}. For a set
S ⊂ Rd, a point y ∈ S is said to be visible from x ∈ S
if the closed segment [x,y] is contained in S. The visibility
set Vi(x, S) is the set of all points in S visible from x.

A. ENVIRONMENT

The environment to be covered is assumed to be a planar
bounded environment Q ∈ R2 defined by a nonconvex
polygon with non-self-intersecting edges. This environment
may contain non-traversable obstacles that may also interfere
with visibility. These obstacles are modeled as m non-self-
intersecting polygons denoted by Hj ⊂ Q, j = 1, . . . ,m.
The interior of these polygons are unobservable and unfea-
sible for the robots to traverse, so the feasible subset of Q
is

F = Q\

 m⋃
j=1

int(Hj)

 (2)

Some points in the set F may not be accessible to the robots
for reasons such as obstacle avoidance and forbidden zones.
We define the traversable space T ⊆ F as the set of all
possible locations where a robot can be located.

B. ANISOTROPIC DENSITY FUNCTION

In this paper we present an anisotropic density function
defined both in position and orientation in the special Eu-
clidean group SE(2). This function is defined by the map
φ : R2 × S1 → R≥0 and represents the probability or
a measure of information about events that happened at a
certain point q ∈ Q ⊂ R2 when observed at an orientation
α ∈ S1. It is assumed that φ(q, α) = 0 ∀ q /∈ F
and

∫
Θ

∫
Q

φ(q, α)dqdα < ∞, where Θ = (−π, π]. This
orientation is not to be confused with the angle between
a point q and the robot, as it is a property of the density
function independent of the state of the robot.

The intuition behind the orientation parameter α in the
function φ(q, α) is that it is a parameter that varies the
sensing reward according to the absolute orientation in the
map. A simple example of this is facial recognition, where
the back of a person’s head provides very little information
about the individual. Conversely, the frontal view of the head
maximizes the detection performance.

C. ANISOTROPIC SENSING MODEL

The configuration of the robot along with the sensor
parameters influence the observability of events. The con-
figuration of the robot, i, consists of its center position,
ci = [cix ciy]T and its heading θi. Robots are only allowed
to move along the traversable space (T ) described in III-A.
Let the parameter space for the sensor specific parameters
be denoted by P . For example, for a camera, pan, tilt, and
zoom of the camera may constitute the parameter space. The
combined parameter-space is X = T ×S1×P . For multiple
robots with identical sensors, the combined parameter-space
is denoted by the cartesian product XN of the individual
parameter space. Let x = (x1, ...,xN ) ∈ XN be the

concatenated vector denoting the configuration of the system
with xi denoting the configuration (or parameters) of robot
i.

The region covered by the robot i is denoted Ri, which is
defined based on the sensing properties of the robot and its
current parameters. We place no restrictions on the geometry
of Ri, which can be, for instance, a disk, polygon, non
connected regions, wedge, etc. The visibility set Vi(ci, F )
is the set of all points in F visible from the robot position
ci. Since Vi(ci, F ) ⊂ F , the set of all visible points covered
by robot i is Vi = Ri∩Vi(ci;F ). The set of invisible points
covered by the sensor is V̄i = (Ri ∩ F )\Vi.

The probability of detection is given by the function
p : X×Q×S1 → [0, 1]. This probability not only depends on
the specifics of the possible multiple sensors on each robot,
it may also depend on the nature of the task. It may or may
not degrade upon the presence of obstacles or effects caused
by the nonconvexity of region Q. Therefore, the detection
probability has to be considered for both the visible and
invisible sets of points as

pi(xi,q, α) =


p̂i(xi,q, α) if q ∈ Vi

p̃i(xi,q, α) if q ∈ V̄i

0 otherwise
, (3)

where p̂i(xi,q, α) is the detection probability for a point
q visible from robot i and p̃i(xi,q, α) is the detection
probability from a point q invisible from robot i. In some
cases, events invisible to the robot may not be sensed at all,
leading to a detection probability p̃i(xi,q, α) = 0.

It is assumed that every robot can sense events indepen-
dently. Therefore, the probability of detection of an event at
point q and at orientation α is given by the joint probability
of detection for each of the sensors given by

P (x,q, α) = 1−
N∏

j=1

[1− pj(xj ,q, α)]. (4)

Therefore, the coverage problem can be stated as follows:
Find a feasible configuration x of the multirobot system, that
maximizes the joint probability of detection H(x) over the
entire environment Q, i.e.,

max
x
H(x) =max

x

∫
Θ

∫
Q

P (x,q, α)φ(q, α)dqdα

subject to x ∈ XN (5)

IV. DISTRIBUTED CONTROLLER

The goal of this paper is to present a distributed controller
that maximizes the joint detection probability over the envi-
ronment. We use a gradient based controller to coordinate the
multiple robotic nodes according to the optimization problem
described in Equation (5).

We compute the gradient for both the visible set of points
Vi and the invisible points V̄i. Also, all the discontinuities of
the function pi should be considered. Let the set of points
at which pi is discontinuous be Dscn(pi). These include



Fig. 2. This figure shows the different types of boundary intervals rk .
In gray is an obstacle. Boundaries r1 through r5 are coverage boundaries.
Boundary r6 is a visibility boundary. Boundaries r7 through r10 are rigid
boundaries and do not affect the gradient calculation. Also shown are the
outward normal unit vectors nk .

boundaries of the covered region, boundaries between the
visible and invisible set, and possible discontinuities in the
sensing model, as seen in Figure 2. Applying the rules
of differentiation under the integral sign to the objective
function H(x) in equation (5), we have

∂H(x)
∂xi

=
∫

Θ

∫
Vi∪V̄i

∂P (x,q, α)
∂xi

φ(q, α)dqdα +

∑
rk∈Dscn(pi)

∫
Θ

∫
rk

Φk(x,q, α)
∂qrk

∂xi

T

nkφ(q, α)dqdα (6)

where rk is a discontinuity interval, qrk
is, with abuse of

notation, the point in rk that lies on a discontinuity, and
Φk(x,q, α) is the difference of probabilities from a point
immediately inside the discontinuity to a point immediately
outside the discontinuity. Function Φk(x,q, α) is defined as

Φk(x,q, α) = P−
k (x,q, α)− P+

k (x,q, α)

where we define P−
k and P+

k as

P−
k (x,q, α) = lim

ε→0+
P (x,q− εnk, α) (7)

P+
k (x,q, α) = lim

ε→0+
P (x,q + εnk, α). (8)

The control update from time k to k + 1 is

xk+1
i = xk

i + K
∂H(x)
∂xi

(9)

where K is a diagonal matrix with the individual gains for
each of the parameters in xi in its diagonal. The choice of
gains for convergence are based on standard rules, for which
we refer the reader to [15], [12], [3]. Note that this controller
does not provide collision avoidance, for which we employ a
simple heuristic. If the position of the robot after the update
is outside of the traversable subspace T , the robot will move
instead to the closest point in T from the desired position. In
the future, we would like to incorporate collision avoidance
within this framework using ideas from [16].

Communication Requirements: For robot i, let Bi be the
set of robots with whom its sensing coverage area intersect,
i.e.,

Bi =
{
j | F ∩ (Vi ∪ V̄i) ∩ (Vj ∪ V̄j) 6= ∅, i 6= j

}
.

From Equation (3) we see that the detection probability is
always equal to zero outside of (Vi ∪ V̄i), and does not
contribute to the gradient computation. Only robots that in-
tersect the visible and invisible coverage sets will contribute
to the computation of the gradient (4). Therefore, each node
requires local knowledge about its region of coverage and
information about the detection performance of robots in
the set Bi and the density function φ(q, α) to compute (4).
Therefore, for the controller in Equation 9 to be distributed,
each robot, i, has to communicate with robots in the set Bi.
This is easily achievable when the communication range of
the robot is twice the sensing range.

Remark 1: To implement this controller, it is necessary to
discretize the coverage region to compute the integrals over
the possible orientations α ∈ Θ.

A. Gradient Terms

Here we explain how to obtain the terms in Equation (6).
The first term described here is the internal gradient of the
joint probability computed over regions Vi and V̄i. This
gradient is assumed to be globally Lipschitz and continuously
differentiable over the set (Vi ∪ V̄i) \ Dscn(pi). The second
term of Equation (6) deals with the discontinuities caused by
the environment and/or the sensing model. In the interest of
conciseness, we will omit the arguments xi, q, and α of the
function p.

1) Internal Gradient: The first term in Equation (6) is the
internal gradient and should be computed over the covered
regions Vi and V̄i. Since every node is assumed to be
independent of the other, from (4) we obtain

∂P (x,q, α)
∂xi

=
∂pi

∂xi

∏
j∈Bi

[1− pj ].

2) Rigid Boundary: These discontinuities are introduced
by obstacles and the boundary of region Q. These points are
in the set Ri ∩ ∂F . Since they do not vary as a function of
the parameters xi, their gradient is zero.

∂qrk

∂xi
= 0 ∀ qrk

∈ ∂F

3) Coverage Boundary: Points on the boundary of the
sensor coverage set ∂Ri ∩ int(F ) have non-zero detection
performance immediately inside Vi ∪ V̄i and zero detection
performance immediately outside this region. Thus, from
Equation (7) we have

P−
k (x,q, α) = 1− (1− pi)

∏
j∈Bi

[1− pj)]

P+
k (x,q, α) = 1−

∏
j∈Bi

[1− pj ]. (10)



The discontinuity probability function then becomes

Φk(x,q, α) = pi

∏
j∈Bi

[1− pj ].

The values of ∂qrk

∂xi
on the coverage boundary vary according

to xi and are sensor parameter dependent.
4) Visibility Boundary: The visible and invisible set

boundary is the interval where there is a transition be-
tween the visible coverage region Vi and the invisible
coverage region V̄i. These points are defined by the set
∂Vi ∩ (int(Ri)\∂F ). Similarly to (10), we can apply (3) to
obtain the discontinuity probability function for a visibility
boundary

Φk(x,q, α) = (p̂i − p̃i)
∏

j∈Bi

[1− pj ].

We notice that the visibility boundary is generated by a
vertex either of the region Q or of an obstacle Hj . We refer
the reader to [12] for an excellent geometric description on
how the visibility boundary is generated in a region with
polygonal obstacles.

V. CASE STUDY

In this section we are going to discuss how the distributed
gradient algorithm previously described could be applied to
an example camera coverage scenario. Since our algorithm
is designed to cover a planar 2D environment, some task
specific assumptions will be made in the problem formulation
so that the complex volumetric coverage of a camera under
perspective can be treated as a planar coverage problem.

A. Pan and Zoom Mobile Camera Coverage

Here we formulate an example application of the dis-
tributed coverage algorithm in a scenario of a mobile robot
with integrator dynamics equipped with a camera capable
of panning and zooming. This robot has to cover an area
in order to detect targets with a vertical height H and
a horizontal length L which is assumed to be symmetric
along its center axis. The robot is assumed to be smaller
than the target and have the center of the camera sensor at
height h aligned orthogonally to the ground plane. Obstacles
interfere with visibility but other robots do not. The measure
of performance is given by the pixel area Nt that a target
would occupy in the image. The robot should be able to
observe the target in its full height and, after the pixel area Nt

drop below a value Nmin, no further detection can be made.
Moreover, a frontal observation of the target is preferred.
The environment and the event density with the associated
orientation φ(q, α) is known.

Let β ∈ S1, and f ∈ (0,∞) denote the pan and
focal distance parameters, respectively. The sensor specific
parameter-space is P = S1 × (0,∞). Thus, for robot i,
xi = [cxi, cyi, θi, βi, fi]T . For a given image sensor, let lx
and ly be the camera sensor height and length, respectively,
and Nx and Ny be the number of pixels along the horizontal
and vertical axes, respectively.

It is useful to analyze the environment in the camera
coordinate frame. Let the rotation matrix Rotθ,β be defined
as

Rotθ,β =
[
cos(θ + β) − sin(θ + β)
sin(θ + β) cos(θ + β)

]
, (11)

points can be converted into a camera centered coordinate
frame by[

X(xi,q)
Y (xi,q)

]
= Rot−1

θ,β(q− ci) = RotTθ,β

[
qx − cx

qy − cy

]
(12)

where X(xi,q) and Y (xi,q) are points in camera coordi-
nate. For simplicity we will drop the arguments xi, q, and
α from functions X , Y , p from now on.

The number of vertical pixels is the fraction of the image
occupied by the target height times the number of horizontal
pixels

Ny =
H

2X tan
(γy

2

)Ny, (13)

where γy is the vertical field of view of the camera. Similarly,
the horizontal number of pixels is obtained by the fraction
of the image occupied by the target length times the number
of horizontal pixels

Nx =
L

2X tan
(

γx

2

)Nx. (14)

where γx is the horizontal field of view of the camera. The
horizontal and vertical fields of view are obtained by

tan
(γx

2

)
=

lx
2f

tan
(γy

2

)
=

ly
2f

. (15)

The pixel area occupied by a target at depth X is given by
the product of the functions Nx and Ny as in

Nt =
NxNyLH

lxly

f2

X2
= K f2

X2
, (16)

where K is a constant that depends on the camera parameters
and the target parameters L and H .

We can now define the boundaries of the sensor. The
problem definition stated that targets can only be detected
when their full height is in the field of view. The minimum
depth X that a target can be in camera coordinates is

X tan
(γy

2

)
> (H − h) ∴ Xmin = 2f

(H − h)
ly

. (17)

Also, no detection is possible for targets with less then
a certain pixel area. Thus the maximum depth in camera
coordinates is

K f2

X2
> Nmin ∴ Xmax = f

√
K

Nmin
. (18)

The angle of the field of view restricts points Y as in

arctan
(

Y

X

)
≤
∣∣∣γx

2

∣∣∣ ∴ |Y | ≤ lx
2f

|X| . (19)

The region of coverage Ri is bounded by the field of view
of the camera, the minimum point where the target can be



(a) Side view (b) Top view

Fig. 3. This figure shows the coverage scenario proposed in the case study. In Fig. 3a, a side view of the robot observing a target with height H is
shown. The gray dashed line box shows a side cut of the camera sensor and how the focal distance f affects the angle of the vertical field of view γy .
Also depicted the height of the robot h and the minimum depth for detection Xmin. In Fig. 3b the top view of the robot observing a symmetric target
with length L is shown. The gray dashed line box shows a transversal cut of the camera sensor to show how the focal distance f affects the angle of the
horizontal field of view γx. Also shown here the minimum and maximum depth for detection denoted by Xmin and Xmax, respectively. The coverage
region Ri is displayed as the red region.

seen in its full height and the minimum pixel area where a
target can still be detected.

Ri =
{
q | Xmin ≤ X ≤ Xmax

∧
|Y | < lx

2f
|X|
}

(20)

B. Sensor Model

We model the detection probability as a function of pixel
area that a target would occupy at a given depth X from
the camera point of view as an exponential function. This
function was chosen because of its smoothness properties
and relevance in a probabilistic framework. The probability
of detection according to the pixel area is given by

pNt = exp

(
− (Nt −Nµ)2

2σ2
Nt

)
, (21)

where Nµ is the optimal pixel area for a detection and σNt

is a constant to determine how spread out the detection
distribution pNt is with respect to the depth X .

Since a frontal direct observation is desired, we have a
probability of detection that varies as a function of geodesic
distance between the current direction of observation θ + β
and the orientation α. It is also modeled as an exponential
in

pα = exp

(
−distg(α, θ + β)2

2σ2
α

)
, (22)

where σα is a constant to determine how spread out the
orientation detection distribution pα is with respect to the
geodesic distance between the observation direction and the
orientation α.

Since no detection is possible behind obstacles in a camera
scenario, the overall detection probability function is

pi =

{
p0pNtpα if q ∈ Vi

0 otherwise
(23)

where p0 is the maximum detection probability by the sensor.

1) Inner Gradient: The gradient in the region Vi is given
by the partial derivative of pi with respect to xi. Here we
use the notation g′ as the partial derivative of g with respect
to xi. The partial derivative of pi with respect to xi is

p′i =
[
− (Nt −Nµ)

σ2
Nt

2fK
X2

(
f ′ − fX ′

X

)
+

−distg(α, θ + β)
σ2

α

(θ′ + β′)
]

pi. (24)

Applying this equation to the first term of (6) we have

Ginner =
∫

Θ

∫
Vi

p′i
∏

j∈Bi

[1− pj ]φdqdα

2) Coverage Boundary: The variation of the coverage
boundary for parameters cx, cy , θ and β can be found by im-
plicitly differentiating Equation (12) w.r.t. these parameters
(we omit this for space constraints). To obtain the partial
derivative of X and Y w.r.t f we note that points on the
boundary of Ri are projected on the image sensor as

ly
2

= f
h

X

lx
2

= f
Y

X
. (25)

Implicitly differentiating both equations (note that lx, ly
and h do not vary w.r.t f ), we get

∂

∂f

[
X
Y

]
=
[

X
f

0

]
.

Differentiating Equation (12) we have

∂

∂f

[
X
Y

]
=

∂

∂f

(
RotTθi,βi

(q− ci)
)

∴
∂q
∂f

= Rotθi,βi

[
X
f

0

]
Therefore, points in the boundary vary with respect to xi

as

∂qrk

∂xi
=

[
1 0 −qy + ciy −qy + ciy cos(θi + βi)X

f

0 1 qx − cix qx − cix sin(θi + βi)X
f

]
.

For points on the coverage boundary we have

Gcov =
∑

rk∈Dscncov(pi)

∫
Θ

∫
rk

pi

∏
j∈Bi

[1− pj ]
∂qrk

∂xi

T

nkφdqdα



(a) Initial Configuration

(b) α = −π (c) α = −π/2 (d) α = 0 (e) α = π/2

Fig. 4. Initial configuration of the robots over the region for the simulation
is shown in Fig. 4a. Darker areas in the environment are the interest regions,
here shown independent to the orientation α. In Fig. 4a, the orientation
α = 0 corresponds to a direct observation from the left to right. In Fig. 4b
through 4e the anisotropic function φ used in the simulation is shown for
different values of α. Darker areas indicate higher values of φ when a
point is observed at orientation α. White indicates φ(q, α) = 0 and black
φ(q, α) = 1.As an example, Fig. 4b shows higher values of φ on the
upper left corner when observed with an absolute orientation of −π. That
same area does not present very high values when observed at orientation
α = −π/2, as seen on Fig. 4c.

3) Visibility Boundary: As discussed before, obstacles and
the environment introduce visibility boundaries. In this ex-
ample this boundary varies only with respect to the position
of the robot ci. This boundary is induced by a vertex vj that
can either belong to an obstacle Hj or to the boundary Q.
The formula of this gradient can be found in [12].

∂qrk

∂xi
=

− ‖q−vj‖2
‖ci−vj‖2

0 0 0 0

0 − ‖q−vj‖2
‖ci−vj‖2

0 0 0


For points on a visibility boundary, we have

Gvis =
∑

rk∈Dscnvis(pi)

∫
Θ

∫
rk

pi

∏
j∈Bi

[1− pj ]
∂qrk

∂xi

T

nkφdqdα

4) Controller: After calculating all the terms as in Equa-
tion (6), we obtain the gradient

∂H(x)
∂xi

= Ginner + Gcov + Gvis, (26)

and we can update the control rule by following the control
rule in Equation (6).

Remark 2: In this example, the pan parameter β and
the robot heading parameter θ have identical terms in the
calculation, as their variation has the same effect over the
coverage region. However, one might assign higher gains to
the pan parameter, as it is likely to be less power intensive.

Fig. 5. Final configuration of a simulation of ten robots covering a
nonconvex region with obstacles. The traversable region T is denoted by
the dashed lines and the obstacles are black polygons. Darker areas in
the environment are the interest regions, here shown independent to the
orientation α. Robots start at an arbitrary configuration in Fig. 4a and change
their position, heading, pan, and focal length parameter until reaching the
configuration shown here. Trajectories are shown by dotted lines. As an
example, the trajectory of robot 1 is shown in red, the remaining are blue.
Red regions represent the visible area of coverage of each robot Vi. Robot 9
cannot advance through the obstacle and is stuck in that position. Also notice
that the coverage area of robots 4 and 2 are closely aligned to α = π/2,
which is the orientation that provides the best detection performance for the
given anisotropic density function φ (see Fig. 4e).

VI. SIMULATION RESULTS

We conducted numerical simulations with our algorithm in
nonconvex environments with obstacles. We show here one
run of the algorithm. The anisotropic density function used is
shown in Fig. 4 where there are three distinct interest regions
to be covered by the robots. These interest regions have
a preferred orientation of observation, intuitively meaning
that they have a higher reward when observed at a given
orientation. In this simulation we also included a traversable
region T that prevents collision with the boundaries.

The environment length and width are 60m. The
traversable region T is provided to the robots so that they
are always at least two meters away from the obstacles and
the boundary of the environment. The parameters used in
this simulation were target height H = 1.8m and length
L = 0.5m. The camera center was assumed to be at a
height h = 0.5m with an image sensor with parameters
Nx = 640 pixels, Ny = 480 pixels, lx = 3.04mm, and
ly = 1.98mm. The optimal parameters for a target detection
was set as Nµ = 3840 pixel2, σNt

= 2800 pixel2 and
a minimum pixel area of Nmin = 1000 pixel2. For the
anisotropic term, the parameter σα = π/3 rad was assigned
to the sensor. The maximum detection probability for each
robot at any given moment was limited to p0 = 0.2, in
order to favor an area being observed by multiple robots.
The control gains for the position was 1, for the rotation



Fig. 6. The evolution of the objective function (Equation (5)) over time
for this simulation. Network converged to a stable configuration after 170
steps.

and pan were 0.01 and 0.03, respectively, and the focal
length gain was 10−9. The gain for the focal length was
set to a small value because small variations of f cause
great variations in the field of view. Robots, whose field of
view intersect, exchange information about their parameters
and the geometry of their regions of coverage so that the
detection performance over the overlapping regions so that
the joint probability of detection can be computed for every
point where there is an intersection. The simulation results
are shown in Figures 5 and 6.

VII. CONCLUSION AND FUTURE WORK

In this paper, we introduced a gradient-ascent coverage
control algorithm for maximizing the joint probability of
detection of events over a planar nonconvex environment
with polygonal obstacles. Our approach captures the property
of preferred sensing orientations of certain types of events.
For this, we defined an anisotropic density function that
rewards observations according to the orientation in which
an observation is being made. We characterized the disconti-
nuities that should be taken into consideration when obtain-
ing the gradient such as sensing and visibility boundaries.
Furthermore, we relaxed a common assumption made in
coverage algorithms, namely, the detection performance of a
sensor decays inversely with the distance from the robot. To
illustrate our technique, we presented an example application
scenario, where a network of holonomic robots with pan
and zoom capabilities maximized the joint probability of
detection of a target with known geometry and dimensions.

As most gradient-ascent approaches, the final result de-
pends strongly on the initial configuration of the nodes,
as nodes can prematurely converge to local minima of the
objective function. This problem can be partially mitigated,
since the robots know the global event density function. The
knowledge of the distribution can be used as a high level
guide for the robots when they are in regions where their
performance metric is poor. Presence of obstacles can also
make motion along the gradient infeasible. Here, one can
use path planning techniques in conjunction with gradient
descent to avoid obstacles (like [17]). We plan to investigate
these extensions in the future. Finding the configuration that
gives the global maximum is an open problem in non-trivial
environments.

We are currently studying improved distributed optimiza-
tion techniques for the objective function presented, as

the gradient-based approach shown in this paper has slow
convergence in some cases. Moreover, there are application
where there is no previous knowledge of the anisotropic
density function and the environment map. Thus, acquiring
and sharing this information online would be a major im-
provement to the technique presented in this paper.

ACKNOWLEDGMENTS

This work was partially supported by AFOSR MURI
grant FA95500810356 and by ONR grant N000140910680.
Thanks to Howie Choset for useful feedback.

REFERENCES

[1] F. Bullo, J. Cortés, and S. Martı́nez, Distributed Control of Robotic
Networks, ser. Applied Mathematics Series. Princeton University
Press, 2009.

[2] K. Laventall and J. Cortes, “Coverage control by robotic networks with
limited-range anisotropic sensory,” in American Control Conference,
2008, June 2008, pp. 2666–2671.

[3] A. Gusrialdi, T. Hatanaka, and M. Fujita, “Coverage control for
mobile networks with limited-range anisotropic sensors,” in 47th IEEE
Conference on Decision and Control, December 2008, pp. 4263–4268.

[4] A. Gusrialdi, S. Hirche, T. Hatanaka, and M. Fujita, “Voronoi based
coverage control with anisotropic sensors,” in American Control
Conference, June 2008, pp. 736 –741.

[5] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control
for mobile sensing networks,” IEEE Transactions on Robotics and
Automation, vol. 20, no. 2, pp. 243 – 255, April 2004.

[6] J. O’Rourke, Art gallery theorems and algorithms. New York, NY,
USA: Oxford University Press, Inc., 1987.

[7] S. Fleishman, D. Cohen-Or, and D. Lischinski, “Automatic camera
placement for image-based modeling,” in PG ’99: Proceedings of
the 7th Pacific Conference on Computer Graphics and Applications.
Washington, DC, USA: IEEE Computer Society, 1999, p. 12.

[8] A. Howard, M. J. Mataric, and G. S. Sukhatme, “Mobile sensor
network deployment using potential fields: a distributed scalable
solution to the area coverage problem,” in Proceedings of the 6th
International Symposium of Distributed Autonomous Robotic Systems,
2002, pp. 299–308.

[9] C. Caicedo-Nunez and M. Zefran, “Performing coverage on nonconvex
domains,” in IEEE International Conference on Control Applications,
September 2008, pp. 1019 –1024.

[10] C. Cassandras and W. Li, “Sensor networks and cooperative control,”
in 44th IEEE Conference on Decision and Control, December 2005,
pp. 4237 – 4238.

[11] M. Schwager, B. J. Julian, and D. Rus, “Optimal coverage for
multiple hovering robots with downward facing cameras,” in IEEE
International Conference on Robotics and Automation, May 2009, pp.
3515 –3522.

[12] M. Zhong and C. Cassandras, “Distributed coverage control in sensor
network environments with polygonal obstacles,” Dept. of Manufactur-
ing Engineering and Center for Information and Systems Engineering,
Boston University, Brookline, MA 02446, Tech. Rep., 2008. [Online].
Available: http://codescolor.bu.edu/docs/ifac08final.pdf

[13] M. Zhu and S. Martinez, “Distributed coverage games for mobile
visual sensors (i): Reaching the set of nash equilibria,” in Proceedings
of the 48th IEEE Conference on Decision and Control, Dec. 2009, pp.
169 –174.

[14] ——, “Distributed coverage games for mobile visual sensors (ii) :
Reaching the set of global optima,” in Proceedings of the 48th IEEE
Conference on Decision and Control, Dec. 2009, pp. 175 –180.

[15] D. P. Bertsekas, Nonlinear Programming. Athena Scientific, 1995.
[16] N. Chakraborty, S. Akella, and J. C. Trinkle, “Complementarity-based

dynamic simulation for kinodynamic motion planning,” in IEEE/RSJ
International Conference on Robots and Systems, St. Louis, MO, Oct.
2009, pp. 787–794.

[17] A. Breitenmoser, M. Schwager, J. C. Metzger, R. Siegwart, and
D. Rus, “Voronoi coverage of non-convex environments with a group
of networked robots,” in IEEE International Conference on Robotics
and Automation, May 2010, pp. 4982–4989.


