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Abstract—In this paper, we study the problem of constructing
a path for a mobile data collecting robot such that the total data
collection cost (i.e., sum of transmission energy of the sensor
nodes and movement energy of the robot) in a sensor network
is minimized. We assume that the sensor nodes can transmit
within a certain region around their position, which is called the
communication set. We model the communication set as a convex
set to take into account asymmetric transmission systems (like
directional antennas). We derive a necessary condition for the
optimality of a mobile robot tour through the communication
sets. Based on this condition, we design a three-step approach
to compute a local minimum of the optimization problem. We
prove that our solution is guaranteed to be within a constant
factor of the global optimal solution. Our algorithm works for
both 2-dimensional and 3-dimensional sensor networks where
the sensor nodes are heterogeneous and can have directional
communication properties. In contrast, existing algorithms for
computing data collecting routes are for planar sensor networks
and assume the communication sets to be discs. We also present
simulation results depicting the performance of our algorithm.

Index Terms—Sensor network, Data collection, Path planning.

I. INTRODUCTION

Spatially distributed wireless sensor networks are increas-
ingly finding applications in areas like environmental moni-
toring [18], [28] and surveillance [15]. In such sensor net-
works, aggregating the data collected by the sensor nodes
and transferring it to a base station is an important problem.
The use of mobile robots (or mobile nodes) to collect data
from static sensor nodes has been proposed in the literature
as it can be more energy efficient [27], [25]. Moreover, it
also reduces hot spot problems [23] prevalent in static multi-
hop sensor networks, wherein, sensor nodes close to the data
sink deplete their batteries faster than other nodes. Thus, the
overall network lifetime is reduced (since these nodes spend a
significant fraction of their energy in communicating data to
the sink). Since the sensor nodes can reliably communicate
within a region surrounding their location (called commu-
nication neighborhood or communication set hereafter), the
mobile robots can collect data by visiting the communication
neighborhood of each sensor node. The total data collection
energy cost is the sum of the transmission energy expended by
the sensor nodes to transmit the data and the energy expended
by the mobile node for visiting the sensor nodes. In this paper,
we study the problem of designing a route for a data collecting
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mobile robot such that the sum of transmission energy and
traveling energy is minimized.

Usually, in the literature, the sensor nodes are assumed to
lie on a plane and the communication neighborhood of each
node is assumed to be a disc of a given radius. However, in
general, the sensor nodes can lie in three-dimensional (3D)
space [16]. Moreover, the sensor communication set may not
be a disc (or a sphere) and can possibly have directional
communication properties [31] (e.g., in underwater acoustic
communication). Anisotropic communication properties can
arise (a) due to the presence of directional antennas and/or
(b) due to environmental effects and hardware differences in
case of radios that are theoretically identical [31]. To capture
the directional communication property of the sensor nodes we
generalize the disc model to be a convex set. Thus, we consider
sensor networks where the sensor nodes are heterogeneous
with respect to their communication capabilities.

The data transmission energy is usually a superlinear func-
tion of the distance [12], [13], [27], whereas the travel energy
varies linearly with distance. If we neglect the transmission
cost, the problem of designing a data collection tour for a
single robot with least travel cost becomes a traveling salesman
problem with neighborhoods (TSPN) [2]. Hence, the TSPN
problem is a special case of our problem. Solving the TSPN
problem is NP -hard and it is also NP -hard to approximate
the TSPN problem within a factor of (2 − ε) [24]. Thus,
the problem of finding the minimum energy data collection
tour is also computationally intractable unless P = NP . We
design an algorithm for computing minimum cost routes for
mobile data collecting robots where the sensor nodes can be
arranged in 3D space and the communication set of each node
is assumed to be a convex set (which includes the disc model
of communication as a special case).

We first present a necessary condition for the optimality of
a tour of a mobile robot through the sensor neighborhoods.
Based on our necessary condition, we design a three-step
algorithm. First, we find a traveling salesman tour through the
sensor nodes that gives us an order of visiting the sensor nodes.
Second, given the order of visiting the nodes, we modify the
tour such that the sum of the transmission cost and travel cost
is minimized. The second step can be formulated as a convex
optimization problem and can thus be solved optimally. The
output of the second step is a sequence of points lying in
the sensor neighborhoods. In the third step, we formulate and
solve a TSP (where the metric used is a modification of the
Euclidean distance) using the output of the second step. In
this step, we reduce the movement energy, while keeping the



transmission energy constant. The solution that we obtain is
a local minimum of the overall optimization problem since
it satisfies the necessary conditions for optimality. We prove
that the energy cost of our route is within a constant factor
of the energy cost of the global optimal solution. We present
simulation results for both planar and spatial sensor networks.
The key contribution of this paper is that we give an algorithm
with provable performance guarantees for data collection in
both 2D and 3D sensor networks with sensor nodes having
anisotropic communication sets.

II. RELATED WORK

There are different versions of the data collection problem
that can be formulated depending on the objective to be opti-
mized, the assumptions on the communication model, and the
assumptions on the motion model of the mobile robots. Two
natural objectives are to minimize the time required for data
collection [5] or the energy consumed in data collection [8],
[30], [4]. Two commonly used mobility models for mobile
data collecting agents are random mobility and controlled mo-
bility. Irrespective of the optimization objective and mobility
assumptions, the sensor networks are assumed to be planar. In
this paper, we are concerned with energy optimization in 2D
or 3D sensor networks, with controlled mobility of the robots.
Therefore, we will focus our review on the literature concerned
with energy optimization and controlled mobile robots (for a
more comprehensive and general review, see [17], [27]).

The total energy expended in data collection is the sum
of the data transmission energy expended by the static sensor
nodes and the energy expended in the movement of the mobile
data collecting node. In [8], the authors consider the problem
of designing a route for a mobile data collector such that the
overall data transmission energy is minimized with a constraint
on the distance traveled by the robot. They assume that the
amount of data to be transmitted by each sensor node is
different. On the other hand, Yuan et al. consider the problem
of designing a minimum cost route for robots transferring data
between nodes in large sensor networks [30]. Their problem
is a TSPN with non-overlapping neighborhoods. Bari et al.
consider the problem of minimizing the travel length of a
mobile data collector in a hierarchical sensor network [4].
In [4], the mobile data collector visits static relay nodes
(which collect data from the sensor nodes) instead of visiting
the sensor nodes individually. Their problem is also a TSPN
but with overlapping circular neighborhoods. In this paper, we
consider the problem of simultaneously minimizing the data
transmission energy and the movement energy of the mobile
robot. Although [27] considers the energy of the moving nodes
as well as transmission energy, they assume the mobile robots
to be moving along fixed paths and regulate the velocity
of the robot for improving transmission quality. All of the
above works consider planar sensor networks with isotropic
communication models (i.e., the communication set is a disc).
We consider both planar and spatial sensor networks and also
anisotropic communication sets (modeled as convex sets).

As stated above, some of the literature [30], [4] formu-
late the data collecting tour as a Euclidean TSPN problem
defined as follows: Given a collection of n sets in RD,
Ri, i = 1, . . . , n, a tour through the sets is a sequence of
n points, qi ∈ Ri, such that each set is visited at least once.
The traveling salesman problem with neighborhood is to find
a tour of minimum Euclidean length through the sets. Note
that if each set Ri is a single point, we have the classi-
cal Traveling Salesman Problem (TSP). Thus, the Euclidean
TSPN is a generalization of the Euclidean TSP, which is
NP-complete [21], and is therefore hard to solve optimally.
The TSP and different versions of its generalizations that are
known as vehicle routing problems (VRP) have been studied
in the operations research [29] as well as robotics literature
(see [7], [22] and references therein). For the purposes of this
paper, the TSPN is the most relevant and so we will limit our
discussion to TSPN. In the computational geometry literature,
a number of algorithms with approximation guarantees that
depend on assumptions about the shape of the neighborhoods
of the points and the overlap between the neighborhoods have
been proposed [2], [9], [10], [14], [11], [19]. Note that the
TSPN problem is a special case of our problem and we can
use our algorithm presented to solve the TSPN problem.

III. PROBLEM FORMULATION

In this Section, we present our problem formulation for
minimizing the total data collection energy and indicate the
assumptions that we make. We assume that there is a convex
set Ri around each sensor node within which it can commu-
nicate reliably, i.e., the packet loss is low enough such that
error correcting codes can faithfully reconstruct the data. The
energy consumed for data transfer from a sensor node at pi

to a point, pj , is a superlinear function of the distance dij .

Ei = γi + βi(dij)αi (1)

where βi and γi are constant parameters that depend on the
sensor and the amount of data to be transmitted, and αi is
the path loss exponent (usually, 2 ≤ αi ≤ 6 [26]). The travel
energy expended by the mobile robot is proportional to the
total distance traveled. Let pj ∈ RD, D = 2, 3, j = 1, . . . , n,
be the positions of the sensor nodes and qj ∈ RD, D =
2, 3, j = 1, . . . , n, be the positions inside the communication
set Rj of node j, where the robot visits to collect the data.
Let Qn = {qi, i = 1, . . . , n} be the set of points the robot
visits. Let Pn be the set of all permutations of the n sensor
nodes, i.e., the set of all possible sequences in which all the
regions Rj can be visited. The data transmission energy for
each node, j, is then proportional to ‖pj − qj‖αj and for
a given sequence Π = {i1, i2, . . . , in} ∈ Pn of visiting the
nodes the total energy expended can be written as

E =
n∑

j=1

(w0j + w1j‖pj − qj‖αj )+

w2(
n−1∑
k=1

‖qik
− qik+1‖+ ‖qin − qi1‖)

(2)



where w0j , w1j are constants dependent on the sensor param-
eters and w2 is a constant dependent on the mobile robot. We
can also incorporate a weight within these constant factors
that can take in the preference of the network designer on
the importance of two components of the energy loss in the
particular application. For example, if the energy loss for the
data collector is not of concern, we can assign w2 = 0. The
first term in Equation (2) is the total transmission energy
(Etrans) and the second term is the total motion energy
(Emove).

The general combinatorial optimization problem that we
are studying can be stated as follows:
We have a set of n points P = {pi} ⊂ RD, D = 2, 3, i =
1, . . . , n}. With each point pi we associate a convex set Ri,
such that pi ∈ Ri. Find a tour of a mobile robot visiting each
region Ri such that the total transmission energy and travel
energy given by Equation (2) is minimized, i.e.,

min E(Π,Qn) s.t. qi ∈ Ri, i = 1, . . . , n (3)

In Equation (3), we optimize over the points, qi ∈ Ri, to be
visited as well as the sequence, Π, in which the regions, Ri,
should be visited. Each region Ri is a convex set specified by
a set of convex inequalities and let m be the total number of
constraints specifying all the communication regions.

The problem in (3) is a generalization of the TSPN problem.
If w0j and w1j are both zero, then the problem is a TSPN.
Thus, the algorithm proposed in Section IV can also be used
to find the solution of TSP with convex neighborhoods.

Remark 3.1: Equation 1 is a popular model for energy
consumption in sensor networks. However, the discussion
in this paper holds for more general energy consumption
functions as long as the function is a convex function of the
two points between whom data is transferred.

Remark 3.2: In our problem formulation, there are some
standard system-level assumptions that we state here explicitly.
We consider only the energy expended in transmitting the
data by the sensor nodes and the travel energy expended by
the robot. Consequently, we assume an ideal Medium Access
Control (MAC) layer, such that negligible energy is wasted
in collisions. Moreover, the cost of storing the data and other
operations that a sensor node may carry out is also neglected.
The sensor nodes and mobile robot are localized and a mobile
data collector must stop in order to collect data without errors.
The mobile robot has a radio with enough power so that it can
establish a link with the sensor nodes (for data transmission
to start) once it reaches near a sensor node. The sensor data
is not considered to be time-sensitive.

IV. MINIMUM ENERGY ROUTING ALGORITHM

In this section, we present our algorithm for computing the
minimum energy route (MER) for a data collecting mobile
robot in a sensor network with heterogeneous communication
capabilities. We first characterize the necessary conditions for
the MER path to be an optimal solution. Based on this char-
acterization, we design a three-step algorithm for computing
the MER. The three steps are as follows.

1) Given the set of sensor node locations P, find a TSP
tour through these points. Let Π̄ ∈ Pn, the sequence of
visiting the sensor nodes, be the output of this step.

2) For the sequence Π̄ solve the optimization problem in
Equation 3. The output of this step is a set of points
Q = qi, i = 1, . . . , n, all of which may not be distinct.

3) On this set of points form a metric between any two
points qi and qj using the Euclidean distance between
the two points and the transmission energy from the
sensor nodes pi to qi and pj to qj . Solve the TSP on the
set q with the modified metric and output the solution.
This sequence of the set Q is the final sequence in which
the robot travels.

We will now describe the necessary condition and then
elaborate on the steps of the algorithm. Without loss of
generality, let the optimal sequence of visiting the points be
Π∗ = {1, . . . , n} and q∗i , i = 1, . . . , n, be the locations where
the robots should visit for the minimum energy route. The
transmission cost for sensor node i in the optimal solution
is E∗

i = w0i + w1i‖q∗i − p∗i ‖αi . Let rij be the distance
between q∗i and q∗j for any two sensor nodes i and j and
r̄ij = rij + 1

2 (E∗
i + E∗

j ).
Lemma 4.1: The necessary condition for q∗i , i = 1, . . . , n,

to be an optimal solution for the optimization problem in
Equation (3) is that the sequence Π∗ = {1, . . . , n} is the
minimum cost TSP tour on the set of points q∗i , i = 1, . . . , n,
with the cost of the edge between any two points q∗i and q∗j ,
i 6= j, i = 1, . . . , n, j = 1, . . . , n, being r̄ij .
Proof : For the sequence Π∗, the total data collection cost is
E∗ = E∗

trans + E∗
move. Let us consider the complete weighted

graph G = (V,E, w), where V is a set of nodes corresponding
to the points q∗i and w = r̄ij . Now E∗ is the cost of a tour
on G that follows the sequence Π∗. Let Π = {i1, . . . , in} be
some other tour on G whose cost is E < E∗. Now,

E = r̄i1i2 + r̄i2i3 + · · ·+ r̄ini1

=
1
2
(‖pi1 − q∗i1‖

αi1 + ‖pi2 − q∗i2‖
αi2 )

+
1
2
(‖pi2 − q∗i2‖

αi2 + ‖pi3 − q∗i3‖
αi3 )

+ · · ·+ 1
2
(‖pin

− q∗in
‖αin + ‖pi1 − q∗i1‖

αi1 )

+ ‖q∗i1 − q∗i2‖+ ‖q∗i2 − q∗i3‖
+ · · ·+ ‖q∗in

− q∗i1‖
= E∗

trans + Emove

(4)

where Emove = ‖q∗i1 − q∗i2‖ + · · · + ‖q∗in
− q∗i1‖. The first

term of Equation (4) is identical to E∗
trans. Thus, for E to be

less than E∗, the second term of Equation (4) should be less
than E∗

move. This implies that there is a solution to the MER
problem with cost less than E∗. By assumption, E∗ is the
optimal tour and thus we arrive at a contradiction. Therefore,
the sequence Π∗ has to be the optimal TSP tour on G. �

Note that the condition stated in Lemma 4.1 is not a
sufficient condition. A simple example of a sequence of points
that satisfy the condition is a TSP tour through the sensor



nodes. Clearly, this solution is not the optimal MER.
In the first step of our algorithm to find the MER, we

find a sequence in which the data collector should visit the
sensor nodes and in the second step, we compute a minimum
energy route for the sequence obtained in the first step. For
finding the sequence of visiting the sensor nodes, we solve
a Euclidean traveling salesman problem on the sensor node
positions. The TSP solution gives us a minimum length route
for the mobile robot where the transmission energy is as small
as possible. In other words it gives us the optimal solution
to Equation (3) if we assign qj = pj , whence the first
term in Equation (2) corresponding to the transmission energy
becomes constant. Although the Euclidean TSP problem is
NP-complete [21], there are theoretical algorithms that can
solve Euclidean TSP within an arbitrary small factor [3], [20]
and also good implementations of heuristic solutions that give
very good performance in practice [1].

After we obtain a sequence for visiting the sensor nodes
by solving the TSP, we can solve the problem of finding the
points to be visited within the communication set by solving
a convex optimization problem. Without loss of generality let
the sequence obtained for visiting the sensor nodes from the
TSP in the first step be {1, . . . , n}. The optimization problem
in Equation (3) can then be written as

min
n∑

j=1

(w0j + w1j‖pj − qj‖α)+

w2(
n−1∑
k=1

‖qi − qi+1‖+ ‖qn − q1‖)

s.t. qi ∈ Ri, i = 1, . . . , n

(5)

Equation (5) is a convex optimization problem because each
term in the objective function is a convex function in qi, and qi

is constrained to lie within a convex set since we have assumed
Ri to be convex sets. Therefore, we can solve the problem
optimally in polynomial time using interior point methods that
are efficient in practice (i.e., in O(m+n)3.5 time theoretically
but much faster practically [6]). Note that the solution obtained
in this step is optimal for a given sequence of visiting the
nodes. However, there is no guarantee of optimality for the
overall problem, since the sequence that we have obtained
may not be the optimal sequence.

In order to ensure that the necessary condition is met, once
we have created a path that minimizes the total energy cost, we
solve the TSP again over the set of points in the path. In this
TSP, the distance between two points qi and qj is given by r̄ij .
Since the points do not move, the transmission energy cannot
change. Then, there are two scenarios: in the first case, the TSP
solution does not change the order that our path already had.
In that case, the path already meets the necessary condition
and is at least a local optimum to the optimization problem
give by Equation (3). In the second case, the TSP solution does
change the order, decreasing the energy cost due to movement
and ensuring that the new path meets the necessary condition
for an optimal solution given in Lemma 4.1.

Computing the TSPN route: The first two steps of the
algorithm described above can also be used for solving the
traveling salesman problem with neighborhoods. If we set
w0j = w1j = 0, the objective function in Equation 5 cor-
responds to a scalar multiple of the total distance traveled and
is still convex. Thus step 2 can be solved by solving a convex
optimization problem. There are algorithms in the mobile data
collection literature [30], [4], as well as in computational
geometry [10] that have used such a two-step approach for
solving the TSPN problem. Since we have posed the problem
of finding the minimum length path as a convex optimization
problem (once the sequence is fixed), we can solve the problem
optimally. Hence, our approach will give the best solution to
the TSPN that is achievable by the two-step approach of first
finding a TSP tour through the points and then modifying the
tour (while keeping the order fixed) to reduce the total distance
traveled.

The TSPN solution can also be used as a data collection
route for the mobile robot. The TSPN tour gives us a data
collection tour where the travel energy alone is minimized.
However, in this case, the transmission energy to the points
should be added to obtain the total energy cost.

V. APPROXIMATION GUARANTEES OF MER ALGORITHM

In this section, we give bounds on the performance of the
MER algorithm. We show that the energy cost of a TSP tour
through the sensor nodes is within a constant factor of the
optimal solution. Since our algorithm is guaranteed to give a
solution with energy cost that is upper bounded by the cost of
TSP tour through the sensor nodes, it follows that our solution
is within a constant factor of the optimal solution. We will first
present the results for the case where the communication sets
are non-overlapping balls of different radii in Rd, d = 2, 3.
We will then extend the results to the case of overlapping
ball-shaped communication sets and finally extend the results
to general convex sets.

Let ri, i = 1, . . . , n, be the radii of the communication
set of the ith sensor node and rmax, rmin be the maximum
and minimum communication set radii respectively. Let Lc be
the tour length through the sensor nodes used in our MER
algorithm, and L∗c be the optimal TSP tour length through the
sensor nodes. Let α = Lc

L∗
c

be the approximation ratio of the
TSP tour used in the MER algorithm and β = rmax

rmin
. Let L∗

be the tour length for the minimum energy tour. Let E be the
energy cost along the MER and E∗ be the energy cost for the
optimal solution. Then we have the following:

Theorem 5.1: Let the communication sets of the sensor
nodes be disjoint balls. The energy cost of the route given by
the MER algorithm is within a constant factor of the optimal
energy cost, i.e.,

E ≤ (1 +
8β2

π
)αE∗ + C1 for d = 2, (6)

E ≤ (1 + 6β3)αE∗ + C2 for d = 3, (7)

where C1 = 8αβ2rmax and C2 = 16αβ3rmax are constants.



Proof : The tour of length L∗ can be converted to a center tour
by a detour of at most 2ri for each node i. Since the optimal
TSP tour through the center nodes will have length lesser than
this modified tour, we have

L∗c ≤ L∗ + 2
n∑

i=1

ri ≤ L∗ + 2nrmax. (8)

Now, we have to find an upper bound for n in terms of the
tour length. Let us consider a ball of radius 2rmax that moves
with its center on the optimal route. For d = 2, the area swept
by this ball is 4rmaxL

∗ + 4πr2
max. For d = 3, the volume

swept by the ball is 4πr2
maxL

∗+ 32
3 πr3

max This area (volume)
is greater than the area (volume) of the communication sets
of all the sensor nodes, i.e., for d = 2

π

n∑
i=1

r2
i ≤ 4rmaxL

∗ + 4πr2
max

⇒ π

n∑
i=1

r2
min ≤ 4rmaxL

∗ + 4πr2
max

⇒ n ≤ 4β2

πrmax
L∗ + 4β2

(9)

For d = 3, we have

4
3
π

n∑
i=1

r3
i ≤ 4πr2

maxL
∗ +

32
3

πr3
max

⇒ n ≤ 3β3

rmax
L∗ + 8β3

(10)

Now, substituting for n in Equation (8), and using Lc ≤ αL∗c
we have

Lc ≤ (1 +
8β2

π
)αL∗ + 8αβ2rmax for d = 2,

Lc ≤ (1 + 6β3)αL∗ + 16αβ3rmax for d = 3,
(11)

The movement cost is proportional to the tour lengths, and for
motion through the sensor nodes, the transmission cost is zero.
Moreover, the coefficient of L∗ in Equation (11) is greater
than 1. Therefore, for d = 2, Ec ≤ C0(L∗ + T ∗) + C1, where
C0 = (1+ 8β2

π )α, Ec is the energy cost of motion through the
sensor nodes, and T ∗ is the optimal transmission energy. Now,
by construction, the energy cost of MER tour is less than the
energy cost of center tour. Therefore, Ec ≤ C0E

∗ + C1. An
analogous argument can be made for d = 3, where, only the
value of the constant coefficients are different. �

Theorem 5.2: Let the sensor communication sets be balls
that can overlap with other sets. The energy cost of the MER
is within a constant factor of the optimal route, i.e.,

E ≤ (1 + 8β2(1 +
1
π

))αE∗ + C1 for d = 2, (12)

E ≤ (1 + 6β3(1 + π))αE∗ + C2 for d = 3, (13)

where C1 and C2 are as defined above.
Proof : As before, let L∗ be the length of the optimal tour.
The optimal tour consists of straight line segments, where the
turning points are the points where the mobile robot can stop

to collect data (note that if the tour is a straight line through
some nodes, the turning angle is π radians). The tour divides
the sensor nodes into (say γ) clusters, where all the data in a
cluster can be downloaded from one point on the tour. Note
that if all the sensor nodes have disjoint communication sets,
then γ = n. The center nodes of all the nodes in the clusters
are within a ball of radius rmax. Therefore, in a cluster, we
can make a detour of at most 2rmax +2πrmax to obtain a tour
through the sensor nodes. Therefore, we have

L∗c ≤ L∗ + 2(π + 1)γrmax (14)

Now, we have to find an upper bound for γ. Using the same
arguments as for finding the bound of n in the proof of
Theorem 5.1 (only change being that the sums in Equations (9)
and (10) are over γ), we obtain identical expressions for γ.
Substituting them in Equation (14), we obtain

Lc ≤ (1 + 8β2(1 +
1
π

))αL∗ + 8αβ2rmax for d = 2,

Lc ≤ (1 + 6β3(1 + π))αL∗ + 16αβ3rmax for d = 3,
(15)

Now, using the same arguments as in the proof of Theorem 5.1,
we obtain Equations (12) and (13).

For generalizing the results to any convex set, one should
note that the radius of a convex set is the radius of the smallest
ball circumscribing the convex set. In the proofs above, the
shape of the sets were used to derive a bound on γ. Now,
the Equations (9) and (10) hold for general convex sets, with
ri being their radii. Therefore, the Theorems 5.1 and 5.2 are
valid for general convex sets.

VI. SIMULATION RESULTS

We now present simulation results of our algorithm. We
generated random sensor networks with node density 1 and 2
both in R2 and R3. For the results presented here, we assumed
the communication sets to be either discs (spheres) or cones.
The communication set of each sensor node is a cone or a
disc with probability 0.5. The radius for circles or spheres
ranges between 0.8 and 1.2, and the radius for cones ranges
between 1.3 and 1.7. The differences in radius are to ensure
that the communication sets take up approximately the same
area. The cone angles range between π/8 and 3π/8. We set
w0j = 0, w1j = 1, w2 = 1, and αj = 3,∀j in our simulations.

We present the cost of the TSP tour through the sensor
nodes and the the TSPN tour through the communication
neighborhoods of the sensor nodes as baseline results. Note
that the TSP tour gives the minimum movement cost tour
when the transmission cost is 0 (in practice it will be a con-
stant

∑
j w0j). The TSPN tour gives the tour with minimum

movement cost. To compute the total cost of this tour, we
add the energy cost for transmission from the sensor node
to the point where the mobile node visits the communication
neighborhood. The TSPN route is computed using the method
in Section IV. The MER route is computed using the three-step
approach presented in Section IV. For computing the TSP tour
we have used the Lin-Kerninghan heuristic (as implemented
in the Concorde TSP solver).



We ran simulation for 2D and 3D networks of sizes ranging
from 20 to 800. Tables I and II are for randomly generated
planar sensor networks with node density 1 and 2 respectively.
For 3D sensor networks the results are given in Tables III
and IV. In each table, the second column gives the motion
cost of TSP tour. Since in this case the transmission cost is
0, this is also the total data collection cost for the TSP tour.
The third, fourth, and fifth columns gives the motion cost,
transmission cost, and total cost of the TSPN tour. The sixth,
seventh, and eighth column gives the motion cost, transmission
cost, and total cost of the minimum energy route. The last
column gives the time required for computing the MER in
seconds (not including the time needed to get the ordering of
nodes from the TSP solver). For a given number of nodes, each
data point is an average over 20 different randomly generated
sensor networks. All runs were on a computer with 12 GB
RAM, quad core 2.6GHz processor, and an 8 MB cache.

From all the tables, we can see that the cost of the MER
route is always less than the TSPN cost and the TSP cost.
Although the MER motion cost is more than the TSPN route,
the reduction of transmission cost makes the total cost less for
MER. The reduction of the MER cost is quite consistent across
different node densities, network sizes, and the dimensionality
of space. For example the ratio of the MER cost to TSPN
cost is consistently between 0.7 and 0.8 across all the runs.
When comparing the TSPN cost to the TSP cost, we observe
an interesting phenomenon. As Table I shows, the TSPN tour
has a higher cost for planar sensor networks with node density
1, irrespective of the number of nodes. When node density is
increased in a planar network, all energy costs (total, motion,
and transmission for all paths) drop, and the TSPN path
becomes more efficient than the TSP path (see Table II).

VII. SUMMARY AND FUTURE WORK

In this paper, we presented an algorithm to compute a route
for a mobile data collecting robot in planar or spatial sensor
networks with heterogeneous communication capabilities. The
communication set of each sensor is modeled as a convex set,
which is a generalization of the disc communication models
usually used in the literature. We derived a necessary condition
for optimality of a route and presented a three-step algorithm
for computing the MER route which gives a local minimum
for our problem. We first compute a sequence of visiting the
sensor nodes by finding a traveling salesman tour through
them. Given the order of visiting the nodes, we formulate
the problem of minimizing data collection cost as a convex
optimization problem and solve it optimally. The output of
the second step is a sequence of points lying in the sensor
neighborhoods. In the third step, we formulate and solve a
TSP (where the metric used is a modification of the Euclidean
distance) on the output of the second step, thereby reducing
the movement energy, while keeping the transmission energy
constant. We proved that our algorithm is within a constant
factor of the optimal solution.

Future Work: Although we provide approximation guaran-
tees for our algorithm, the approximation factors are quite

weak. One avenue of future research would be to improve the
analysis of the algorithm in this paper or find approximation
algorithms with tighter guarantees. Extending the algorithm for
data collection with multiple robots is also of future interest.
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