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Abstract— In this paper, we present provably-good algo-
rithms for multi-robot task assignment, where each task has
to be completed within its deadline. Each robot has a upper
limit on the maximum number of tasks that it can perform
due to its limited battery life, and each task takes the same
amount of time to complete. Each robot has a different payoff
(or cost) for the tasks and the objective is to assign the tasks
to the robots such that the total payoff (cost) is maximized
(minimized) while respecting the task deadline constraints. This
problem is an extension of a special generalized assignment
problem (where each task consumes the same time resource
and must be finished), with additional deadline constraints for
the time resource assignment. We show that the problem can
be reduced to a problem of assigning tasks to robots, where
the tasks are organized in overlapping sets, and each robot has
a limit on the number of tasks it can perform from each set,
which is a variant of multi-robot assignment problem with set
precedence constraint (SPC-MAP) discussed in [1]. We present a
distributed auction-based algorithm for this problem and prove
that the solution is almost-optimal. We also present simulation
results to depict the performance of our algorithm.

I. INTRODUCTION

Multi-robot task assignment is a fundamental problem
that arises in a wide variety of application scenarios like
manufacturing, automated transport of goods, environmental
monitoring and surveillance. In some application scenarios
the tasks have to be completed within given deadlines.
Furthermore, the assignment should be good in the sense
that it should maximize a payoff function or minimize a
cost function. Assigning tasks to robots to meet the dead-
line constraints as well as maximize the overall payoff of
assignment is a type of scheduling problem. Scheduling is
a quite mature field and due to its importance in a wide
variety of application areas including manufacturing and
computer systems different types of scheduling problems
have been studied [2]. The problem in this paper is related to
deterministic offline scheduling problems with resource con-
straints [3] (in contrast to online and/or stochastic scheduling
problems). Although batch scheduling has been well studied,
most scheduling algorithms are centralized in nature and usu-
ally there is no limit on the number of jobs that a processor or
machine can perform. For multi-robot application scenarios,
energy of the robots is a key constraint and so the number
of tasks that a robot can do in any mission is bounded.
Furthermore, distributed algorithms that enable the robots
in the field to divide the tasks among themselves (so that
there is no central point of failure) is desirable. Thus, in this
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paper, our goal is to design distributed algorithms for task
allocation with task deadlines and capacity limits on the total
number of tasks a robot can perform.

Task allocation with deadlines is relevant for many multi-
robot application scenarios. Consider the situation where a
system of robots have to clear up objects from one area and
place them in other areas. This can arise in automated pack-
age handling in ports where packages have to be unloaded
from a container (e.g., a ship) and placed in other containers
(e.g., trucks). Furthermore, there may be a deadline on the
tasks coming from the need to complete the overall task of
unloading within a certain time. Another application area is
for removing debris in disaster recovery scenario where the
robots need to move objects from one place to another so
that the paths become usable by other robots that have to
reach potential victims. In such cases also there may be a
deadline for the robots to clear paths because victims should
be found and reached within some time. In these applications,
different robots might have heterogeneous capacities, which
have different fitness for different tasks, so the objective here
could be maximizing the quantitative fitness of robot-task
assignment while respecting task deadlines.

The general problem that we consider in this paper is as
follows: We are given a set of tasks T , with each task t j ∈ T
having a deadline d j. Each task has to be done by one robot
only and each robot can do one task at a time. The maximum
number of tasks that robot ri can do is Ni (this is called the
budget of the robot). Each robot ri obtains a payoff ai j for
doing task t j. The overall payoff is the sum of the individual
robot payoffs. The objective is to assign the tasks to robots
such that the deadline constraints are met and the overall
payoff is maximized. We assume that each task takes unit
duration. Note that we could have equivalently stated the
problem above in terms of cost minimization. When we leave
task deadlines unspecified, the problem becomes a linear
assignment problem, which can be solved using the Hun-
garian algorithm [4], [5], [6], parallel auction algorithm [7],
[8], or distributed auction-based algorithm [9], [10]. When
we further allow tasks to have different processing time,
the problem becomes the NP-hard generalized assignment
problem, where approximation algorithms exist [11], [12].
So our problem is an extension of the linear assignment
problem, a special generalized assignment problem, with
added feature of task deadline constraints.

We present a distributed auction-based algorithm, where
each robot can bid for its own task, and show that this
algorithm provides an almost optimal solution. We first show
that the deadline constraints provide a natural grouping of the



tasks into overlapping sets and the problem can be equiva-
lently formulated as a problem of assigning tasks to robots
such that there is an upper bound on the number of tasks
that can be performed from each set. This is a natural variant
of the multi-robot assignment problem with set precedence
constraints (SPC − MAP) in [1], where tasks are forming
disjoint groups and each robot can perform at most one
task from each group. We show that solving this problem
can be reduced to solving a min-cost network flow problem
and hence our problem can be solved in polynomial time.
Further, we present an auction-based distributed algorithm
that provides an almost-optimal solution (i.e., a solution that
is within O(ntε), where nt is the total number of tasks and
ε is a parameter to be chosen). By appropriately choosing
ε , we can make our solution arbitrarily close to the optimal
solution (however at the cost of more computation time). We
also present simulation results showing the performance of
our algorithm for understanding the effect of choice of ε .

II. RELATED WORK

Task allocation is important in many applications of multi-
robot systems, e.g., multi-robot routing [13], multi-robot
decision making [14], and other multi-robot coordination
problems (see [15], [10]). There are different variations of
the multi-robot assignment problem that have been studied
in the literature depending on the assumptions about the
tasks and the robots (see [16], [15], [17] for surveys),
and there also exists multi-robot task allocation systems
(e.g., Traderbot [18], [19], Hoplites [20], MURDOCH [21],
ALLIANCE [22]) that build on different algorithms. In
this paper, we consider a deterministic offline multi-robot
assignment with task deadline constraints, and our objective
is to design distributed algorithms with provable performance
guarantee. Therefore, we will restrict our discussion to most
relevant literature with performance guarantee.

In the simplest version of the task allocation problem (also
known as the linear assignment problem), each robot can
perform at most one task and the robots are to be assigned
to tasks such that the overall payoff is maximized. The linear
assignment problem is essentially a maximum weighted
matching problem for bipartite graphs, which can be solved
in a centralized manner using the Hungarian algorithm [4],
[6], or a decentralized manner with shared memory using
auction algorithm [23], or a totally distributed way using
consensus-based auction algorithm [9], [10]. However all of
this work assume that the tasks are independent, and there
does not exist such constraint as deadlines on tasks. In [1],
set precedence constraints are introduced among tasks, where
the tasks are organized into disjoint groups such that each
robot can be assigned to at most one task from each group
and there is a bound on the number of tasks that a robot
can do. A generalization of the auction algorithm of [23] is
presented in [1] to achieve an almost optimal solution. Our
problem extends the problem in [1] in the sense that the
task group can overlap, and each robot can be assigned to
multiple tasks in each group.

Assigning tasks with deadlines to parallel machines have
been studied in scheduling literature [2]. However, the com-
mon objective there is either to find a feasible solution so
that task deadlines are met [3], or to minimize the weight of
unscheduled late jobs [24], instead of maximizing the total
payoff of different machine-task matching (this feature is a
departure of our work from the standard scheduling problems
studied in the literature).

III. PROBLEM FORMULATION

In this section, we give the formal definition of our multi-
robot assignment problem with deadlines for independent
tasks with identical duration (DiMAP). Here an assignment is
not just to determine which robot performs which tasks, but
also to make sure that the robot performs the tasks in proper
time, i.e., any task is assigned to a certain time slot of one
robot’ schedule so that its deadline constraint is satisfied.
Since the assignments would be related to the processing
time of tasks, we first give the straightforward formulation of
the problem using a time-related parameter, and then derive
an equivalent formulation, which removes the time parameter
and facilitates the algorithm design in Section IV.

Suppose that there are nr robots, R = {r1, . . . ,rnr}, and nt
tasks, T = {t1, . . . , tnt} where the tasks are independent, and
each task t j has a unit duration with a deadline d j, define
D = max j d j as the maximum task deadline, Sk = {t j|d j =
k},∀k = 1, . . . ,D, as the set of tasks with deadline k, SD+1 =
{t j|d j is not specified} as tasks with no explicit deadline;
each robot ri has Ni available time slots in its schedule, and
thus ri can perform at most Ni tasks, i.e., robot ri’s budget is
Ni. Any robot can be assigned to any task, and performing
each task needs a single robot, so nt ≤ ∑nr

i=1 Ni. Let f k
i j be

the variable that takes a value 1 if task, t j, is assigned
to the k-th time slot of robot, ri, and 0 otherwise, where
i ∈ {1, . . . ,nr}, j ∈ {1, . . . ,nt},k ∈ {1, . . . ,Ni}. Let ai j ∈R be
the payoff for the assignment pair (ri, t j), i.e., for assigning
robot ri to task t j, which does not depend on the assigned
time slot k. The objective is to assign all tasks to robots
so that the total payoffs from the assignment is maximized
while the deadlines of tasks are satisfied. The problem can
be formulated as an integer linear program (ILP) below.

max
{ f k

i j}

nr

∑
i=1

nt

∑
j=1

Ni

∑
k=1

ai j f k
i j

s.t.
nr

∑
i=1

Ni

∑
k=1

f k
i j = 1, ∀ j = 1, . . . ,nt (1)

nr

∑
i=1

min(Ni,d j)

∑
k=1

f k
i j = 1, ∀ j = 1, . . . ,nt (2)

nt

∑
j=1

f k
i j ≤ 1, ∀i = 1, . . . ,nr,k = 1, . . . ,Ni (3)

f k
i j ∈ {0,1}, ∀i, j,k (4)

where (1) means that each task is assigned to exactly one
time unit of a robot’s schedule; (2) guarantees that each task
is assigned to a time slot before its deadline; (3) guarantees



that each time slot of robots is assigned to at most one task
and thus each robot ri is assigned to at most Ni tasks.

The problem formulation above adds a time-related pa-
rameter k so that the deadline constraints for tasks can easily
be represented in (2), and its solution will also give a fixed
schedule that specifies, which robots perform which tasks
during each time step. However, it might be unnecessary
in terms of maximizing the total payoffs, e.g., it does not
matter whether robot ri perform task t j at time step k1 or
k2 (assuming both satisfy the task deadline d j) since both
would lead to the same payoff ai j. Below we provide another
equivalent problem formulation, showing that we can explore
the independency of tasks so that explicit time parameter k
can be removed while all constraints are still satisfied. Let
fi j be the variable that takes a value 1 if task, t j, is assigned
to robot, ri, and 0 otherwise. The problem can be formulated
as an integer linear program (ILP) given below.

max
{ fi j}

nr

∑
i=1

nt

∑
j=1

ai j fi j

s.t.
nr

∑
i=1

fi j = 1, ∀ j = 1, . . . ,nt (5)

∑
j:d j≤l

fi j ≤ l, ∀i = 1, . . . ,nr, l = 1, . . . ,D (6)

nt

∑
j=1

fi j ≤ Ni, ∀i = 1, . . . ,nr (7)

fi j ∈ {0,1}, ∀i, j (8)

where (5), corresponding to (1), means that each task is
assigned to exactly one time slot of one robot’s schedule; (6),
corresponding to (2), guarantees that each robot is assigned
to at most l tasks from all tasks with deadline no more than
l, and thus each task can be performed before its deadline;
(7), corresponding to (3), guarantees that each robot ri does
not exceed its budget, i.e., is assigned to at most Ni tasks.

The solution for the second problem formulation only
determines which robot performs which tasks without ex-
plicitly modeling the assignment of each time slot of robots
to tasks. However, due to (6), for all tasks with deadlines
no more than l, each robot can be assigned to l of them.
Thus it can be guaranteed that such assignment would satisfy
the deadline constraints for tasks since the number of tasks
assigned to each robot is no more than the available time slots
of that robot before the tasks’ deadlines. The second problem
formulation is more compact since it does not explicitly use
the time parameter as in the first problem formulation. In next
section, we do not consider the processing time for tasks
anymore, and show that this formulation is convenient for
our distributed algorithm design. The linear program (LP)
relaxation of DiMAP can be reduced to a min-cost network
flow problem, so there is always an optimal integer solution
for its LP relaxation. Due to space constraint, we leave the
reduction in the future complete version.

IV. ALGORITHM DESIGN AND PERFORMANCE ANALYSIS

In this section, we show that the distributed auction algo-
rithm used for multi-robot assignment with set precedence

constraints (SPC−MAP) in [1] can be extended to get an
almost-optimal solution for DiMAP.

A. Basic Idea and Concepts of Auction Algorithm

We are trying to match nr robots and nt tasks with
constraints (5)-(8) through a market auction mechanism as
introduced in [23], where each robot is an economic agent
acting in its own best interest. Although each robot ri
wants to be assigned to its favorite Ni tasks (with highest
payoffs) while satisfying the deadline constraints for tasks,
the different interest of robots will probably cause conflicts.
This can be resolved by introducing auxiliary variables of
task price, and making robots bid for tasks through an
iterative auction mechanism. Suppose the price for task t j
at iteration τ is p j(τ), so the net value of task t j to robot
ri at iteration τ becomes v j(τ) = ai j − p j(τ) instead of just
ai j. During the bidding procedure, each robot bids for tasks
which satisfy the constraints and have highest values to the
robot according to certain rule (as shown later in Section IV-
B). After winning the bids and assigned to tasks in each
iteration, the robot would then set the new task price as
the winning bid, which is the highest bid value for the task
among all robots till then. Thus the iterative bidding from
robots leads to the evolution of robot-task assignment as well
as task price p j(τ), which can gradually resolve the interest
conflicts among robots. 1

Please note, since ∑i Ni ≥ nt , we need add ∑i Ni−nt virtual
tasks with small equal payoffs to all robots, and leave their
deadlines as unspecified. So the new total number of tasks
becomes n′t = ∑i Ni. Besides, the condition that each robot
must know the current price p j(τ) for all task t j during
bidding procedure requires the existence of a centralized
auctioneer or a shared memory for all robots to access. In [1],
[9], [10], maximum consensus technique has been introduced
to combine with auction algorithm so that the algorithm
becomes totally distributed without centralized auctioneer to
communicate the current price of tasks with robots. Assume
that robots are forming a connected communication network,
where each robot is connected to its neighboring robots
within its communication range. The idea is that during each
bidding iteration τ , each robot ri in the connected network
locally maintains and updates a list of current highest bids
pi

j(τ) 2 for each tasks t j from its own neighborhood Nri :

pi
j(τ) = maxrℓ∈Nri

pℓj(τ −1)

and uses that highest bid as local price of tasks. Since
the network is connected, the global highest bids would
eventually propagate to all robots so that the solution quality
remains the same as that of original auction algorithm. The

1Note that p j(τ) is an auxiliary variable, which is used to resolve the
conflict that multiple robots share the same interest of being assigned to
the same tasks. When the algorithm terminates, the quality of assignment
solution does not depend on p j(τ), i.e., the output assignment solution is
almost-optimal in terms of original payoffs ai j instead of the net value
v j(τ) = ai j − p j(τ).

2Note that each robot just maintains one price for each task, here pi
j(τ)

is just used to represent the task price at iteration τ for convenience.



same technique is applied here to make our new auction-
based algorithm totally distributed.

Below we will discuss some important concepts of auction
algorithm. Suppose TJi = {t j| j ∈ Ji} is the task set assigned
to robot ri, it must satisfy the constraints below:

|Ji| ≤ Ni, |TJi

∩
(

k∪
m=1

Sm)| ≤ k,∀k = 1, . . . ,D (9)

where |Ji| ≤ Ni corresponds to constraint (7),
|TJi

∩
(
∪k

m=1 Sm)| ≤ k,∀k = 1, . . . ,D corresponds to (6),
and the exclusive assignment would guarantee (5). We use
Ji ∼ (9) to represent that Ji satisfies (9).

During each bidding iteration τ , given any task price set
{p j(τ)| j = 1, . . . ,nt}, every robot ri wants to be exclusively
assigned to a task set TJ∗i = {t j| j ∈ J∗i } with maximum net
values while satisfying the constraints:

J∗i = arg max
∀Ji∼(9)

∑
j∈Ji

v j(τ) (10)

We say robot ri is happy with the assigned task set
TJ∗i when (10) is satisfied. If all robots are happy, we say
the whole assignment and the prices at iteration τ are at
equilibrium.

Suppose we fix a positive scalar ε . When each assigned
task for robot ri is within ε of being in the set of ri’s
maximum values, that is,

f (J′i )≥ max
∀Ji∼(9)

∑
j∈Ji

(v j(τ)− ε) (11)

where f (J′i ) = ∑ j∈J′i
v j(τ) and J′i ∼ (9). We say robot ri

is almost happy with the assigned task set TJ′i
when (11)

is satisfied. If all robots are almost happy, we say the
whole assignment and the prices at iteration τ are almost
at equilibrium.

B. Auction-based Distributed Algorithm Design

In this section, we design a new auction-based distributed
algorithm for DiMAP, which is an extension of the algo-
rithm used in [1] for multi-robot assignment problem with
set precedence constraints (SPC-MAP). In the distributed
algorithm, there is no centralized component, and the knowl-
edge/information available to each robot ri is {ai j|∀ j}, the
payoffs of tasks to ri itself, as well as {pℓj(τ)|∀rℓ ∈ Nri ∪
{ri},∀ j, t}, the local task price maintained and updated in
each neighboring robot rℓ during each bidding iteration τ .

For each robot ri, a single bidding iteration τ of our
auction-based algorithm is described in Algorithm 1. Each
robot could implement the iterative bidding procedure either
synchronously or asynchronously. For the sake of ease of
discussion, below we assume that in our auction-based
algorithm, all robots run copies of Algorithm 1 sequentially.
Each bidding iteration τ for robot ri (Algorithm 1) can be
summarized as follows.

First, robot ri communicates with its neighbors to get
their maintained local task price, updates its own local task
price (from Line 2 to 5), and computes each task value to
itself (Line 7). Please note, the updated local task price at

robot ri is a local maximum of each task price among its
neighborhood (including itself), which is a lower bound of
the real task price. The real task price is the global highest bid
value among all robots, and can be achieved by maximizing
the local task price maintained by all robots.

Second, given the current local task price {pi
j(τ)|∀ j},

robot ri selects a task set with task indices J, so that it is
happy to be assigned to the task set TJ = {t j| j ∈ J}, i.e.,
(10) is satisfied, (from Line 11 to 18 inside the iterative
loop). This part guarantees that all constraints for robot ri are
satisfied (according to the value of k′ from Line 12 to 16):
(a) robot ri is assigned to at most Ni tasks; (b) ri is assigned
to at most k tasks of all tasks with deadline no more than
k. Meanwhile each task is assigned to at most one robot,
because each task either does not change assignment status
(assigned to previous robot or remains unassigned) or switch
from the previous assigned robot to robot ri.

Third, robot ri is assigned to task set TJ , and updates the
task price (from Line 29 to 32) so that ∀ j ∈ J, pi

j(τ + 1) =
pi

j(τ)+(vi
j(τ)− vi

J△( j)(τ))+ ε , where vi
J△( j)(τ) is the value

of the task J△( j), which would have been selected to J had
we removed task j. For each assigned task in t j ∈TJ , there is
a corresponding task J△( j), which is stored in J△ indexed by
j (Line 20 explains how J△ is computed from Line 19 to 27).
Roughly speaking, J△( j) is the task with the second value
to ri other than j while satisfying the constraints together
with other tasks in TJ\{ j}. The bidding price for each task
is at least ε bigger than its previous price:
pi

j(τ +1)− pi
j(τ) = vi

j(τ)− vi
J△( j)(τ)+ ε ≥ ε

since the selection of J△ from Line 19 to 27 guarantees that
vJ△( j)(τ) ≤ v j(τ). So the tasks receiving ri’s bids must be
assigned to ri at the end of the iteration. The way we set
pi

j(τ +1) guarantees that ri is almost happy with TJ given
the new price pi

j(τ +1) (See Theorem 2), and is related to
the proof of the optimality of the algorithm, which will be
discussed in Section IV-C.

The algorithm terminates when all robots have been ex-
clusively assigned to their own tasks. Each robot needs to
wait until its task price information does not change for nt
rounds, which is the largest possible diameter of any connect
network with nt nodes. In this way, each robot can make sure
the unchanged task price is not due to the delay of price
propagation in the network, and can terminate the algorithm
in a distributed way.

Here the feasibility check and adding virtual tasks could
be easily done before each robot runs Algorithm 1. However,
it is possible to integrate these steps into each robot’s
distributed bidding procedure. Due to the space constraint,
we will leave these issues in the future complete version.

C. Performance Analysis

In this section, we analyze the performance of Algorithm 1
in terms of soundness, completeness and optimality, i.e., does
the output assignment solution satisfy all constraints in (5)-
(8)? Will Algorithm 1 terminate with a feasible assignment
solution in a finite number of iterations? How good is the



Algorithm 1 Auction Iteration τ For Robot ri

1: Input: ai j, pℓj(τ), Sk for all j,k,rℓ ∈ Nri ∪{ri},
Output: pi

j(τ +1), J // J: indices of ri’s assigned tasks
2: // Update the local highest bid information:
3: for each task t j do
4: pi

j(τ) = maxrℓ∈Nri∪{ri} pℓj(τ)
5: end for
6: // Collect information for new bids
7: Denote vi

j(τ) = ai j − pi
j(τ) // value of t j to ri

8: J = /0, J△ = zeros(nt ,1)
9: // Iterate over tasks with different deadlines k

10: for k = 1 : D+1 do
11: J′ = J

∪
Sk; // J′ :current candidate task set

12: if k ≤ D then
13: k′ = min(k,Ni); // k′ :number of tasks to be selected
14: else
15: k′ = min(|J′|,Ni);
16: end if
17: Select the best k′ candidate tasks from J′, and store

their indices into J:
18: J = arg(max(k

′)) j∈J′vi
j(τ) // arg(max(k

′)) is the oper-
ator to get indices of the k′ biggest values

19: Store the index of next best candidate task from J′:
j′ = argmax j∈J′\J vi

j(τ)
20: For each selected task in J, update the index of its

corresponding next candidate task (with highest value
among all next best candidate tasks since the iteration
when it is first selected) into J△:

21: for each task ta: a ∈ J do
22: if a ∈ Sk then
23: J△(a) = j′; // for task with deadline k
24: else
25: J△(a) = argmax(vi

j′(τ),v
i
J△(a)(τ)); // da < k

26: end if
27: end for
28: end for
29: // Start new bids and update price information
30: Bid with price b j for task t j : j ∈ J :
31: b j = pi

j(τ)+ vi
j(τ)− vi

J△( j)(τ)+ ε , pi
j(τ +1) = b j;

32: for task t j : j ̸∈ J, pi
j(τ +1) = pi

j(τ)

solution when Algorithm 1 terminates?
Lemma 1: When Algorithm 1 terminates for all robots,

the achieved assignment must be a feasible solution for
DiMAP, i.e., (5)-(8) are satisfied.
Proof: When Algorithm 1 for robot ri terminates, according
to the value of k′, (a) ri has already been assigned to no more
than Ni tasks and no other robot would bid higher for ri’s
assigned tasks; (b) ri is assigned to at most l tasks of all tasks
with deadline no more than l. So (6) and (7) are satisfied.
Since the tasks are exclusively assigned in Algorithm 1, (5)
and (8) are also satisfied. So the achieved assignment is a
feasible solution satisfying (5)-(8).�
Lemma 1 means Algorithm 1 is sound, i.e., when it outputs a
solution, the solution is feasible. The next result asserts that

Algorithm 1 always terminates in finite number of iterations
assuming the existence of at least one feasible assignment
for the problem. The proof relies on the observations below:
(a) When a task is assigned, it will remain assigned during

the whole process of the algorithm. The reason is:
during the bidding and assignment process, one task
can either transfer from unassigned to assigned, or
be reassigned from one robot to another, but cannot
become unassigned from assigned. There might exist
cases where one task was assigned to more than one
robot before the algorithm terminates due to the local
price information.

(b) Each time when a task receives a bid, its new price will
increase by at least ε according to the algorithm. So if
one task receives infinite number of bids, its price will
become +∞. Please note, although the real task price
might not reach all robots immediately, the +∞ price
would eventually propagate to all robots.

(c) If a robot ri bids for infinite number of times, at least one
task t j would receive infinite number of bids. Suppose
that t j ∈ Sk, then all tasks in S = Sk

∪
Sk+1

∪
. . .

∪
SD+1

would receive infinite number of bids. The reason is
that: (using contradiction) if there exists one task in S,
which does not receive infinite number of bids, its price
would be finite, and its value for ri must be bigger than
t j which receives infinite number of bids. So it has to
receive more bids, which leads to the contradiction. So
all tasks in S receive infinite number of bids and thus
have the price of +∞ (according to (b)).

Theorem 1: If there is at least one feasible solution for an
instance of DiMAP, Algorithm 1 for all robots will terminate
in a finite number of iterations.
Proof: If the algorithm continues infinitely, there must exist
a smallest k0, s.t. all tasks in S = Sk0

∪
Sk0+1

∪
. . .

∪
SD+1

have +∞ price according to (c) above. For each robot ri,
either Ni < k0, in this case, robot ri is assigned to tasks in
T \S; or Ni ≥ k0, in this case, ri must be assigned to exactly
k0 − 1 tasks in T \ S since all k0 − 1 tasks selected in the
procedure of Algorithm 1 must have larger value than tasks
in S. So the remaining number of unassigned tasks for all
robots are ∑Ni≥k0

(Ni −k0 +1). Since all tasks in S have +∞
price, they must keep the assigned status although they might
be assigned to more than one robot and their assigned robots
keep changing according to (a), so

∑
i:Ni≥k0

(Ni − k0 +1)> |S|

Please note that the above inequality is strict, since there
must be at least one robot ri with Ni ≥ k0 that has remaining
tasks unassigned (otherwise no robot would continue to
bid, and the algorithm would terminate). Since ∑i Ni =
n′t (including the additional virtual tasks),

∑
i:Ni<k0

Ni + ∑
i:Ni≥k0

(k0 −1)< n′t −|S|

where the left part of the inequality represents the maximum
number of tasks, which all robots can perform within dead-
line k0 − 1, while the right part represents the number of



tasks with deadline smaller than k0. So the inequality means
that there exist at least one task with deadline smaller than
k which cannot be performed within its deadline, so there is
no feasible solution for the instance of DiMAP, which leads
to the contradiction. So we conclude that Algorithm 1 must
terminate in a finite number of iterations if there exists a
feasible solution for an instance of DiMAP. �

Lemma 1 and Theorem 1 together prove that Algorithm 1
is both sound and complete. Next we want to prove the
performance of Algorithm 1, based on the following theorem.

Theorem 2: After each iteration τ of robot ri, ri’s newly
assigned tasks together with the local task prices pi

j(τ + 1)
keep ri almost happy, i.e., (11) is satisfied.
Proof. During each iteration τ , according to the bidding part
of Algorithm 1 (from Line 11 to 18), the bid tasks TJ =
{t j| j ∈ J} with the price before the iteration can make ri
happy:

f (J) = ∑
j∈J

(ai j − pi
j(τ)) = max

∀Ji∼(9)
∑
j∈Ji

(ai j − pi
j(τ))

pi
j(τ +1) = pi

j(τ)+vi
j(τ)−vi

J△( j)(τ)+ε,∀ j ∈ J, and pi
j(τ +

1) = pi
j(τ),∀ j ̸∈ J, so

f ′(J) = ∑
j∈J

(ai j − pi
j(τ +1)) = ∑

j∈J
(vi

J△( j)(τ)− ε)

= max
∀Ji∼(9)

∑
j∈Ji

(ai j − pi
j(τ +1)− ε)

So after each iteration τ , the values of tasks in J make robot
ri almost happy, which means (11) is satisfied. �
Since Theorem 2 holds true for all robots, we get the
corollary below.

Corollary 1: When Algorithm 1 for all robots terminates,
the achieved assignment and price are almost at equilibrium.
Theorem 3 below analyzes the optimality and gives perfor-
mance guarantee for Algorithm 1.

Theorem 3: When Algorithm 1 for all robots terminates,
the achieved assignment {(i,J∗i )|i= 1, . . . ,nr} must be within
∑nr

i=1 Niε of an optimal solution.
Proof: Denote ({(i,Ji)|i = 1, . . . ,nr} as any feasible assign-
ment, i.e., {Ji|∀i} ∼ (12):

|Ji
∩

(
m∪

n=1

Sn)| ≤ m,∀i,m : i = 1, . . . ,nr;m = 1, . . . ,D

Ji
∩

J j = /0 if i ̸= j, |Ji| ≤ Ni,∀i, |
nr∪

i=1

Ji|= nt

Denote {p∗j | j = 1, . . . ,nt} as the set of task prices when
Algorithm 1 terminates for all robots and {p j| j = 1, . . . ,nt}
as any set of task prices.

First, we give an upper bound for the optimal solution.
nr

∑
i=1

∑
j∈Ji

(ai j − p j)≤ max
∀{J′i |∀i}∼(12)

nr

∑
i=1

∑
j∈J′i

(ai j − p j)

⇒
nr

∑
i=1

∑
j∈Ji

ai j ≤
nt

∑
j=1

p j + max
∀{J′i |∀i}∼(12)

nr

∑
i=1

∑
j∈J′i

(ai j − p j)

Since it holds true for any set of price {p j|∀ j} and any
feasible assignment {(i,Ji)|∀i}, we have A∗ ≤ D∗, where A∗

is the optimal total payoffs of any feasible assignment.

A∗ = max
∀{Ji|∀i}∼(12)

nr

∑
i=1

∑
j∈Ji

ai j

D∗ = min
p j : j=1,...,nt

(
nt

∑
j=1

p j + max
∀{J′i |∀i}∼(12)

nr

∑
i=1

∑
j∈J′i

(ai j − p j))

On the other hand, according to Corollary 1, we have
nr

∑
i=1

∑
j∈J∗i

(ai j − p∗j)≥ max
∀{J′i |∀i}∼(12)

nr

∑
i=1

∑
j∈J′i

(ai j − p∗j − ε)

nr

∑
i=1

∑
j∈J∗i

ai j ≥
nt

∑
j=1

p∗j + max
∀{J′i |∀i}∼(12)

nr

∑
i=1

∑
j∈J′i

(ai j − p∗j)−
nr

∑
i=1

Niε

≥ D∗−
nr

∑
i=1

Niε ≥ A∗−
nr

∑
i=1

Niε

∑nr
i=1 ∑ j∈J∗i

ai j is the total payoffs of the achieved assignment
by Algorithm 1, and

A∗ ≥
nr

∑
i=1

∑
j∈J∗i

ai j ≥ A∗−
nr

∑
i=1

Niε

So it is within ∑nr
i=1 Niε of an optimal solution.�

V. SIMULATION RESULTS

In this section, we run simulations in a synthetic example
to check how the control parameter ε influences the auction
algorithm’s solution quality and convergence time.

Consider nr = 20 robots, each robot ri needs to perform
Ni = 5 tasks from nt = 100 tasks. The deadlines of tasks are
randomly set so that there are 15 tasks for each deadline
from 1 to 5, respectively, and 10 tasks without deadline.

ε is a control parameter related to the convergence time
and performance guarantee of Algorithm 1. In our simu-
lations, we tested different values of ε . For each ε , we
generated 100 rounds of random payoffs ai j from a uniform
distribution in (0,20), and we compared the mean and
standard deviation of performance ratio of our solution to the
optimal solution, and the convergence time of the algorithm.

Figure 1 shows how the solution of assignment payoffs
changes with the control parameter ε . When ε is as small
as 0.1, the assignment payoffs achieved by our algorithm
almost equal the optimal solution. When ε increases, the
difference between our solution and the optimal solution is
increased, but bounded by ∑nr

i=1 Niε , as proven in Theorem 3.
Figure 2 shows how the convergence time of our algorithm
changes with ε . The number of rounds3 decreases with ε ,
which means with higher ε , Algorithm 1 converges faster.

From Figure 1 and 2, we can see that, similar as results
in [1], there is a tradeoff between the solution quality and the
convergence time, which can be adjusted by ε . With bigger ε ,

3One round is defined as the procedure that all robots finish one bidding
iteration sequentially.



the algorithm converges faster at sacrifice of solution quality;
while with smaller ε , the algorithm solution is better at the
cost of slower convergence time. In our simulation, robots
are forming fully connected network. If robot network is
not fully connected, the convergence time would be delayed
depending on the diameter of the network.
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Fig. 1. Performance ratio of our solution to the optimal one as a function of
ε , which is the minimum price increase for new bids. The optimal solution
can be achieved when we set ε < min di f f

∑nr
i=1 Ni

where min di f f is the minimum
difference between any two individual payoffs ai j .
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Fig. 2. Convergence time of our algorithm as a function of ε . The figure
shows the number of rounds for our algorithm to terminate, where one round
means all robots sequentially implement Algorithm 1 for one iteration.

VI. SUMMARY

In this paper we considered the multi-robot task assign-
ment problem with task deadline constraints (DiMAP), where
the objective is to maximize the total payoff of assigning
tasks to robots while respecting the task deadline constraint
and robot budget constraint. This problem can be refor-
mulated so that tasks are organized in overlapping groups
according to their deadlines, and each robot has a limit on the
number of tasks it can perform in each group. We presented
a distributed auction-based algorithm, and proved that our
algorithm are sound, complete and almost-optimal.

Future work: One natural extension would be to consider
the case when tasks have different durations, which is an
extension of the NP-hard generalized assignment problem
(with added feature of deadline constraints). To solve this
problem in a distributed way each robot during each iteration
solves a single-robot NP-hard problem (an extension of
knapsack problem). We plan to explore if designing an
approximation algorithm for the single robot problem will
lead to an approximate solution for the overall problem.
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