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Abstract—In this paper, we present the use of another inputis chosen at random from the input set. The
complementarity-based dynamic simulation algorithms for  process is then repeated until the start and goal statesdbelo
kinodynamic motion planning. Dynamic simulation algorithms to the same connected component of the graph. Any path on

are used as local planning methods in sampling-based motion , . . .
planning algorithms to find inputs that ensure the resulting this graph from the start to the goal state gives a feasible

trajectory satisfies the dynamics constraints. However, ta motion plan. Note that the sampling is done over the space
inputs are not guaranteed to give collision-free path segnmts.  of possible inputs (or actions) to the system and the output o
The inputs, chosen either by random sampling or from a such sampling-based algorithms is a sequence of piecewise
discretization of the available inputs, are rejected if thepath inputs.

segment is not collision free. In cluttered environments, fiding . .

a feasible input is difficult and sensitive to the duration At of Inthis pgper, we presenF th_e use_ of complgmentarlty-
application of the input, and to the discretization resolufon ~ based algorithms for dynamic simulation and point out the
of the input set. When the collision constraints (or any advantages of such methods in the context of sampling-
inequality constraints on the state of the robot) are modelé as  based kinodynamic motion planning problems where col-
a set of complementarity constraints, the dynamic simulabn  |ision avoidance is a key requirement. The role of the

algorithm gives a path segment that touches the obstacles @n d ic simulati lgorith . t lina-based
a set of contact forces whenever the robot makes contact with 9YNamic simulation aigorthms in-current sampling-base

the obstacles. The sum of the chosen input forces and the Motion planning methods is to ensure that the state tra-
contact forces transformed to the input space gives a contto jectories obtained satisfy the differential constrair@aur
input that guarantees a collision-free path segment (proded it approach, in addition to ensuring satisfaction of diffeian
is within the actuator bounds). Thus in cluttered environments,  ¢onstraints, also ensures that we obtain state trajestarid
using a complementarity-based dynamic simulation algorttm, . . . . .
we can find a feasible input that is relatively insensitive to mput_s_that satisfy collision cqnstramts. The compleraﬂt)l_
the choice of At and the discretization resolution of the conditions encode the physical constraint that two objects
input set. We present simple simulation examples showing ¢h  cannot interpenetrate. If we use complementarity-baseti mo
advantages of our algorithm in cluttered environments. els for dynamic simulation, and simulate for a tinert
using a given input we will get non-zero contact force values
when the objects touch in that time interval; we can use a

The motion planning problem for a single robot subjecprescribed safety distance so that the forces become non-ze
to kinematics, dynamics, and collision constraints can b&hen the objects are a safe distance apart. The end state
formulated as an optimal control problem [11], [6]. Howeverat time ¢t + At is collision free. Moreover, we can obtain
in practice it is possible to solve this problem only forthe input that ensures that the whole path is collision-free
very simple cases. Finding an exact time-optimal trajgctorby adding the (suitably transformed) virtual contact ferce
for a point mass (with bounded velocity and acceleratiorfp the input forces. This has the following advantages: (a)
moving among polyhedral obstacleslt¥ has been proven We always get a collision-free path segment along with the
to be NP-hard [5]. Therefore, sampling-based randomizembrresponding input forces (provided the input forces db no
techniques [7], [12], [13], [11] that try to provide inputs violate actuator force constraints). Thus when the patlois n
such that the robot’s state satisfies differential constsai collision free, we do not waste any computation unlike in the
(kinematic and dynamic constraints) and collision comistsa conventional method. (b) Using our method, we can obtain
are now prevalent. The basic idea is to form a graph-baséehsible inputs that are outside the set of primitives, thus
representation of the state space starting from some &ttte tessentially enhancing the input set available for planning
satisfies the constraints. In the basic algorithm, an input even when we start with a simple set of hand designed
randomly chosen from the set of inputs to act for some timprimitives. When the input set is just the set of motion
At, the equations of motion are integrated by calling therimitives, there may be no input in this set of primitives
dynamic simulation module, and the state at time At is R . . L

. . . . . This is not the same as the time step used in the dynamic giorula

obtained. If the entire path is collision free, the statedde module, i.e., numerical integration of the differentialuations which may
as a node to the graph and the input is stored; otherwisg much smaller thart.

|. INTRODUCTION



that gives a feasible path for that time step. (b) Expansive space tree algorithm [7] (terminology addpte
The outline of the rest of this paper is as follows: In Secfrom [1]). The basic difference between the two methods is
tion Il we provide a brief overview of the literature on robotin the procedure used to bias the connectivity graph (tree)
motion planning with differential constraints. In Sectilh  towards unexplored regions of the state space (i.e., cludice
we provide a brief description of the complementaritythe node to expand). The RRT algorithm generates a random
based dynamic state evolution models and sampling-bassaimple and tries to connect the nearest node on the existing
motion planning algorithms with differential constraints  partial tree towards the random node. The algorithm in [7]
Section IV we describe the changes we propose to theaintains a weight at the nodes of the tree based on the
basic RRT (rapidly exploring random tree) algorithm andiumber of samples that lie within a certain radius of the
discuss its advantages. In Section V we present two simpf®de. The algorithm then tries to expand the nodes having
simulations to illustrate the key features of our algorithmlower weight. There are various variations of these two
Finally, we present our conclusions and outline future workbasic approaches [15], [13], but all of these are concerned
with heuristics on the choice of nodes to be expanded and
the number of trees to be maintained in the exploration of
The problem of finding an exact time-optimal trajectorythe state space. For example, bi-directional RRT [13] is a
from a given start state to goal state, for a point mass withariation of RRT in which two trees are grown, one from the
bounded velocity and acceleration moving among polyhedraditial state and one from the goal state. The common feature
obstacles is NP-hard [5]. Approximation algorithms havef all these algorithms is that they choose a random input
been proposed for systems with decoupled dynamics that amed use numerical integration of the differential constisai
polynomial in the combinatorial complexity of the number offollowed by collision checking when expanding a notte.
obstacles [4], [3]. However, these algorithms are expdaknt our work we propose a modification to the local planning
in the dimension of the configuration space. For practicatep of expanding a node and not the decision of which
purposes there are three basic approaches for kinodynamimde to expandWe will present our discussion based on
motion planning problems: (a) Decoupled approach [18] (the basic RRT algorithm. The changes that we propose to
Potential field based methods [8], [9], [16] (c) Samplingthe basic RRT are also applicable to all the other variations
based approaches [12], [7]. In the decoupled approach the
problem is divided into a path planning and a trajectory
planning problem. In the path planning stage a path is In this section, we present the complementarity-based
obtained for the robot that satisfies the geometric (collisi model of collision-free dynamic state evolution of a robot
constraints and in the trajectory planning stage this path and pose the kinodynamic motion planning problem in a
converted to a trajectory while satisfying the dynamics-corformal setting. LetQ) be theconfiguration space®f dimen-
straints. Both the path planning problem and the trajectorsion d, X be thestate spaceandU be the input (or action)
planning problem have been studied extensively [1], [11kpace of the robot. We assumi&to be a smooth manifold
The limitation of this method is that it may not be possible tandU C R™ to be a bounded set. L&t= (q,v) be the state
convert the path into a trajectory satisfying all the dynesmi of the robot whereq is the configuration of the robot and
constraints. v = q is the generalized velocity. The Lagrangian equations
In potential field methods, an artificial attractive fieldof motion of the robot are [14]
is generated in the configuration space with the goal as )
its minimum and repulsive fields are generated around the M(q)y +C(q,v)v + V(q) =7 @)
obstacles..The robot then follows the steepest gradierti®n twhereM(q) is the mass matrix of the robo€(q,v) is
resultant field to reach the goal. However, the robot may 9@de coriolis matrix andv'(q) arises due to gravity and other
stuck in local minima and there is no guarantee that the robghential forces acting on the robot. If the robot is a rigid
will reach its goa_ll (except for a class of enwronmgnts (chll_ebody, v may be chosen to be the concatenated vector of
star-shaped environments [16], where the potential foncti inear and angular velocities, whereqsmay contain some
is called a navigation funquon). In other words_, neither Obarametrization of orientation like euler angles, qudters,
the two approacheg descnbgd above @mpletei.e., they etc. In that casey = G(q)v, where GTG is always a
may not find a feasible solution even though one exists. multiple of the identity matrix. The generalized force,

Sampling-based approaches build a graph-based represgie vector of all external forces on the robot and can be
tation of the free state space such that the start and goes$stayritten as

belong to the same connected component of the graph. There
are two main approaches (notable exception being [10])
in the sampling-based randomized algorithms literatueg: (wheret,,, are the actuator inputs to the robots,, are
Rapidly Exploring Random Tree (RRT) algorithm [£2Jnd  the contact forces (transformed to actuator space) acting o
the robot, andr.yy, is the vector of any other types of forces
?Lavalle distinguishes between RRTs and rapidly exploriegse trees acting on the robot. Note that inequality constraints on the

(RDT) in [11] where the distinction takes into consideratideterministic fth b be i | db Vi . |
sampling. This distinction is not important here and we wicuss in the states of the robot can be implemented by applying a virtua

context of RRTs. All of the discussion holds for determiicistampling. force Toin.

II. RELATED WORK

IIl. BACKGROUND AND PROBLEM FORMULATION

T = Tapp + Tcon + Toth (2)



The contact forces are usually unknown and have to b Discrete-time collision-free state evolution model
determined as part of the simulation process. The magnitude\ye now write down the discretized equations of motion for
of the normal component of the contact forces is zero if thgymerical integration. We use a velocity-level formulatio
distance between the two objects is greater than zero aggdq an Euler time-stepping scheme to discretize Equation 4.
non-zero if the bodies are in contact. Thus, at each potentiggt t, denote the current time, ardbe the time step. Use the

contact, the product of the magnitude of the normal contagjperscripts and¢+ 1 to denote quantities at the beginning
force and distance between the two objects is always zerghg end of theth time step respectively. Using~ (v —

or they are orthogonal to each other. This is encoded hy!)/, ¢ ~ (' — qf)/h, and kA, = pn we get the

the following equation (also known as a complementarityo|iowing discrete time system. The discretized equatiohs
constraint) motion (considering only the collision constraints here fo
0 < Ain L Yin(q,t) >0 (3) exposition) to be satisfied at each time step are [17]:
where 1 denotes orthogonality,;,, is a signed distance My = My + h(Wa Xl + AL, + AL,)
fun<(:ti0n) orgafp functionfor thez";h C())ntactfwith thﬁ proper(tjy q‘tt = qf + ottt (5)
¥in(q,t) > 0 for separationy);,(q,t) = 0 for touching, an (41 (41
Yin(q,t) < 0 for interpenetration. The wrench due to the O<py" Lon(a™) 20
normal contact force acting at any point on the body (say th&here A, is the concatenated vector of contact forces and
center of gravity of the link) isw; \in, wherew; is a6 x 1 each row of W, is J] w;, with i = 1...n., n. being the
concatenated vector of the negative of the unit normal at tHeimber of contacts. We note that in Equation 5, if we approx-
contact point—f;, and—r; x f;, r; being the vector from the imate the distance function,(q‘™") with a Taylor's series
center of gravity to the contact point. The generalizedacint expansion, we will have a (mixed) linear complementarity
forces can be written as a sum of the generalized normgystem (i.e., (M)LCP, see [2] for a formal definition) to be
forces and the generalized friction forces, i@, = T,+7;.  Solved at each step. The variables to be solved for at egeh ste
Since we shall be dealing with only virtual contacts in thigreq‘*!, »“+1 and ;. Since the mass matrix is positive
paper, we can disregard the friction forces. The genemlizéiefinite, the matrix defining the LCP is positive definite. S hi
normal forces at each contacti = 1...n., wheren, is the implies that there exists a unique solution to the LCP at each
number of contacts are given by, = J;fwi,\m whereJ; time step that can be obtained in polynomial time (in contras
is the Jacobian uptéth contact point. to general LCPs where the time taken for finding a solution
The state evolution model that satisfy the dynamics cordhdy be exponential in the number of variables [2]).
stra_in_ts and Fake intq a}cco_ur?t the constraints on th(_e skate | g Sampling-based kinodynamic motion planning
collision avoidance, joint limits, and velocity limits is:

. S Algorithm 1 RRT algorithm
M(q)p + C(q,v)v + V(q) = Tapp + Z Ji Wikin + Totn BUILDRRT (x;)

i=1 L.init(x;);
0< Azn uE Y/Jm(q, t) >0 for k=1 to K do
f(q,v,t) <0 Xrand — RANDOMSTATE();
(4) EXTEND(I', X;and);

The evolution of the state as a function of tintg denoted end for

by x(t) = (q(t),v(t)), is called thestate trajectoryof the

robot and the time history of the applied control inpuift), EXTEND(L', x)

is called theaction trajectory The state trajectory is called = Xnear NEARESTNEIGHBORK, I');
a feasible state trajectoryf it satisfies Equation 4, i.e., it if NEWSTATEX, Xnear; Xnew, 1) then
satisfies the equations of motion and avoids collision with ~ L-addvertext,ey);

obstacles at each time instant. We denote the workspace of [-addedge&ucar, Xnew, w);

the robot byWw C R",n = 2,3, the set representing the if Xnew = x then

robot by A, and the set representing the obstaclesthy return Reached,;
The motion planning problem with differential constraints ~ ©lSe
can be formally stated as: return Advanced,

Input: The setsW, A, 0, X,U as defined above, feasible end if

initial statex;, feasible set of goal staté&c, and a possibly ~ €nd if

unbounded interval’ = [0, T]. retun T'rapped,

Output: An action trajectoryr(t) for which the state

trajectory x(t) is feasible, i.e., satisfies Equation 4, The basic RRT algorithm is given in Algorithm 1 [12].

x(0) = xz, and there exists sonte> 0 such thatr(t) =71  The tree representing the free configuration space is dénote

andx(t) € X¢, whererr is the termination input. by I'. The algorithm starts from the initial node and at each
iteration a new state that is biased towards a random state




Xrand 1S attempted to be added to the RRT (by calling the During the numerical integration of the equations of
function EXTEND). The choice of the nearest vertex on thenotion (i.e., from the solution of Equation 5) we obtain the
already existing treex,.,, in function NEARESTNEIGH- contact wrenchesx;\;, for theith contact) that arise when
BOR depends on the definition of a metric in the statéhe robot comes in contact with the virtual obstacle. Thus, a
space. We propose to make modifications to the functiaihe end of the simulation we have a time history ofireual
NEWSTATE, which typically consists of the following steps:contact wrenchesver the intervalt, ¢t + At] along with a
1) An inputu € U is applied to the robot at state trajectory where the robot maintains a safe distance from
X(t) = Xpear fOr time At (note the difference between the obstacle boundary. If we transform the virtual contact
h and At, h = NAt, where N is the number of wrenches to the actuator space and add it to the input, then
integration steps) and the equations of motion of thee obtain an input#.,, + >, J7w;A:) that produces
robot are numerically integrated to obtain the statéafe trajectories. If the inputis within the déf then we have
trajectory fromx(¢) to x(¢ + At). The timeAt is an  a feasible input. Usually the sétis defined by simple upper
input parameter to be chosen. The geometric collisioAnd lower bound constraints. Moreover, in the equations of
constraints are checked after each step in the numerigaption we have the values of contact wrenches transformed
integration and the simulation is terminated if there 40 the actuation space (i.el7 w;\;,). Thus, after each step
a collision. of the numerical integration process, we can check if the
2) The inputu may be chosen at random, or if the seinput required to satisfy the safety distance is feasibleatr
U is finite then step can be repeated for all possibleat very little computational cost and terminate the siniatfat
inputs. In the former case, the state at time At if the input becomes infeasible. Moreover, we can also check
is added as a node to the tree amds stored if the at each step of the numerical integration if the state of the
trajectory is collision-free. In the latter case, amongobot is changing; if not, we can terminate the simulation
all the collision-free trajectories, the one whet@ +  because a stationary state implies that the robot is stuekwh
At) is nearestto the random state is chosen and theising the chosen input. Thus our proposed modification (of
corresponding input is stored. considering the geometric constraints during the dynamic
Although the different kinodynamic planners differ on thesimulation step) to the sampling-based algorithms has the
details of which node to expand, the dynamic simulatiofPllowing advantages:
subroutine in function NEWSTATE is virtually identical in 1) We either get a collision-free path and corresponding

all kinodynamic planners. Irrespective of the details, the feasible inputs at the end of the dynamic simulation

performar_me of all sampling-based algorithms are limitgd b step, or can terminate the simulation early if the
the following: input required to obtain a collision-free trajectory is
1) The geometric constraints (or collision constraintg) ar infeasible. Moreover, we also get the information of
not considered during the dynamic simulation step (i.e.,  whether the robot gets stuck (i.e., its state does not
during each step of the numerical integration). change over two consecutive iterations) for the chosen
2) A finite set of inputs and a time of application of the input and can terminate the simulation after the robot
input (At) is usually used in the dynamic simulation reaches that state. At this state, any input in the conic

step. At each step, the results obtained will be depen-  hy|| of the negative contact wrenches will not change
dent onAt and the input set Chosen; thus the algorithm the state of the robot. ThUS, we can eas"y check if
may not give a collision-free trajectory for the step  a chosen input vector changes the state of the robot
even if one exists. when it gets stuck. Alternatively, we can easily find

In the next section, we argue that the use of complementarity ~ a vector that releases the robot from the stuck state

based dynamic simulation (i.e., using Equation 4 instead of by checking if it lies in the conic hull formed by the

Equation 1) can help in mitigating the above limitations. contact wrenches.

2) When the input set of primitives is a finite set that
is a subset of the feasible input set obtained by
discretization (say), there may be no input in the
discretized set that provides a collisionfree trajectory
in the conventional algorithms. However, with our
algorithm, we may be able to obtain feasible inputs
that lie outside the set of the primitives. Thus, we are
not limited to the set of inputs that we start out with.

IV. COMPLEMENTARITY-BASED PLANNER AND ITS
ADVANTAGES

In this section we propose the use of Equation 4 as the
discrete-time dynamic state evolution model that takes int
account the collision constraints. Since we want the bddies
avoid collision we can rewrite the complementarity coristra
for collision in Equation 5 as

0<py"™ Ldn(@™)—ez0 ©) Effect of choice of At and input: As is evident from the
wheree > 0 is a parameter specifying the safety distance tdiscussion on sampling based algorithms in Section Il th
the obstacle that the robot must satisfy. Conceptually,ave ¢ simulation timeAt is a parameter to be chosen. Moreover,
think of this as avirtual obstaclethat the robot can just touch. when the input set is given as a compact set, the number of
This ensures that any trajectory that satisfies Equatiortts wipossible inputs is infinite. Thus, at each simulation stap it
the collision constraints modified as above is collisiorefre not possible to check all possible inputs, and a subset of the
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S planning can perform poorly in such environments. Thus, in
cluttered environments, i.e., environments charactérizg
the presence of narrow passages, our modification would im-
y s o prove the performance of sampling based algorithm since it
T_‘. always finds a collision-free trajectory and the corresjromd
input. More specificallyif we arrive near a narrow passage
Fig. 1. Schematic sketch of a situation where it is difficoltfind a path ~ during the construction of the graph, then we can easily find
using motions only along two directions. inputs that will take us through the passaggur algorithm
does not say anything about how to get near the narrow
passage, which is an open problem.
available inputS is chosen at each Step. This subset may @8mp|eteness properties of our a|gorithm:The Change
randomly drawn or formed by discretizing the available inpuye are proposing to the existing sampling-based randomized
set. We illustrate the effect of this with a simple examplgyjanning techniques enhances the reachability set at each
shown in Figure 1(a). We consider a point particle that hgsoint. In other words, for any variation of the randomized
to move from the start positiofi to goalG. The particle can  sampling-based techniques, the set of reachable points fro
be independently actuated along theandy axis (horizontal  any given state, using our complementarity-based dynamic
and vertical directions in the figure). As can be seen frolgimuylation algorithm is a superset of the set of reachable
Figure 1(a), if we use Equation 1 for the dynamics theyints using the conventional dynamic simulation. Thus all
planning algorithms will find a solution if and only if the the probabilistic completeness [7], [12] results proved fo

value of At is chosen small enough and the input is smallampling-based algorithms still hold for our variation.
enough such that an end state lies in the dashed triangular

area. In contrast, the solution from our algorithm (shown by V. SIMULATION RESULTS
the bold line) is independent on the choiceXf. In our case In this section we present some simulation examples
the choice ofAt determines how fast the solution is foundillustrating our method. The first example shows a scenario
but not whether the solution can be found or not. where a point robot reaches the goal under the action of a
We also note that in our algorithm there is also more flexsingle force directed towards the goal. The obstacles hinde
ibility to the choice of inputs. In the example in Figure 1(a)the motion along the direction of motion. The environment
we will get a solution if we choose the maximum possiblén this case is not a star shaped environment and hence it
inputs along the two directions and an input directly tovgardis not possible to design navigation functions that ensure
the goal. This is what we use in our implementations; athat the goal can be reached. The second example is that
input along each of the independently actuated coordinatééa 2R planar manipulator moving among three obstacles.
and an input directly towards the goal. Using the inputdhe problem is hand-designed so as to contain two narrow
along the coordinates only is not enough as can be sepassages in the free configuration space connected by a
in Figure 1(b). When the normal to the obstacle at the poiriglatively large free space region. The start and the goal
of impact directly opposes the input the robot gets stuck. configurations are placed at the two ends of the narrow
When we have an input that takes the robot directipassage. In this case we use our modified version of the
towards the goal, in our algorithm, the robot may reach thBRT algorithm to obtain the solution trajectory.
goal even if Fhe line joining the start and goal intersects aR_ Example 1: Planar point robot
obstacle. This happens if the obstacles are arranged such
that the line joining the robot’s current state to the goal is
not normal to any of the obstacles it is intersecting with.
For example, in Figure 1(b), if the robot moves along the o

@) (b)

25F

line joining S and G it will reach the goal. However, in 15
Figure 1(a), the robot will not reach the goal. Note that if il
the projection of the motion of the robot in a time-step on S 7 \ G
the line joining the start and goal is always positive then th osf %
robot always moves toward the goal. When the line joining 0

the robot’s state and goal is not normal to the surface of the
obstacles it intersects, the above condition is true. Hénee
robot always reaches its goal. The input required to reaeh th ar
goal is obtained from the applied input plus the transformed st
contact wrenches. 0 i 2 s z E

Impllt_:atlon . for _CIUttered Env'ronmentS: The ChOI(_:Q Of_ Fig. 2. Path of a point robot moving through a narrow passagadd by
the simulation timeAt¢ and the input set becomes critical inthe sawtooth shaped obstacles.

cluttered environments because the probability of collisi

is high. In such environments, it is difficult to find a fea- This example illustrates planning with a single force
sible input, and sampling-based algorithms for kinodyramitowards the goal (obtained with a potential field with minima




velocity drops to0 and then becomes less tharas they-
momentum carries it downward along the obstacle. Near the
end, when there are no obstacles, the velocities decdy to
because of the damping term in the applied force. The basic
RRT method could not find a solution to this problem with
At = 0.1 seconds and the input set consisting of a random
vector, a force towards the goal given by Equation 8, and

GO

Note that this is an illustrative example only, and it is easy
to find start and goal positions in this example that cannot be
reached by only a single force towards the goal. However,
Fig. 3. Velocity of the point robot. using the force towards the goal along with the input set in
Equation 9 we can reach the goal.

Velocity (mis)

at the goal) in the presence of obstacles. We considerBa Example 2: 2R Manipulator
2D point robot moving in a rectangular environment with
sawtooth shaped obstacles (see Figure 2). The sawtooth
shaped obstacles form a narrow passage in the environment
and the start and goal configuration are located on opposite
sides of the obstacles. Let = (z,y) be the configuration
andv = q be the velocity of the robot. The discrete time
dynamic model for state evolution of the system is

0= -—Mv™* + Mv’ + Wopy + Papp
0 < pa L hn(q") + Wi > €

whereM is a2 x 2 diagonal matrix with the mass: of
the robot as the diagonal entriedy, is a 2 x 1 vector The second example is that oR& manipulator (a planar
giving the normal at the contact point,, (q°) is the distance manipulator with2 revolute joints, see Figure 4) that has
of the robot to the obstacle at timg and e is the safety to move from a start to goal configuration in a gravity free
distance from the obstacle. Both the distance and the normeivironment with three circular obstacles (see Figure Bg T
at time /¢ are obtained from a collision detection algorithmfree space of the manipulator relevant to the problem along
The applied impulse is given by: with the start and goal configurations is shown in Figure 5.
. The joint anglesq = (¢1,¢2) are the configuration of the
Papp = —h(Kp(a’ — dg) + Kad’) 8) robotJ andv :gqsgre th(g joqini angle rates. Tghe discrete time
whereK, and K, are diagonal matrices with positive entries,dynamic model for state evolution of the system is
h is the time step, anfly, v) = (q,, 0) is the goal state. The
unknowns in Equation 7 are‘*! andp,. Thus, we have a ’ T 41
system of3 equations an@ unknowns. 0<pnLin(d)+W,pm >
For generating the results, we have used the followinghere the mass matrix and Coriolis force term are given by
data:m = 1,e¢ = 0.01, h = 0.01, each diagonal entry ok’
and K4 is 1, initial state is(0.4,0.9,0,0) and goal state is M = [a +2fcos(qz) 0+ 5608(%)}

()

Fig. 4. A planar manipulator witf2 revolute joints 2R manipulator).

= -Mv'* + My — pyy, + Wops + Pa
Pvp p Papp (10)

(5,0.5,0,0). We simulated the system in Equation 7 using 0+ feos(qa) 0

Papp given by Equation 8. The contact impulse obtained _ [—ﬂsm(‘h)qg —fsin(g2) (4 +‘i§)} {qq

from the simulationW,p, is then added to the applied = | Osin(g2)df 0 @l (1)
impulse to obtain the collision-free input impulse. Thetpat o =T + Lo +mrs +ma(l? +1r?)

taken by the point robot to reach the goal under the action 8 = malyr

of the collision-free input impulse is shown in Figure 2. The
approach of the robot to the goal state (whentf@mordinate

of the robot is greater tha#.5) clearly shows the effect of wherem,,l;,r;,Z.;,i = 1,2, are the mass, length, distance
dynamics. The robot does not go straight to the goal becauskcenter of gravity (cg) from joint frame, and moment of
of its non-zero momentum orthogonal to the goal directiorinertia about an axis passing through the cg and perpendicu-
Ignoring the dynamics would give a solution path straightar to the plane for the two links respectively. The vector of
to the goal at the end. Figure 3 shows the velocities of theontact impulse magnitudes in Equation 10 is of gize 1
robot as it moves towards the goal. When the robot reacharad that ofW, is 2 x 6. Each column oW, is J{ﬁvk where

the safety distance from the wall, thecomponent of its Wy is the2 x 1 unit normal vector at the contact point and

0= IZQ + mgrg



Ji, is the2 x 2 Jacobian up to the contact point. Depending ‘ ‘ ‘ ‘ ‘
upon the link in contact the Jacobian is |

Jlink1 _ {%1 0} Jlink2 _ [%2 Te2 — 11 cos(qr)
Ye1 O Y2 Ye2 — l1sin(qr)

The input set consists of a force directed towards the goal
given by Equation 8 and those given by Equation 9. From the
initial state, we apply thesgeinputs. We repeat this procedure
starting with the states obtained at the previous levetttgl
robot reaches the goal. If the robot gets stuck and a paaticul
input does not move it from that state, we reject the input
after two time-steps of dynamic simulation. Note that this i ‘ ‘
is a very basic version oRDT where we are growing the * imew
tree by expanding all the nodes. We obtain a solution to - . ,

. . . . Fig. 6. Variation of the joint angle rates of the 2R robot footian from
our problem in three iterations. The number of nodes in thg;; 1 goal configuration in Figure 5.
tree is27. In our simulations we have used the following
data:m1 =mg = 1, L =1 = 1, 11 =ro = 0.57At = @
2s,h = 0.01s, initial state[0.227,1.947, 0, 0], and goal state £
[0.57,0.17,0,0]. The proportional and derivative gaink,,
and Ky, in Equation 8 are assumed to Bex 2 diagonal
matrices. Each diagonal entry &f, is 3 and K, is 4. The o : o 0 s
basic RRT could not find a solution to this problem with ‘ !
At = 0.1 seconds.

Figure 5 shows the collision-free path of the robot in
configuration space that we obtained. Figure 6 shows the
variation of joint angle rates in our solution as the marapul
tor moves from start to goal state. Figures 7(a) and 8(a) show
the input torques at joint and joint2 respectively, during the
search stage. The contact impulses projected to the actuato
space are shown in Figures 7(b) and 8(b). The final collision-
free input impulses at each joint that takes the manipulaterg. 7. (a) The applied torque at joirit used for dynamic simulation
from start to goal state are shown in Figures 7(c) and 8(c{) The contact impulses transformed to joihtobtained from dynamic
Figures 5, 9, and 10 show some snapshots of the path of @%ﬂgt:%”pglss'g%?ﬁﬂ'ﬁgﬂ in subplot (). (c) The final cain-free input
manipulator in configuration space and work space.
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problems and pointed out its advantages in solving motion
planning problems in cluttered environments. Since the con
tact constraints are directly incorporated in complenményta
based dynamic models, the numerical integration always
provides us with a collision-free trajectory and the cohtac
forces when “contact” occurs. We can thus transform the
contact forces to the actuator space and obtain an input that
gives us a collision-free trajectory by adding it to the ihpu
applied for the simulation. This observation can be used for
kinodynamic planning in cluttered environments to reduce
the sensitivity of the planning algorithm to the choice of
the initial discrete input set and duration of applicatidn o
% the input (At). We have illustrated this using two simple
examples. We are currently working on an implementation
Fig. 5. Configuration space of the 2R manipulator. The whégian 4 j|jystrate our algorithm ir8.D environments and to perform

shows the free space. The black squares show configurationg &e . . . .. .
collision-free trajectory. The positions of the manipatain the workspace detailed comparison with existing algorithms.

a4

corresponding to the configurations are shown in Figuresd® a0. The Future Work: There are various directions for extending

points S and G are the start and goal configurations resphctiv the current work. Firstly we note that the point particle
example in our paper also shows that even in the presence of

VI. CONCLUSION AND FUTURE WORK obstacles along the direction of steepest gradient, usimg o

In this paper, we have shown the use of complementaritglgorithm, we can reach the goal by using a single attractive
based dynamic simulation in kinodynamic motion planningotential function at the goal. This problem cannot be sblve
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Fig. 8.

simulation using the input in subplot (a). (c) The final @bdn-free input
torque impulse for join®.
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Fig. 9. The first four configurations in the path of the 2R rofaotmotion
from start to goal configuration in Figure 5.

by the method of [16] since the environment is not star-
shaped and it may not be possible to design a navigation

function. Intuitively, the complementarity constraints the

(a) The applied torque at joirt used for dynamic simulation
(b) The contact impulses transformed to joihtobtained from dynamic

(2]
(3]

(4]

(5]
(6]

(7]

(8]
El

[10]

11]
[12]

dynamic model can be thought of as a non-smooth repulsive
potential that is activated only when the point reaches thes;
boundary and is zero otherwise. Even in this example, there

are start and goal positions for which our algorithm will

get stuck if we use just a single attractive potential. A4
interesting question is the connection of our method to
potential field methods. Secondly, we note that we haw&b!
restricted our attention to problems without contact (ar fo

problems involving collision avoidance only). In prinapl

our method also applies to applications where the rob&tf!
may be in contact with other objects (such as in assembly

planning). We also want to explore this avenue further.
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