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Abstract— In this paper, we present the use of
complementarity-based dynamic simulation algorithms for
kinodynamic motion planning. Dynamic simulation algorithms
are used as local planning methods in sampling-based motion
planning algorithms to find inputs that ensure the resulting
trajectory satisfies the dynamics constraints. However, the
inputs are not guaranteed to give collision-free path segments.
The inputs, chosen either by random sampling or from a
discretization of the available inputs, are rejected if thepath
segment is not collision free. In cluttered environments, finding
a feasible input is difficult and sensitive to the duration∆t of
application of the input, and to the discretization resolution
of the input set. When the collision constraints (or any
inequality constraints on the state of the robot) are modeled as
a set of complementarity constraints, the dynamic simulation
algorithm gives a path segment that touches the obstacles and
a set of contact forces whenever the robot makes contact with
the obstacles. The sum of the chosen input forces and the
contact forces transformed to the input space gives a control
input that guarantees a collision-free path segment (provided it
is within the actuator bounds). Thus in cluttered environments,
using a complementarity-based dynamic simulation algorithm,
we can find a feasible input that is relatively insensitive to
the choice of ∆t and the discretization resolution of the
input set. We present simple simulation examples showing the
advantages of our algorithm in cluttered environments.

I. I NTRODUCTION

The motion planning problem for a single robot subject
to kinematics, dynamics, and collision constraints can be
formulated as an optimal control problem [11], [6]. However,
in practice it is possible to solve this problem only for
very simple cases. Finding an exact time-optimal trajectory
for a point mass (with bounded velocity and acceleration)
moving among polyhedral obstacles inR

3 has been proven
to be NP-hard [5]. Therefore, sampling-based randomized
techniques [7], [12], [13], [11] that try to provide inputs
such that the robot’s state satisfies differential constraints
(kinematic and dynamic constraints) and collision constraints
are now prevalent. The basic idea is to form a graph-based
representation of the state space starting from some state that
satisfies the constraints. In the basic algorithm, an input is
randomly chosen from the set of inputs to act for some time
∆t, the equations of motion are integrated by calling the
dynamic simulation module, and the state at timet+ ∆t is
obtained. If the entire path is collision free, the state is added
as a node to the graph and the input is stored; otherwise,

another input is chosen at random from the input set. The
process is then repeated until the start and goal states belong
to the same connected component of the graph. Any path on
this graph from the start to the goal state gives a feasible
motion plan. Note that the sampling is done over the space
of possible inputs (or actions) to the system and the output of
such sampling-based algorithms is a sequence of piecewise
inputs.

In this paper, we present the use of complementarity-
based algorithms for dynamic simulation and point out the
advantages of such methods in the context of sampling-
based kinodynamic motion planning problems where col-
lision avoidance is a key requirement. The role of the
dynamic simulation algorithms in current sampling-based
motion planning methods is to ensure that the state tra-
jectories obtained satisfy the differential constraints.Our
approach, in addition to ensuring satisfaction of differential
constraints, also ensures that we obtain state trajectories and
inputs that satisfy collision constraints. The complementarity
conditions encode the physical constraint that two objects
cannot interpenetrate. If we use complementarity-based mod-
els for dynamic simulation, and simulate for a time∆t1

using a given input we will get non-zero contact force values
when the objects touch in that time interval; we can use a
prescribed safety distance so that the forces become non-zero
when the objects are a safe distance apart. The end state
at time t + ∆t is collision free. Moreover, we can obtain
the input that ensures that the whole path is collision-free
by adding the (suitably transformed) virtual contact forces
to the input forces. This has the following advantages: (a)
We always get a collision-free path segment along with the
corresponding input forces (provided the input forces do not
violate actuator force constraints). Thus when the path is not
collision free, we do not waste any computation unlike in the
conventional method. (b) Using our method, we can obtain
feasible inputs that are outside the set of primitives, thus
essentially enhancing the input set available for planning,
even when we start with a simple set of hand designed
primitives. When the input set is just the set of motion
primitives, there may be no input in this set of primitives

1This is not the same as the time step used in the dynamic simulation
module, i.e., numerical integration of the differential equations which may
be much smaller than∆t.



that gives a feasible path for that time step.
The outline of the rest of this paper is as follows: In Sec-

tion II we provide a brief overview of the literature on robot
motion planning with differential constraints. In SectionIII
we provide a brief description of the complementarity-
based dynamic state evolution models and sampling-based
motion planning algorithms with differential constraints. In
Section IV we describe the changes we propose to the
basic RRT (rapidly exploring random tree) algorithm and
discuss its advantages. In Section V we present two simple
simulations to illustrate the key features of our algorithm.
Finally, we present our conclusions and outline future work.

II. RELATED WORK

The problem of finding an exact time-optimal trajectory,
from a given start state to goal state, for a point mass with
bounded velocity and acceleration moving among polyhedral
obstacles is NP-hard [5]. Approximation algorithms have
been proposed for systems with decoupled dynamics that are
polynomial in the combinatorial complexity of the number of
obstacles [4], [3]. However, these algorithms are exponential
in the dimension of the configuration space. For practical
purposes there are three basic approaches for kinodynamic
motion planning problems: (a) Decoupled approach [18] (b)
Potential field based methods [8], [9], [16] (c) Sampling-
based approaches [12], [7]. In the decoupled approach the
problem is divided into a path planning and a trajectory
planning problem. In the path planning stage a path is
obtained for the robot that satisfies the geometric (collision)
constraints and in the trajectory planning stage this path is
converted to a trajectory while satisfying the dynamics con-
straints. Both the path planning problem and the trajectory
planning problem have been studied extensively [1], [11].
The limitation of this method is that it may not be possible to
convert the path into a trajectory satisfying all the dynamics
constraints.

In potential field methods, an artificial attractive field
is generated in the configuration space with the goal as
its minimum and repulsive fields are generated around the
obstacles. The robot then follows the steepest gradient on the
resultant field to reach the goal. However, the robot may get
stuck in local minima and there is no guarantee that the robot
will reach its goal (except for a class of environments called
star-shaped environments [16], where the potential function
is called a navigation function). In other words, neither of
the two approaches described above arecomplete, i.e., they
may not find a feasible solution even though one exists.

Sampling-based approaches build a graph-based represen-
tation of the free state space such that the start and goal states
belong to the same connected component of the graph. There
are two main approaches (notable exception being [10])
in the sampling-based randomized algorithms literature: (a)
Rapidly Exploring Random Tree (RRT) algorithm [12]2 and

2Lavalle distinguishes between RRTs and rapidly exploring dense trees
(RDT) in [11] where the distinction takes into consideration deterministic
sampling. This distinction is not important here and we willdiscuss in the
context of RRTs. All of the discussion holds for deterministic sampling.

(b) Expansive space tree algorithm [7] (terminology adopted
from [1]). The basic difference between the two methods is
in the procedure used to bias the connectivity graph (tree)
towards unexplored regions of the state space (i.e., choiceof
the node to expand). The RRT algorithm generates a random
sample and tries to connect the nearest node on the existing
partial tree towards the random node. The algorithm in [7]
maintains a weight at the nodes of the tree based on the
number of samples that lie within a certain radius of the
node. The algorithm then tries to expand the nodes having
lower weight. There are various variations of these two
basic approaches [15], [13], but all of these are concerned
with heuristics on the choice of nodes to be expanded and
the number of trees to be maintained in the exploration of
the state space. For example, bi-directional RRT [13] is a
variation of RRT in which two trees are grown, one from the
initial state and one from the goal state. The common feature
of all these algorithms is that they choose a random input
and use numerical integration of the differential constraints
followed by collision checking when expanding a node.In
our work we propose a modification to the local planning
step of expanding a node and not the decision of which
node to expand. We will present our discussion based on
the basic RRT algorithm. The changes that we propose to
the basic RRT are also applicable to all the other variations.

III. B ACKGROUND AND PROBLEM FORMULATION

In this section, we present the complementarity-based
model of collision-free dynamic state evolution of a robot
and pose the kinodynamic motion planning problem in a
formal setting. LetQ be theconfiguration spaceof dimen-
sion d, X be thestate space, andU be the input (or action)
space of the robot. We assumeX to be a smooth manifold
andU ⊂ R

m to be a bounded set. Letx = (q, ννν) be the state
of the robot whereq is the configuration of the robot and
ννν = q̇ is the generalized velocity. The Lagrangian equations
of motion of the robot are [14]

M(q)ν̇νν + C(q, ννν)ννν + V(q) = τττ (1)

where M(q) is the mass matrix of the robot,C(q, ννν) is
the coriolis matrix andV(q) arises due to gravity and other
potential forces acting on the robot. If the robot is a rigid
body, ννν may be chosen to be the concatenated vector of
linear and angular velocities, whereasq may contain some
parametrization of orientation like euler angles, quaternions,
etc. In that caseq̇ = G(q)ννν , where GTG is always a
multiple of the identity matrix. The generalized force,τττ ,
is the vector of all external forces on the robot and can be
written as

τττ = τττapp + τττ con + τττoth (2)

whereτττapp are the actuator inputs to the robots,τττ con are
the contact forces (transformed to actuator space) acting on
the robot, andτττoth is the vector of any other types of forces
acting on the robot. Note that inequality constraints on the
states of the robot can be implemented by applying a virtual
forceτττoth.



The contact forces are usually unknown and have to be
determined as part of the simulation process. The magnitude
of the normal component of the contact forces is zero if the
distance between the two objects is greater than zero and
non-zero if the bodies are in contact. Thus, at each potential
contact, the product of the magnitude of the normal contact
force and distance between the two objects is always zero,
or they are orthogonal to each other. This is encoded by
the following equation (also known as a complementarity
constraint)

0 ≤ λin ⊥ ψin(q, t) ≥ 0 (3)

where ⊥ denotes orthogonality,ψin is a signed distance
function orgap functionfor the ith contact with the property
ψin(q, t) > 0 for separation,ψin(q, t) = 0 for touching, and
ψin(q, t) < 0 for interpenetration. The wrench due to the
normal contact force acting at any point on the body (say the
center of gravity of the link) iswiλin, wherewi is a 6× 1
concatenated vector of the negative of the unit normal at the
contact point,−n̂i, and−ri×n̂i, ri being the vector from the
center of gravity to the contact point. The generalized contact
forces can be written as a sum of the generalized normal
forces and the generalized friction forces, i.e.,τττ con = τττn+τττ f .
Since we shall be dealing with only virtual contacts in this
paper, we can disregard the friction forces. The generalized
normal forces at each contacti, i = 1 . . . nc, wherenc is the
number of contacts are given byτττ in = JT

i wiλin whereJi

is the Jacobian uptoith contact point.
The state evolution model that satisfy the dynamics con-

straints and take into account the constraints on the state like
collision avoidance, joint limits, and velocity limits is:

M(q)ν̇νν + C(q, ννν)ννν + V(q) = τττapp +

nc
∑

i=1

JT
i wiλin + τττoth

0 ≤ λin ⊥ ψin(q, t) ≥ 0

f(q,ν, t) ≤ 0
(4)

The evolution of the state as a function of time,t, denoted
by x(t) = (q(t), ννν(t)), is called thestate trajectoryof the
robot and the time history of the applied control input,τττ (t),
is called theaction trajectory. The state trajectory is called
a feasible state trajectoryif it satisfies Equation 4, i.e., it
satisfies the equations of motion and avoids collision with
obstacles at each time instant. We denote the workspace of
the robot byW ⊆ R

n, n = 2, 3, the set representing the
robot byA, and the set representing the obstacles byO.
The motion planning problem with differential constraints
can be formally stated as:
Input : The setsW ,A,O, X, U as defined above, feasible
initial statexI , feasible set of goal statesXG, and a possibly
unbounded intervalT = [0, Tf ].
Output : An action trajectoryτττ (t) for which the state
trajectory x(t) is feasible, i.e., satisfies Equation 4,
x(0) = xI , and there exists somet > 0 such thatτττ (t) = τττT

andx(t) ∈ XG, whereτττT is the termination input.

A. Discrete-time collision-free state evolution model

We now write down the discretized equations of motion for
numerical integration. We use a velocity-level formulation
and an Euler time-stepping scheme to discretize Equation 4.
Let tℓ denote the current time, andh be the time step. Use the
superscriptsℓ andℓ+1 to denote quantities at the beginning
and end of theℓth time step respectively. Usinġν ≈ (νℓ+1−
ν

ℓ)/h, q̇ ≈ (qℓ+1 − qℓ)/h, and hλn = pn we get the
following discrete time system. The discretized equationsof
motion (considering only the collision constraints here for
exposition) to be satisfied at each time step are [17]:

Mν
ℓ+1 = Mν

ℓ + h(Wnλ
ℓ+1
n + λ

ℓ
app + λ

ℓ
vp)

qℓ+1 = qℓ + hνℓ+1

0 ≤ pℓ+1
n ⊥ ψn(qℓ+1) ≥ 0

(5)

whereλn is the concatenated vector of contact forces and
each row ofWn is JT

i wi, with i = 1 . . . nc, nc being the
number of contacts. We note that in Equation 5, if we approx-
imate the distance functionψn(qℓ+1) with a Taylor’s series
expansion, we will have a (mixed) linear complementarity
system (i.e., (M)LCP, see [2] for a formal definition) to be
solved at each step. The variables to be solved for at each step
areqℓ+1, νννℓ+1 andλλλℓ+1

n . Since the mass matrix is positive
definite, the matrix defining the LCP is positive definite. This
implies that there exists a unique solution to the LCP at each
time step that can be obtained in polynomial time (in contrast
to general LCPs where the time taken for finding a solution
may be exponential in the number of variables [2]).

B. Sampling-based kinodynamic motion planning

Algorithm 1 RRT algorithm
BUILDRRT(xI )
Γ.init(xI );
for k=1 to K do

xrand ← RANDOMSTATE();
EXTEND(Γ,xrand);

end for

EXTEND(Γ, x)
xnear ← NEARESTNEIGHBOR(x,Γ);
if NEWSTATE(x,xnear,xnew,u) then

Γ.addvertex(xnew);
Γ.addedge(xnear,xnew,u);
if xnew = x then

return Reached;
else

return Advanced;
end if

end if
return Trapped;

The basic RRT algorithm is given in Algorithm 1 [12].
The tree representing the free configuration space is denoted
by Γ. The algorithm starts from the initial node and at each
iteration a new state that is biased towards a random state



xrand is attempted to be added to the RRT (by calling the
function EXTEND). The choice of the nearest vertex on the
already existing treexnear in function NEARESTNEIGH-
BOR depends on the definition of a metric in the state
space. We propose to make modifications to the function
NEWSTATE, which typically consists of the following steps:

1) An input u ∈ U is applied to the robot at state
x(t) = xnear for time ∆t (note the difference between
h and ∆t, h = N∆t, whereN is the number of
integration steps) and the equations of motion of the
robot are numerically integrated to obtain the state
trajectory fromx(t) to x(t + ∆t). The time∆t is an
input parameter to be chosen. The geometric collision
constraints are checked after each step in the numerical
integration and the simulation is terminated if there is
a collision.

2) The inputu may be chosen at random, or if the set
U is finite then step1 can be repeated for all possible
inputs. In the former case, the state at timet + ∆t
is added as a node to the tree andu is stored if the
trajectory is collision-free. In the latter case, among
all the collision-free trajectories, the one wherex(t+
∆t) is nearestto the random state is chosen and the
corresponding input is stored.

Although the different kinodynamic planners differ on the
details of which node to expand, the dynamic simulation
subroutine in function NEWSTATE is virtually identical in
all kinodynamic planners. Irrespective of the details, the
performance of all sampling-based algorithms are limited by
the following:

1) The geometric constraints (or collision constraints) are
not considered during the dynamic simulation step (i.e.,
during each step of the numerical integration).

2) A finite set of inputs and a time of application of the
input (∆t) is usually used in the dynamic simulation
step. At each step, the results obtained will be depen-
dent on∆t and the input set chosen; thus the algorithm
may not give a collision-free trajectory for the step
even if one exists.

In the next section, we argue that the use of complementarity-
based dynamic simulation (i.e., using Equation 4 instead of
Equation 1) can help in mitigating the above limitations.

IV. COMPLEMENTARITY-BASED PLANNER AND ITS

ADVANTAGES

In this section we propose the use of Equation 4 as the
discrete-time dynamic state evolution model that takes into
account the collision constraints. Since we want the bodiesto
avoid collision we can rewrite the complementarity constraint
for collision in Equation 5 as

0 ≤ pℓ+1
n ⊥ ψn(qℓ+1)− ǫ ≥ 0 (6)

whereǫ ≥ 0 is a parameter specifying the safety distance to
the obstacle that the robot must satisfy. Conceptually, we can
think of this as avirtual obstaclethat the robot can just touch.
This ensures that any trajectory that satisfies Equation 5 with
the collision constraints modified as above is collision free.

During the numerical integration of the equations of
motion (i.e., from the solution of Equation 5) we obtain the
contact wrenches (wiλλλin for the ith contact) that arise when
the robot comes in contact with the virtual obstacle. Thus, at
the end of the simulation we have a time history of thevirtual
contact wrenchesover the interval[t, t + ∆t] along with a
trajectory where the robot maintains a safe distance from
the obstacle boundary. If we transform the virtual contact
wrenches to the actuator space and add it to the input, then
we obtain an input (τττapp +

∑nc

i=1 JT
i wiλλλin) that produces

safe trajectories. If the input is within the setU , then we have
a feasible input. Usually the setU is defined by simple upper
and lower bound constraints. Moreover, in the equations of
motion we have the values of contact wrenches transformed
to the actuation space (i.e.,JT

i wiλλλin). Thus, after each step
of the numerical integration process, we can check if the
input required to satisfy the safety distance is feasible ornot
at very little computational cost and terminate the simulation
if the input becomes infeasible. Moreover, we can also check
at each step of the numerical integration if the state of the
robot is changing; if not, we can terminate the simulation
because a stationary state implies that the robot is stuck when
using the chosen input. Thus our proposed modification (of
considering the geometric constraints during the dynamic
simulation step) to the sampling-based algorithms has the
following advantages:

1) We either get a collision-free path and corresponding
feasible inputs at the end of the dynamic simulation
step, or can terminate the simulation early if the
input required to obtain a collision-free trajectory is
infeasible. Moreover, we also get the information of
whether the robot gets stuck (i.e., its state does not
change over two consecutive iterations) for the chosen
input and can terminate the simulation after the robot
reaches that state. At this state, any input in the conic
hull of the negative contact wrenches will not change
the state of the robot. Thus, we can easily check if
a chosen input vector changes the state of the robot
when it gets stuck. Alternatively, we can easily find
a vector that releases the robot from the stuck state
by checking if it lies in the conic hull formed by the
contact wrenches.

2) When the input set of primitives is a finite set that
is a subset of the feasible input set obtained by
discretization (say), there may be no input in the
discretized set that provides a collisionfree trajectory
in the conventional algorithms. However, with our
algorithm, we may be able to obtain feasible inputs
that lie outside the set of the primitives. Thus, we are
not limited to the set of inputs that we start out with.

Effect of choice of ∆t and input: As is evident from the
discussion on sampling based algorithms in Section III-B the
simulation time∆t is a parameter to be chosen. Moreover,
when the input set is given as a compact set, the number of
possible inputs is infinite. Thus, at each simulation step itis
not possible to check all possible inputs, and a subset of the
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Fig. 1. Schematic sketch of a situation where it is difficult to find a path
using motions only along two directions.

available inputs is chosen at each step. This subset may be
randomly drawn or formed by discretizing the available input
set. We illustrate the effect of this with a simple example
shown in Figure 1(a). We consider a point particle that has
to move from the start positionS to goalG. The particle can
be independently actuated along thex andy axis (horizontal
and vertical directions in the figure). As can be seen from
Figure 1(a), if we use Equation 1 for the dynamics the
planning algorithms will find a solution if and only if the
value of ∆t is chosen small enough and the input is small
enough such that an end state lies in the dashed triangular
area. In contrast, the solution from our algorithm (shown by
the bold line) is independent on the choice of∆t. In our case
the choice of∆t determines how fast the solution is found
but not whether the solution can be found or not.

We also note that in our algorithm there is also more flex-
ibility to the choice of inputs. In the example in Figure 1(a),
we will get a solution if we choose the maximum possible
inputs along the two directions and an input directly towards
the goal. This is what we use in our implementations; an
input along each of the independently actuated coordinates
and an input directly towards the goal. Using the inputs
along the coordinates only is not enough as can be seen
in Figure 1(b). When the normal to the obstacle at the point
of impact directly opposes the input the robot gets stuck.

When we have an input that takes the robot directly
towards the goal, in our algorithm, the robot may reach the
goal even if the line joining the start and goal intersects an
obstacle. This happens if the obstacles are arranged such
that the line joining the robot’s current state to the goal is
not normal to any of the obstacles it is intersecting with.
For example, in Figure 1(b), if the robot moves along the
line joining S and G it will reach the goal. However, in
Figure 1(a), the robot will not reach the goal. Note that if
the projection of the motion of the robot in a time-step on
the line joining the start and goal is always positive then the
robot always moves toward the goal. When the line joining
the robot’s state and goal is not normal to the surface of the
obstacles it intersects, the above condition is true. Hencethe
robot always reaches its goal. The input required to reach the
goal is obtained from the applied input plus the transformed
contact wrenches.
Implication for Cluttered Environments: The choice of
the simulation time∆t and the input set becomes critical in
cluttered environments because the probability of collision
is high. In such environments, it is difficult to find a fea-
sible input, and sampling-based algorithms for kinodynamic

planning can perform poorly in such environments. Thus, in
cluttered environments, i.e., environments characterized by
the presence of narrow passages, our modification would im-
prove the performance of sampling based algorithm since it
always finds a collision-free trajectory and the corresponding
input. More specifically,if we arrive near a narrow passage
during the construction of the graph, then we can easily find
inputs that will take us through the passage. Our algorithm
does not say anything about how to get near the narrow
passage, which is an open problem.
Completeness properties of our algorithm:The change
we are proposing to the existing sampling-based randomized
planning techniques enhances the reachability set at each
point. In other words, for any variation of the randomized
sampling-based techniques, the set of reachable points from
any given state, using our complementarity-based dynamic
simulation algorithm is a superset of the set of reachable
points using the conventional dynamic simulation. Thus all
the probabilistic completeness [7], [12] results proved for
sampling-based algorithms still hold for our variation.

V. SIMULATION RESULTS

In this section we present some simulation examples
illustrating our method. The first example shows a scenario
where a point robot reaches the goal under the action of a
single force directed towards the goal. The obstacles hinder
the motion along the direction of motion. The environment
in this case is not a star shaped environment and hence it
is not possible to design navigation functions that ensure
that the goal can be reached. The second example is that
of a 2R planar manipulator moving among three obstacles.
The problem is hand-designed so as to contain two narrow
passages in the free configuration space connected by a
relatively large free space region. The start and the goal
configurations are placed at the two ends of the narrow
passage. In this case we use our modified version of the
RRT algorithm to obtain the solution trajectory.

A. Example 1: Planar point robot
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Fig. 2. Path of a point robot moving through a narrow passage formed by
the sawtooth shaped obstacles.

This example illustrates planning with a single force
towards the goal (obtained with a potential field with minima
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Fig. 3. Velocity of the point robot.

at the goal) in the presence of obstacles. We consider a
2D point robot moving in a rectangular environment with
sawtooth shaped obstacles (see Figure 2). The sawtooth
shaped obstacles form a narrow passage in the environment
and the start and goal configuration are located on opposite
sides of the obstacles. Letq = (x, y) be the configuration
and ν = q̇ be the velocity of the robot. The discrete time
dynamic model for state evolution of the system is

0 = −Mν
ℓ+1 + Mν

ℓ + Wnpn + papp

0 ≤ pn ⊥ ψn(qℓ) + WT
n ν

ℓ+1 ≥ ǫ
(7)

whereM is a 2 × 2 diagonal matrix with the massm of
the robot as the diagonal entries,Wn is a 2 × 1 vector
giving the normal at the contact point,ψn(qℓ) is the distance
of the robot to the obstacle at timeℓ, and ǫ is the safety
distance from the obstacle. Both the distance and the normal
at time ℓ are obtained from a collision detection algorithm.
The applied impulse is given by:

papp = −h(Kp(q
ℓ − qg) +Kdq̇

ℓ) (8)

whereKp andKd are diagonal matrices with positive entries,
h is the time step, and(q,ν) = (qg,0) is the goal state. The
unknowns in Equation 7 areνℓ+1 andpn. Thus, we have a
system of3 equations and3 unknowns.

For generating the results, we have used the following
data:m = 1, ǫ = 0.01, h = 0.01, each diagonal entry ofKp

andKd is 1, initial state is(0.4, 0.9, 0, 0) and goal state is
(5, 0.5, 0, 0). We simulated the system in Equation 7 using
papp given by Equation 8. The contact impulse obtained
from the simulationWnpn is then added to the applied
impulse to obtain the collision-free input impulse. The path
taken by the point robot to reach the goal under the action
of the collision-free input impulse is shown in Figure 2. The
approach of the robot to the goal state (when thex-coordinate
of the robot is greater than4.5) clearly shows the effect of
dynamics. The robot does not go straight to the goal because
of its non-zero momentum orthogonal to the goal direction.
Ignoring the dynamics would give a solution path straight
to the goal at the end. Figure 3 shows the velocities of the
robot as it moves towards the goal. When the robot reaches
the safety distance from the wall, thex-component of its

velocity drops to0 and then becomes less than0 as they-
momentum carries it downward along the obstacle. Near the
end, when there are no obstacles, the velocities decay to0
because of the damping term in the applied force. The basic
RRT method could not find a solution to this problem with
∆t = 0.1 seconds and the input set consisting of a random
vector, a force towards the goal given by Equation 8, and

u = {

(

1
0

) (

−1
0

) (

0
1

) (

0
−1

)

} (9)

Note that this is an illustrative example only, and it is easy
to find start and goal positions in this example that cannot be
reached by only a single force towards the goal. However,
using the force towards the goal along with the input set in
Equation 9 we can reach the goal.

B. Example 2: 2R Manipulator

r1

r2

q2

q1
y

x

l1

l2

Fig. 4. A planar manipulator with2 revolute joints (2R manipulator).

The second example is that of a2R manipulator (a planar
manipulator with2 revolute joints, see Figure 4) that has
to move from a start to goal configuration in a gravity free
environment with three circular obstacles (see Figure 9). The
free space of the manipulator relevant to the problem along
with the start and goal configurations is shown in Figure 5.
The joint anglesq = (q1, q2) are the configuration of the
robot andν = q̇ are the joint angle rates. The discrete time
dynamic model for state evolution of the system is

0 = −Mν
ℓ+1 + Mν

ℓ − pvp + Wnpn + papp

0 ≤ pn ⊥ ψn(qℓ) + WT
n ν

ℓ+1 ≥ ǫ
(10)

where the mass matrix and Coriolis force term are given by

M =

[

α+ 2β cos(q2) δ + β cos(q2)
δ + β cos(q2) δ

]

pvp =

[

−β sin(q2)q̇
ℓ
2 −β sin(q2)(q̇

ℓ
1 + q̇ℓ

2)
β sin(q2)q̇

ℓ
1 0

] [

q̇ℓ
1

q̇ℓ
2

]

α = Iz1 + Iz2 +m1r
2
1 +m2(l

2
1 + r21)

β = m2l1r2

δ = Iz2 +m2r
2
2

(11)

wheremi, li, ri, Izi, i = 1, 2, are the mass, length, distance
of center of gravity (cg) from joint frame, and moment of
inertia about an axis passing through the cg and perpendicu-
lar to the plane for the two links respectively. The vector of
contact impulse magnitudes in Equation 10 is of size6 × 1
and that ofWn is 2×6. Each column ofWn is JT

k ŵk where
ŵk is the2 × 1 unit normal vector at the contact point and



Jk is the2× 2 Jacobian up to the contact point. Depending
upon the link in contact the Jacobian is

J link1 =

[

xc1 0
yc1 0

]

J link2 =

[

xc2 xc2 − l1 cos(q1)
yc2 yc2 − l1 sin(q1)

]

The input set consists of a force directed towards the goal
given by Equation 8 and those given by Equation 9. From the
initial state, we apply these5 inputs. We repeat this procedure
starting with the states obtained at the previous level tillthe
robot reaches the goal. If the robot gets stuck and a particular
input does not move it from that state, we reject the input
after two time-steps of dynamic simulation. Note that this
is a very basic version ofRDT where we are growing the
tree by expanding all the nodes. We obtain a solution to
our problem in three iterations. The number of nodes in the
tree is 27. In our simulations we have used the following
data:m1 = m2 = 1, l1 = l2 = 1, r1 = r2 = 0.5,∆t =
2s, h = 0.01s, initial state[0.22π, 1.94π, 0, 0], and goal state
[0.5π, 0.1π, 0, 0]. The proportional and derivative gains,Kp

andKd, in Equation 8 are assumed to be2 × 2 diagonal
matrices. Each diagonal entry ofKp is 3 andKd is 4. The
basic RRT could not find a solution to this problem with
∆t = 0.1 seconds.

Figure 5 shows the collision-free path of the robot in
configuration space that we obtained. Figure 6 shows the
variation of joint angle rates in our solution as the manipula-
tor moves from start to goal state. Figures 7(a) and 8(a) show
the input torques at joint1 and joint2 respectively, during the
search stage. The contact impulses projected to the actuator
space are shown in Figures 7(b) and 8(b). The final collision-
free input impulses at each joint that takes the manipulator
from start to goal state are shown in Figures 7(c) and 8(c).
Figures 5, 9, and 10 show some snapshots of the path of the
manipulator in configuration space and work space.

q
2

q 1
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G 2 
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4 
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6 7 

8 

Fig. 5. Configuration space of the 2R manipulator. The white region
shows the free space. The black squares show configurations along the
collision-free trajectory. The positions of the manipulator in the workspace
corresponding to the configurations are shown in Figures 9 and 10. The
points S and G are the start and goal configurations respectively.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have shown the use of complementarity-
based dynamic simulation in kinodynamic motion planning
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Fig. 6. Variation of the joint angle rates of the 2R robot for motion from
start to goal configuration in Figure 5.
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Fig. 7. (a) The applied torque at joint1 used for dynamic simulation
(b) The contact impulses transformed to joint1 obtained from dynamic
simulation using the input in subplot (a). (c) The final collision-free input
torque impulse for joint1.

problems and pointed out its advantages in solving motion
planning problems in cluttered environments. Since the con-
tact constraints are directly incorporated in complementarity-
based dynamic models, the numerical integration always
provides us with a collision-free trajectory and the contact
forces when “contact” occurs. We can thus transform the
contact forces to the actuator space and obtain an input that
gives us a collision-free trajectory by adding it to the input
applied for the simulation. This observation can be used for
kinodynamic planning in cluttered environments to reduce
the sensitivity of the planning algorithm to the choice of
the initial discrete input set and duration of application of
the input (∆t). We have illustrated this using two simple
examples. We are currently working on an implementation
to illustrate our algorithm in3D environments and to perform
detailed comparison with existing algorithms.

Future Work: There are various directions for extending
the current work. Firstly, we note that the point particle
example in our paper also shows that even in the presence of
obstacles along the direction of steepest gradient, using our
algorithm, we can reach the goal by using a single attractive
potential function at the goal. This problem cannot be solved
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Fig. 8. (a) The applied torque at joint2 used for dynamic simulation
(b) The contact impulses transformed to joint2 obtained from dynamic
simulation using the input in subplot (a). (c) The final collision-free input
torque impulse for joint2.
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Fig. 9. The first four configurations in the path of the 2R robotfor motion
from start to goal configuration in Figure 5.

by the method of [16] since the environment is not star-
shaped and it may not be possible to design a navigation
function. Intuitively, the complementarity constraints in the
dynamic model can be thought of as a non-smooth repulsive
potential that is activated only when the point reaches the
boundary and is zero otherwise. Even in this example, there
are start and goal positions for which our algorithm will
get stuck if we use just a single attractive potential. An
interesting question is the connection of our method to
potential field methods. Secondly, we note that we have
restricted our attention to problems without contact (or for
problems involving collision avoidance only). In principle
our method also applies to applications where the robot
may be in contact with other objects (such as in assembly
planning). We also want to explore this avenue further.
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