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Abstract— We study an online task assignment problem for
multi-robot systems where robots can do multiple tasks during
their mission and the tasks arrive dynamically in groups. Each
robot can do at most one task from a group and the total
number of tasks a robot can do is bounded by its limited
battery life. There is a payoff for assigning each robot to a
task and the objective is to maximize the total payoff. A special

objective is to maximize the total payoff of the multi-robot
system [2], [3]. In this paper we study a generalization of
the online MWBMP, where the tasks can arise dynamically
in groups and each robot can do at most one task in each
group, but can do more than one task in the whole mission.
The abstract problem is motivated by two different kinds of

case, where each group has one task and each robot can doscenarios arising in applications: (a) Tasks arise dynaligic

one task is the online maximum weighted bipartite matching
problem (MWBMP). For online MWBMP, it is known that,
under some assumptions on the payoffs, a greedy algorithm
has a competitive ratio of % Our key result is to prove that
for the general problem, under the same assumptions on the
payoff as in MWBMP and an assumption on the number of
tasks arising in each group, a repeated auction algorithm,
where each group of tasks is (near) optimally allocated to
the available group of robots has a guaranteed competitive
ratio. We also prove that (a) without the assumptions on
the payoffs, it is impossible to design an algorithm with any
performance guarantee and (b) without the assumption on
the task profile, the algorithms that can guarantee a feasible
allocation (if one exists) have arbitrarily bad performance in the
worst case. Additionally, we present simulation results depicting
the average case performance of the repeated greedy auction
algorithm.

Index Terms— Multi-robot assignment, Task allocation, Auc-
tion algorithm, Online algorithm, Competitive analysis.

I. INTRODUCTION

in groups, where each group consists of tightly-couplekistas
i.e., tasks which robots must perform simultaneously, and
thus each robot can only be assigned to one of them; (b)
There exist group precedence constraints among tasks, i.e.
only after the current group of tasks are all completed by
robots, the subsequent group of tasks can get started, and
the corresponding (payoff) information is revealed to tsbo
To fully explore the parallelism, each robot can be assigned
to at most one task in each group to increase the efficiency.
More formally, the OTA problem studied in this paper is as
follows: We have a set of,rmobots, R, and a set of; nasks,
T, that arrives dynamically in groups oveg rounds. Each
robot has a budget, N =1,...,n,, i.e., an upper bound on
the maximum number of tasks that it can do. Each robot
can do at most one task from each group and the execution
of one group of tasks starts after the previous group has
been executed. Find an assignment of the tasks to the robots
such that the total payoff of the system is maximi2éote

In many multi-robot applications like environmental mon-that whenN; = 1 for each robotj, and there is one task in

itoring, search and rescue, disaster response, extrsttéte

each group, the problem is the online MWBMP. A greedy

exploration, the tasks that the robots need to perform aeggorithm where the incoming task is assigned to the best
not known beforehand but arise as the robots are executiggailable robot has a competitive ratio (the ratio of thegftty
their missions. In such scenarios, robots may be able to @btained from the greedy assignment to the payoff obtained
more than one task during a mission depending on theifom optimal assignment if all tasks were known beforehand)
capabilities and battery life. Since battery life for a roboof % under an assumption on the payoffs [2]. The assumption
is limited there will be an upper bound on the number oftates that the difference of the payoffs of any two robots
tasks that a robot can do during a mission. The problefigr a task is less than the sum of the payoffs of the same
of allocating tasks to robots when the tasks are not knowsvo robots for any other task. Furthermore, this is the best
beforehand but may arise in amline fashion is called the achievable bound by any online deterministic algorithmeOn
online task allocation (OTA) problerar online assignment assumption in this work is that once a robot is assigned to a
problem Depending on the characteristics of the tasks an@dsk, it cannot be reassigned, or each robot can only do one
the capability of the robots, different versions of the OTAask during the mission. We consider a more general setting
problem can be formulated (see [1] for a classificationvhere a robot can do multiple tasks during its mission.

and taxonomy of task allocation problems). In the simplest Our results for the OTA problem are a combination of
version of OTA, also known as online maximum weightpositive and negative results. We first study the performanc
bipartite matching problem (MWBMP), the tasks arrive onef the repeated greedy auction algorithm, where for each
at a time and each robot can do at most one task in tRgoup of tasks, the robots are allocated to the tasks using
mission. Each robot-task pair has a certain payoff and the (distributed) auction algorithm. We prove that under the
same assumptions on payoff as for the online MWBMP and
an assumption on the number of tasks in each task subset,
the repeated greedy auction algorithm has a competitiie@ rat
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of Tj}(zg) The problem data dependent parameteis problem (also known as the linear assignment problem),
defined as the minimum of the maximum budget of the robo®ach robot can perform at most one task and the robots
and the maximum number of tasks in a group. Note that there to be assigned to tasks such that the overall payoff is
competitive ratio is independent of the number of robots anaximized. The linear assignment problem is essentially a
the number of tasks. Furthermore, when either the size of tleaximum weighted matching problem for bipartite graphs.
task groups or the maximum budget of a robot is constant, This problem can be solved in a centralized manner using
is constant, and hence the competitive ratio is constamt. Fthe Hungarian algorithm [9], [10]. Bertsekas [11] gave a
example, when the number of tasks in each group is 2 and/decentralized algorithm (assuming a shared memory model
each robot can perform at most 2 tasks, the competitivef computation, i.e., each processor can access a common
ratio of the algorithm become% This generalization of the memory) that can solve the linear assignment protaémnost
results in [2] is the key contribution of this paper. We als®mptimally. In subsequent papers, the basic auction algorithm
prove that if there are no restrictions on the payoffs, it isvas extended to more general task assignment problems with
impossible to design a randomized/deterministic algorith different number of tasks and robots and each robot capable
with provable performance guarantees. If the assumption af doing multiple tasks [11], [12]. Recently, [13], [8] have
the task profile is violated then the algorithms based ooombined the auction algorithm with consensus algorithms
highest budget heuristithat can give a feasible assignmentin order to remove the shared memory assumption and obtain
(if one exists) have arbitrarily bad worst case performance totally distributed algorithm for the basic task assigntme

In highest budget heuristic, when a group contairlirtgsks problem. However all of this work assume that the tasks are
arise, they are assigned to the robots with thekdmdgets independent of each other. For the more general case, where
(where the budget of a robot is the number of remaining taskle tasks are organized into disjoint groups such that each
that it can perform). The offline version of the problem thatobot can be assigned to at most one task from each group
we study here has been studied in [4] and can be solvedid there is a bound on the number of tasks that a robot can
(near) optimally in polynomial time. We present simulationdo, [4] generalized the auction algorithm of [11] to give an
results to compare the performance of our online algorithm talgorithm with near optimal solution. The problem studied
the optimal offline solution on randomly generated instancein this paper is the online version of the problem in [4].

This paper is organized as follows: In Section Il, we For multi-robot routing problems, [5] has given different
present the related work. In Section lll, we give a formahuction algorithms with performance guarantees for dsffier
definition of the online multi-robot assignment problem foiteam objectives. When the objective is to minimize the
groups of tasks. In Section IV, we present the repeatddtal distance traveled by all the robots they provide a 2-
auction algorithm and prove its performance guaranteegpproximation algorithm. For all other objectives the perf
Thereafter, in Section V, we present the highest budgetance guarantees are linear in the number of robots and/or
heuristic. In Section VI, we demonstrate the performancisks. For example, when allocating spatially distributed
of our algorithm with some example simulations. Finally, intasks ton robots, for minimizing the maximum distance
Section VII, we present our conclusions and outline futurtraveled by a robot, their algorithm gives a performance
avenues of research. guarantee oD(n).

Online Task Allocation Even the simplest version of the
online task allocation problem, which is (a variation ofgth

Task allocation is important in many applications of multi-online linear assignment problem is NP-hard [1]. As stated
robot systems, e.g., multi-robot routing [5], multi-rolutgci-  before, this is the online MWBMP where the edge weights
sion making [6], and other multi-robot coordination prahke are revealed randomly one at a time, i.e., the tasks arrive
(see [7], [8]). There are different variations of the mutibot randomly and a robot already assigned to a task cannot be
assignment problem that have been studied in the literatureassigned. Greedy algorithms for task allocation, wherei
depending on the assumptions about the tasks and the robibts task is assigned to the best available robot has been
(see [1] for a taxonomy of task allocation problems). Oneised in a number of multi-robot task allocation systems (e.g
axis of dividing the task assignment problem is as onlin®MURDOCH [3], ALLIANCE [14]) and therefore, have the
versus offline. In offline task allocation the set of tasks areame competitive ratio o% as [2], if the payoff's are non-
known beforehand, whereas in online problems the taskegative and satisfy the Equation 6. Note that the greedy
arise dynamically. In this paper we will consider the onlinalgorithm gives a solution that is exponentially worse ia th
task allocation problem and therefore we will divide oumumber of robots, when the objective is to minimize the total
discussion of the relevant literature here into the offlingayoff [2]. This is different from the offline linear assigemt
and online task allocation problems. Moreover, our objecti problem where both the maximization and minimization
is to design algorithms for task allocation with provableproblems can be solved optimally in polynomial time.
performance guarantees. Therefore, we will elaborate onThere are other variations of the task allocation problem
algorithms that provide performance guarantees. studied in the multi-robot task allocation community, adlwe
Offline Task Allocationin offline task allocation, the payoff’s as operation research community that have been shown to
of a robot for each task is assumed to be known beforése NP-hard, and for many of them there are no algorithms
hand. In the simplest version of the offline task allocationvith worst case approximation guarantees [1]. Therefore, a

Il. RELATED WORK



substantial amount of effort has been invested in devedppin The problem OTA shares the same ILP formulation as
and testing heuristics for dynamic task allocation [15B8][1 its offline counterpart studied in [4]. However, here the
[17]. These algorithms are based on distributed constraiptyoffs a; are not revealed to robots beforehand, and in-
optimization (DCOP). Auction-based heuristics for multi-stead, the payoff information related to tasks in subiget
robot task allocation in dynamic environments have alsmbeda;; |tj € Ty}, is revealed to robots only after all preceding
proposed, where the robots may fail during task executiosubsets of tasks have been performed. In other words, robots

and the tasks need to be reassigned [18], [19]. get the payoff information{a;j|t; € Ty} for round k (k €
{1,2,...,ns}), at the beginning of the round. Note that if
I1l. PROBLEM FORMULATION ns =y, i.e., each subset contains only one task, constraint

In this section, we give the formal definition of our online(2) €an be removed since (3) would imply (2). Thus, the

multi-robot task assignment problem (denoted as “OTAY). online MWBMP [2], [20] (whereN; = 1,vi) and online
transportation problem [21] are special cases of our proble

A. Definition of the Problem OTA Payoff Constraints Following the online MWBMP litera-
: . . ture [2], [20], we assume that the payoffs;; } are non-
Basic Multi-robot Assignment Problem (MAP$uppose nega’[iv]e'[ ] payoffsij }

that there aren, robots, R = {r1,...,ry }, and n; tasks,
T = {tl_,...,tn[}, for the robots. INMAP, any robot can aij >0, Vi,j, (5)
be assigned to any task, and each robot can perform at

most N; tasks. Performing each task needs a single robdnd satisfy the inequality below:

son < z{‘;l Ni. Let fj; be the variable that takes a value o

1 if task, tj, is assigned to robot;, and O otherwise. Let Biyjy + i1 2 [irjp — Aigjols  Vitsi2, 1, 2. (6)

&j € R be the payoff for the assignment pd.t;), i.e., Equation (6) implies that the payoff difference of assignin

for gssigning robot; to taskt;. Th(_e (_)bjective iNMAP is to any two robots to any task, is bounded by the payoff sum
assign all tasks to robots to maximize the total payoff. ¢ 5ssigning the same two robots to any task. This condition
_ Task Group Constraint (TGCJThe task sell is divided 55 an intuitive geometric interpretation. If we associate
into ns disjoint groups/subsetgTs, ..., T} S0 thatui2,Ti = yoint in a metric space with each robot and each task, and
T, and each robot can perform at most one task from ea%sumea;j to be the Euclidean distance between raband
subse.t. ) . . tasktj, then the above inequality (6) can be derived from the
Online Multi-robot Assignment Problem with Task Groupyigngle inequality in the metric space. We use this inouiti
Copstramt Combln_lng theTGC constrglnt WithMAP, the  |5ter to generate payoffs that satisfy inequality (6) for ou
online task allocation (OTA) problem is: simulations in Section VI. Note that the inequality (6) does
Problem 1: Given probots, i disjoint subsets of tasks ot give any bound on the ratio of minimum possible to
that arise one at a time, assign robots to the dynamicallyyaximum possible payoff, which can be arbitrarily high. If
arising_ subsets of tasks (as they arise with no modificatiofpe payoff constraints (5) and (6) are removed, any online
of assignments later), such that the total payoffs of robolygorithm (either deterministic or randomized algorithms

task assignment is maximized. Each task is performed Qy|q lead to arbitrarily bad solution in the worst case (see
one robot, and each robot performs at most one task from appendix for details).

each subset and at most dsks in the whole mission Constraints of Task Group SizBepending on the size of
Problem 1 can be written as an Integer Linear Programmd the number of tasks in each group (or task group size),
ming (ILP) problem: Problem 1 may not have a feasible solution, i.e., there may
N be tasks that remain unassigned. Let the sequence of task
r{r}?f( Zi _zla”- fij group sizes that arise during OTA be calledaak profile
I 1= J:

In this paper, we are interested in task profiles where there

st ki o= 1 vj=1 nt 1) is a feasible assignment. An algorithm that is guaranteed to
- i; " ’ e find a feasible solution if one exists is called a complete
zr fi < LViki=1..nk=1..,n (2 algorllthm. As we will show Ia.ter,.for OTAany algorithm
nan that is complete performs arb|tra.r|ly bad in .the worst case
n We will now present some sufficient conditions on the task
Z fj < N,Vvi=1...n (3) profile under which we can guarantee feasible task allocatio
=1 We call this constraint th&tep Constraints of Task Subset
fij € {01}, Vi, j (4) Size(SCTSS).

The above objective function is the total payoff of all Suppose that we have sorted the initial budgets of all
assignments. Constraint (1) implies that each task can bebots in the ascending ordé¥; <... <N, . The SCTSS is
done by exactly one robot and all tasks must be performeds follows:The size of the'k task subset;Ty|, should satisfy
Constraint (2) and (3) mean that each robot can perform 8| < n —i when N < k < N1, where N = 0.

most one task from each subset, and at nfNpgasks in the The SCTSS defined above is consistent with the implicit
whole mission. constraints of Problem 1 that the size of each subset must



nf— worst case, such online algorithm can still lead to very bad
n'r‘:;‘ performance compared to the optimal offline solution.
------ The basic idea of the greedy auction heuristic is as follows:
for each dynamically arising group of tasks (i.e., duringrea
round), use auction algorithm to assign robots with nom-zer
N, Ny e budgets(the budgetof robotr; is the number of remaining
The order number of task subsets tasks that can be assigned n to tasks. This guarantees
Fig. 1. lllustration of step constraints of task subset.siizthe subset size that the FOtal payoffs gained .by the S.eleCted I’Ob(?tS Wou!d be
at each round is under the step bounds, the step constrainsatsfied. ~ n€ar-optimal among all possible assignments using aveilab
robots at that round [4]. Below, we first briefly review the
basic idea of the auction algorithm.
be not bigger than the number of robots, i.e., The payoff information related to tasks in tkéh round,
Tk, is revealed to the robots at the beginning of of rolnd
and we want to matchﬁk) robots (the number of robots with

Furthermore, the step constraints extend the implicit coon-zero remaining budget at stepnt” = ny) to [T| tasks
straint (7) to guarantee that when each subset of tagks through a market auction mechanism, where each robot is
arises, there always exist sufficient number of differebbte  a@n economic agent acting in its own best interest. Although
with non-zero remaining budget to be assigned to tasks fRch robotr; wants to be assigned to its favorite task, the
the subset, as proved below. number of tasks in each subset is not bigger than the number
Lemma 1: Step Constraints of Task Subset Size are suffff robots according to (1) and (2), and the different interes
cient to guarantee that any algorithm (which assigns differ Of robots will probably cause conflicts. This can be resolved
robots to tasks in each subset) would lead to a feasibigrough the auction mechanism of bidding for tasks. In round
solution, regardless of the task payoff profile. k, the robotsiteratively bid for the tasks in the sef. The
Proof: Denoten{® as the number of robots with non-zeroPrice for task; at iterationt is p;(t), which is the highest bid
budget when task subs@ arises. First, we observe that it from robots at iteratiom,_and _the robot assigned to the task
is impossible to exhaust robats budget beford ;1 arises.  MUSt Payp;(t). Thus, at iteratior the net value of taskj to
So Vi, whenk € (Ni,Ni41], robotri 1, fis1,...,rn must still robotr; isajj —pj (t). Durmg each .|terat|on, every una§S|gn§d
be available to be assigned to one taskinSo nﬁk) >ne—i. .robot bids for the taSk.Wlth the hlghe_st ne_t ve}lue to it, which
— increases the task price. The iterative bidding from robots

ik i (k)
<n — > . )
From d_ef|n|t|0n of SCTSSTu| < nr —i. We get 'Fhatnr — _ leads to the evolution op;j(t), which can gradually resolve
|Tk|, which means when each subset of tagksrises, there . . )
the interest conflicts among robots and lead to near-optimal

always exist sufficient number of different robots with non- . .
se?lutmn of the overall assignment.

zero remaining budget to be assigned to tasks in the subs . .
So any algorithm, which assigns different robots to tasks in So(,k>for each roundk, we can use the agct|or(1k)algor|thm
each subset, would lead to a feasible solufibn. for n™” robots to be assigned {dy| tasks. Sincew™ > [Ti|
Note that since the size of each subset is 1 in [2], [20f&ccording to Lemma 1), we need to add — [Ty virtual
[21], any algorithm gives a feasible solution. In Problem 1tasks with small equal payoffs to all robots. The requiremen
finding a feasible solution depends on the initial budget dhat each robot must know the current pripg(t) for all
robots and the size of each task subset, and it is independ&kt; during bidding implies the existence of a centralized
of the payoff profile. The SCTSS guarantees that any a|gé1uct|oneer or a shared memory for all robots to access. Jn [4]
rithm would give a feasible solution. We will now show that[13], [8], for a connected multi-robot network, the auction
using a greedy repeated auction heuristic to solve the OT@g0rithm has been combined with a maximum consensus
problem gives a solution within certain ratio of the optimaf€chnique so that the algorithm becomes totally distrithute
off-line solution, for any profile of payoffs and subset size without any centralized auctioneer. During each iteration

$19sqns YSB) JO pUNOq 71§

‘Tk|§nr,vk:177ns (7)

(satisfying step constraints) in the worst case. each roboty;, in the connected network locally maintains
and updates a list of current highest bigg(t), for each
IV. GREEDY AUCTION ONLINE ALGORITHM task,tj, from its own neighborhood/r;:

In this section, assuming that the constraints on the payoff i ’
and task profiles hold, we present an online algorithm pj(t) = rf‘g% pi(t—1)
usinggreedy auction heuristicand prove that the algorithm
can achieve a competitive ratio qa;malm wherea is This highest bid is used as local price of tasks. Since the
the minimum of the maximum budget of a robot and thexetwork is connected, the global highest bids eventually
maximum task group size. Subsequently, in Section V, weropagates to all robots so that the solution quality resain
prove that if there exist no constraints of task subset sizbe same as that of original auction algorithm.
(except that the size of each subset is less than the numbeA single iteration of the auction algorithm for each robot
of robots), an online algorithm for OTA is complete, if andat roundk is described in Algorithm 1. All robots run copies
only if it usesthe highest-budget heuristitlowever, in the of Algorithm 1 sequentially. The algorithm terminates when



all robots have been assigned to their tasks G’.&,pi, (t+1)
for each robot; when its turn comes).

Algorithm 1 Auction Iteration for Robotr; with non-zero
Budget at Stegk

1 Input: Ty, aj, Pj(t) for all j,£:tj € T,r € A4,

< 1,P> /I 1I: index of the task assigned t@ during

I ri’s previous iteration;

/I P: the corresponding bidding price from r
: /I Update the local highest bid information:
:for alltje Ty do

P} (t+ 1) = max,c. ¢, Pj(t)
end for
. I/ Update the assignment information:
if P<pj(t+1) then
/I another robot has bid higher than's previous bid
Setl andP to be zero
/I Collect information for new bids
Denotevj(t+ 1) = aj — p(t+1) // value of { to ;
Select the best candidate tagkfrom Ty, where j =
argmaer, Vi (t + 1)
13:  Store the index of second best candidate frium
Ji = argmaxer jj: Vit +1)

14: /] Start new bids
15:  Bid for'tj; with price:
16 by, = p'j;(t FD+vpt+) vy (t+1)+e

[
N R o

. Thus, the task receiving’s bids must be assigned tp at
the end of the iteration. The rule for setting the bidding.real
of bj: is related to the proof of optimality of the algorithm
(please refer to [11] for details).

The auction algorithm during each rourk], guarantees
a near-optimal assignment for that rountlowever, repeat-
edly applying the algorithm for each round of tasks does
not guarantee that the whole assignment is optimal. We
now present the competitive ratio of the repeated auction
algorithm. Leta = min(max N;, max|Ty|).

Theorem 1:Under the step constraints of task subset size,
the online sequential auction algorithralg;, will output
an assignment solution for OTA with total payoff >
WA" in the worst case, wher&* is the solution by
the optimal algorithn©O for OTA after all payoff information
has been revealed.
Proof: Suppose that we have relabeled the tasks so that the
assignment byalg; is (ri,t;). Let's consider an assignment
(ri,t) at stepk. Suppose that algorithi@ assigned the tagk
to a different robot;. Below we need prove that the payoff
difference betweem; anday;, by assignments adlg; and
O, are not too big.

Assume that; is different fromr;. When we consider the
assignment of task by algorithmalg, it can be divided
into four cases depending on the assignment status of
the procedure bylg; at the time oftj's assignment:

17 I/ Update assignment information and price informa-{(®) robotr still has non-zero budgets tglg; and it is not

tion:
18:  Setl =j;, P= blﬁ
19: Sgt p'ji:(t+1) =bj;
20: end if

assigned to any other tasks Tp by alg;: in this case, we
know thata; > ay;, otherwise the auction algorithm would
have assigned: tot;. If all assignments oflg; andO belong
to this case, thedh = y;a; > Sy a = A*

(b) robot ry still has non-zero budgets bglg; and it is
assigned to another tagk in Tx by alg;: in this case,

Algorithm 1 can be summarized as follows. First, robok; + a,; > a;/ + ay;. Sincea; > 0, we haveay; — a; < a:.

ri updates its local price list of all tasks by maximizing

If all assignments oélg; andO belong to this case, we have

the price of each task in the lists of its neighbors (lines ZhatA* = 5, ay; < 3iai + Siaw = 2*A. SOA> %A*
to 5). Then, it updates its assignment information from itgc) robot r;, has exhausted all its budgets layg;, so it
previous iteration, since other robots may bid higher pricgust be assigned to other tasks before the syibgedrrives.

for its assigned task after its previous iteration (lineso6 t
9). If that is the case, the previous assignment of tiask
for r; will be broken andr; makes a new bid. During the
bidding part of Algorithm 1 (lines 10 to 20), robet bids
for the task with the best values from the current suliget
This guarantees that after the iteration, all constraimtthée
problem are satisfied: (a) robgtis assigned to one task of
the subset since it either switches to a new task or its pusvio

assignment is unchanged (please note we have introduce

some virtual tasks to the subset,is in fact assigned to at

most one task of the subset); (b) each task is assigned to%¥

Suppose thatj; was assigned to a task in Ty, there can
be two cases:

(c.1) robotr; is also assigned to a tagkin Ty; using the
metric constraints,

IN

min(ayi + ajr,ay | + a;j)
1
< 5@ +ai +ayj +aj)

8 — Gji

d : .
According to the property of auction algorithm@; +a;; <
+ajj, S0

most one robot, because each task either does not change

=

assignment status (assigned to previous robot or remains a—ai < E(ai’i/JFaii’JFai/jJFaij)
unassigned) or switch from the previous assigned robot to 1
robot r;. The bidding price for the task is at leastbigger < E(Z(ai’i’+aij))

than its price at the beginning of the iteration: sirjgds the = &y + &
best candidate task if, j, is the second best iff,

1For simplicity of discussion, we can assume that the assignisent
bj; — pji(t +1)= Vj;(t +1)— Vj{((t +1)+e>¢ optimal, since it won't change the following results.



So summing over each tagkon the left would lead to sum  Theorem 2:Any online algorithm is complete for OTA iff
over each task, andt; on the right, corresponding to taskit uses the highest-budget heuristics (HBH).
ti, Proof: Due to space constraints, we provide a sketch of the
Z(ai’i —gj) < Zaw + zaij proof and leave the details for a future full version. For the
[ [ J necessary condition, consider the stepwhen an online
Wheni traverses through all taskié,would also traverse all algorithm A starts not to use HBH. We can construct an
tasks, soyj ai = A. instance so that during each following step kp,the size of
; task subset equak#k) by HBH, i.e., the number of robots
A SZA*ZaU with non-zero budgets. In this instance, HBH can find a
' feasible solution, whileA cannot sinceA would exhaust a
, Where eaclj corresponds to each tagkNow consider at ropot (whichA assigns a task to at sté at certain stefk;
most how many times a specife; can repeat iny;ajj, earlier thanHBH, and thus becomes infeasible at skep 1.
which is bounded by how many times the rolpt can For the sufficient condition, the key idea here is that HBH
be assigned to a task ififi|: Since each roboi can online algorithm would maximize the number of robots with
be assigned for at mosti — 1 times by alg: to other pnon 7610 remaining budgets! at each stef. The reason is
tasks thart;, and this case can be bounded by the largeglat quring each step, whenever a robot with lower budget is
size of a subsefTi| -1 (recall thatr; has been assigned 45signed, HBH would guarantee that the robots with higher
to tj in Te), so a single specifig; can repeat at most p,qget must also be assigned. So when a mbsexhausted
min(max (N —1), max(|T| —1)) times in3 ; &j. SO3 j&j < py HBH at stepk, modifying previous assignments of HBH
Asxmin(max (N — 1), max(|Te| —1)). SOA> 7 A° cannot transfer the budgets of robots with budgets bigger
(c.2) robotr; was not assigned to any task Wy: USING  han 1 at stefk to robotr; and thus cannot increasd .|
metric constraints, we have thaf —aii < a +ayir. Besides,  1pa00m 3:Without constraints of task subset size, any
according to the property of auction algorithay; < a . So complete online algorithm (i.e., algorithms using HBH) has
i — 8 < 28y If this case Is general, thepy (ay; —ai) < arbitrarily bad performance in the worst case.
23 a"/i"lwb'Ch meansA” =3 ai < 3iai + 23y & =3*A prooe e prove this theorem by constructing a worst-case
SOAZ A . . . example below. Consider robo{s1,ro,...rn}, whereN; =
Sincet;, at the time of assignment of tagk it must be- n+1, whileN, = ... =N, = 1; task subsets arrive in the order

; 1 1 1ypx
long to one case above. We get that min(1, 5, 5, 3)A" of {t:},{tz}...., {tn}. SUppOSEt; : j <, the payoffsar;

So t?e cor:petmve ratio of the greedy auction algorithm %7 a) = 1M £ 1) v > n+1_, the payoffsayj = 1,a; =
1+max2,a)" O(Vi # 1). So HBH would assign tasks,tz,ty1 to r1 and

2(')“ oteht at this re_sult IS c_:ronflslte_?;] with the t'rt(.asult Itn .[Z]The rest of tasks to other robots, with total payoffs 1, while
,[ d]’ W Zre {na;?f[l;l; - ma>lq;| k‘f_ b ; € cct)rr1npe ! 'Vs ra IfOtIS the optimal offline solution would assign tasksty, t,_1 to
independent ot the number oT robots or the number of tasks, ..., and the rest of tasks 1q, leading to total payoffs

Furthermore, when either the size of the task groups or tr}%’_l So the competitive ratio i, which would become
maximum budget of a robot is constant, the competitive rati\g ry bad with the number of taﬁsIZs ,increasing. Note that the
is constant. For example, when the number of tasks in eagﬁtio is not bounded by the budget of rolret since we can

group i; 2 and/pr each robot can perform at most 2 tasks, t fd any number of robots with same payoffs ato average
competitive ratio of the algorithm becom%s The results tr]e total budgets of;. B

T e mreagan. ™ Theorems 2 and 3 ogethr mpy that allough HEH i
. 9, : group . complete, there is no worst case performance guarantee.
in the same round, which we leave the details for a future

full version. VI. SIMULATION RESULTS

V. HIGHESTBUDGET HEURISTIC FOROTA In Section IV, we derived an expression for the worst-case

In this section, we present the highest budget heuristigompetitive ratio of the repeated auction algorithm for the
(HBH) and show that when the assumptions regarding th®TA problem. In this section, we present simulation results
task sizes in each group is removed, any online algorithm {sn random instances of a synthetic example to compare
complete (i.e., the algorithm is guaranteed to find a feasibthe online algorithm solution to the near-optimal off-line
solution if one exists) iff it uses the HBH. L& be the task solution presented in [4]. The performance guarantee of
set for roundk. In the HBH, during each rounki, the tasks our algorithm is dependent on the problem instance data
are assigned to the robots with the {3 remaining budgets. parameters, namely, the maximum budget of a robot, the
As there can be mUlUple robots with the same remaining]aximum number of tasks in a group, and the payoffs_ In
budgets, there can be different variations of HBH heuristiﬂ]e auction a|gorithm the minimum amount by which a bid
depending on how ties are broken. For example, if therghould be updated, i.e, is also a parameter. Since we
are more thanTy| candidate robots, then we can assign there interested in the performance of the algorithm as the

robots randomly to the task or use an auction algorithm fq§roblem data is varied, for the results presented here we
the assignment. assumes = 0.1.



We considem, = 20 robots, where each robot performsin our examples). However, the results do not change with
at mostN, = 3 tasks during the mission from a set ofdifferentN; (or max|Tk|) as shown in Figure 3 (three exam-
n; = 60 tasks. The task s@tis divided intons = 22 disjoint plesN;, = 2,3,5 are shown in the figure, and by Theorem 1
subsets, with 3 tasks in the first 18 subsets, 2 tasks in thigeir corresponding competitive ratio lower bounds ?ré
following 2 subsets and 1 task in the last 2 subsets. The siaad 2, respectively). There are two possible reasons: first,
of task subsets are designed to satisfy the step constraitie third case (c.1) in the proof of Theorem 1, which leads
of task subset size. To generate payofig, that satisfy to the term mifimax Ni, max|Tk|), might statistically rarely
constraints (5) and (6), we first randomly generate somexist if we randomly generate the payoffs as described above
points (representing robots and tasks) in a two-dimensionalthough there might exist few samples in the worst case
10x 10 square, then use the distance between each rolamtalysis; second, the bound we proved in Theorem 1 might
and each task as the payoff of assigning the robot to theot be tight and can be further improved towaéjwvhich
task. The points are generated as shown in Figure 2: thne will further explore in future.
positions of a half robots are randomly generated in square
A, while those of the other half iB, and the positions of a
half tasks in earlier subsets are randomly generated irrequa
C while those of the other half in later subsetsAn The 0ol
parametetu is designed here to represent the uniformity of

payoff distributions. When we changerom 0.01 to 10, the o 08f
uniformity of payoff distribution increases. We genera@® 1 8
random samples for each value wfand compute the mean 8 o
and standard deviation of performance ratio of the online £ ;|
. . . . . o "
greedy auction algorithm over the optimal offline solution, 5
as shown in Figure 3. 0.5¢
Y & 0.4 \
0 2 2 6 8 10
Parameter u
Fig. 3. The performance ratio of the solution by online greadgtion
algorithm over the optimal off-line solution changes witle tharameteu,
representing the uniformity of payoff distribution.
a o VIl. SUMMARY

X
. . . In this paper we introduced the online multi-robot task
Fig. 2. The illustration of how we generate the payoffs betweobots . . .
and tasks. The coordinates of end pointsAofa, — (0,0), a — (u,u);  @sSignment problems (OTA), where tasks arrive in groups
B: by = (10— u,10—u), b, = (10,10); C: ¢; = (45-0.45u,45-0.450), and have group constraints when assigning them to robots
C2 = (4.5+0.550,4.5+ 0.55u). Whenu =10, A, B andC would become (j e~ each robotr; can perform at most one task from
the whole 10« 10 square. The arrows represent the expanding directions of . .
the squareA, B,C with parametew increasing. each group and at mogdt; tasks in the whole mission).
The task group constraints distinguish our work from, and
From Figure 3, we see that if the payoff distribution isgeneralize previous theoretical work in online weighted
uniform (e.g.,u= 10), the performance of greedy auctionbipartite matching [2], [20]. We further assume constint
algorithm would be very close to that of optimal off-line of payoffs and task subset sizes, and design online algorith
solution. The reason is that when the payoff distribution ibased on greedy auction heuristic to achieve performance
uniform, each robot would have the same expected payoffgiarantee using competitive analysis. The competitive ist
towards dynamically-arising tasks, so the optimal offlinéndependent of the number of robots and tasks, and becomes
algorithm would do almost the same assignments as tleconstant, assuming that either the size of each task group
greedy auction algorithm, since there is no need to sacrifieg the budget of each robot is bounded by some constant.
the payoffs of earlier assignments in hope of gaining moré/e also show two negative results for the OTA problem (a)
from later assignments. However, whendecreases, (i.e., without the assumptions on the payoffs, it is impossible to
the payoff distribution becomes more and more nonuniformylesign an online algorithm with any performance guarantee
the performance ratio rapidly decreases, and approachesattd (b) without the assumption on the task group size profile,
% whenu is as small as @, which is consistent with the any complete algorithm must use highest budget heuristic,
conclusion of Theorem 1. which has arbitrarily bad performance in the worst case.
To see the effect of the term= min(max N;,max|Tx|) in  Additionally, we present simulation results depicting the
the performance bound of Theorem 1, we also test differeaverage case performance of the repeated greedy auction
Ni (or max |Tk|) values (for simplicity, we selj = max|Tx|  algorithm.



Future Work:One natural direction would be to improve payoffs —, while the optimal assignment would have zero-
the bound achieved in Theorem 1, either proving it iprobability of assigning robat: to any task inTy,, and thus
tight or reducing the bound toward1§. Although worst- have at least finite total payoffs. So we conclude that in the
case analysis is crucial in some adversarial environment wiorst case any randomized algorithm would have arbitrarily

situations with low tolerance of bad instances, one inteyg@s bad performance compared to the optimal solutlin.

direction would be to do average performance analysis of our
online algorithms, and study which online algorithms wouldm
perform better in specific payoff (or task group size) profile
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[4]
APPENDIX
A. OTA Problem without Payoff Constraints 5

Here we remove the payoff constraints (5, 6) in OTA and
show negative results of online algorithm design in thisecas

Theorem 4:Any deterministic online algorithm would
lead to arbitrarily bad performance for OTA without payoff
constraints (5,6) in the worst case. 7l
Proof: Assume that (a) the number of taskTg, is smaller
thann, and (b) the number of tasks equal to the total budget8]
of all robots. Before the last stag (where the last subset
of tasksTp, will be assigned to robots), any deterministic [9]
algorithm would have exhausted the budgets of at least one
robotri- (since only|Tn| (| Tns| < nr) different robots will be
assigned to tasks ifi,). SO we can construct an example[11]
that there exists a tadl € Tp, such thatgj« = —oo Vi #i*
and a;+«j« = ap where g is a constant. Then in this case, ;]
any deterministic algorithm would output an assignmenhwit
total payoffs—oo, while the optimal assignment would assign[13]
robot i* to j*, and thus have at least finite total payoffs.
So we conclude that in the worst case any deterministje4
algorithm would have arbitrarily bad performance compared
to the optimal solutionl [15]
From the proof above, we can see that the bad solution of de-
terministic algorithm is unavoidable due to the followingpt
aspects: one is the online property that payoff informatson [16]
revealed dynamically so that it is impossible to prevent the
worst case mentioned above beforehand; the other is that the
constraint (3) prevents robof: to perform tasktj« even if
it would incur —oo payoff.

Theorem 5:Any randomized online algorithm would lead
to arbitrarily bad performance for OTA without payoff con-
straints (5,6) in the worst case.

Proof: The basic idea of the proof is similar to that of(1°]
Theorem 4. Before the last stag any randomized algorithm
would have non-zero probability to assign at least one robot
ri- to tasks inTy, (otherwise all tasks iff,, would not be 20l
assigned to any robot). So we can construct an example
thataj«j = —o0 Vj € Tp. Then in this case, any randomized[21]
algorithm would output an assignment with total expected

(6]

[17]

(18]
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