
Competitive Analysis of Repeated Greedy Auction Algorithm for Online
Multi-Robot Task Assignment

Lingzhi Luo, Student Member, IEEE, Nilanjan Chakraborty,Member, IEEE, and Katia Sycara,Fellow, IEEE

Abstract— We study an online task assignment problem for
multi-robot systems where robots can do multiple tasks during
their mission and the tasks arrive dynamically in groups. Each
robot can do at most one task from a group and the total
number of tasks a robot can do is bounded by its limited
battery life. There is a payoff for assigning each robot to a
task and the objective is to maximize the total payoff. A special
case, where each group has one task and each robot can do
one task is the online maximum weighted bipartite matching
problem (MWBMP). For online MWBMP, it is known that,
under some assumptions on the payoffs, a greedy algorithm
has a competitive ratio of 1

3 . Our key result is to prove that
for the general problem, under the same assumptions on the
payoff as in MWBMP and an assumption on the number of
tasks arising in each group, a repeated auction algorithm,
where each group of tasks is (near) optimally allocated to
the available group of robots has a guaranteed competitive
ratio. We also prove that (a) without the assumptions on
the payoffs, it is impossible to design an algorithm with any
performance guarantee and (b) without the assumption on
the task profile, the algorithms that can guarantee a feasible
allocation (if one exists) have arbitrarily bad performance in the
worst case. Additionally, we present simulation results depicting
the average case performance of the repeated greedy auction
algorithm.

Index Terms— Multi-robot assignment, Task allocation, Auc-
tion algorithm, Online algorithm, Competitive analysis.

I. I NTRODUCTION

In many multi-robot applications like environmental mon-
itoring, search and rescue, disaster response, extraterrestrial
exploration, the tasks that the robots need to perform are
not known beforehand but arise as the robots are executing
their missions. In such scenarios, robots may be able to do
more than one task during a mission depending on their
capabilities and battery life. Since battery life for a robot
is limited there will be an upper bound on the number of
tasks that a robot can do during a mission. The problem
of allocating tasks to robots when the tasks are not known
beforehand but may arise in anonline fashion is called the
online task allocation (OTA) problemor online assignment
problem. Depending on the characteristics of the tasks and
the capability of the robots, different versions of the OTA
problem can be formulated (see [1] for a classification
and taxonomy of task allocation problems). In the simplest
version of OTA, also known as online maximum weight
bipartite matching problem (MWBMP), the tasks arrive one
at a time and each robot can do at most one task in the
mission. Each robot-task pair has a certain payoff and the

The authors are with the Robotics Institute, School of Computer Science,
Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213,
{lingzhil, nilanjan, katia}@cs.cmu.edu

objective is to maximize the total payoff of the multi-robot
system [2], [3]. In this paper we study a generalization of
the online MWBMP, where the tasks can arise dynamically
in groups and each robot can do at most one task in each
group, but can do more than one task in the whole mission.
The abstract problem is motivated by two different kinds of
scenarios arising in applications: (a) Tasks arise dynamically
in groups, where each group consists of tightly-coupled tasks,
i.e., tasks which robots must perform simultaneously, and
thus each robot can only be assigned to one of them; (b)
There exist group precedence constraints among tasks, i.e.,
only after the current group of tasks are all completed by
robots, the subsequent group of tasks can get started, and
the corresponding (payoff) information is revealed to robots.
To fully explore the parallelism, each robot can be assigned
to at most one task in each group to increase the efficiency.

More formally, the OTA problem studied in this paper is as
follows: We have a set of nr robots, R, and a set of nt tasks,
T , that arrives dynamically in groups over ns rounds. Each
robot has a budget, Ni , i = 1, . . . ,nr , i.e., an upper bound on
the maximum number of tasks that it can do. Each robot
can do at most one task from each group and the execution
of one group of tasks starts after the previous group has
been executed. Find an assignment of the tasks to the robots
such that the total payoff of the system is maximized. Note
that whenNi = 1 for each robot,i, and there is one task in
each group, the problem is the online MWBMP. A greedy
algorithm where the incoming task is assigned to the best
available robot has a competitive ratio (the ratio of the payoff
obtained from the greedy assignment to the payoff obtained
from optimal assignment if all tasks were known beforehand)
of 1

3 under an assumption on the payoffs [2]. The assumption
states that the difference of the payoffs of any two robots
for a task is less than the sum of the payoffs of the same
two robots for any other task. Furthermore, this is the best
achievable bound by any online deterministic algorithm. One
assumption in this work is that once a robot is assigned to a
task, it cannot be reassigned, or each robot can only do one
task during the mission. We consider a more general setting
where a robot can do multiple tasks during its mission.

Our results for the OTA problem are a combination of
positive and negative results. We first study the performance
of the repeated greedy auction algorithm, where for each
group of tasks, the robots are allocated to the tasks using
a (distributed) auction algorithm. We prove that under the
same assumptions on payoff as for the online MWBMP and
an assumption on the number of tasks in each task subset,
the repeated greedy auction algorithm has a competitive ratio

of 1
1+max(2,α) . The problem data dependent parameterα is

defined as the minimum of the maximum budget of the robots
and the maximum number of tasks in a group. Note that the
competitive ratio is independent of the number of robots or
the number of tasks. Furthermore, when either the size of the
task groups or the maximum budget of a robot is constant,α
is constant, and hence the competitive ratio is constant. For
example, when the number of tasks in each group is 2 and/or
each robot can perform at most 2 tasks, the competitive
ratio of the algorithm becomes13. This generalization of the
results in [2] is the key contribution of this paper. We also
prove that if there are no restrictions on the payoffs, it is
impossible to design a randomized/deterministic algorithm
with provable performance guarantees. If the assumption on
the task profile is violated then the algorithms based on
highest budget heuristicthat can give a feasible assignment
(if one exists) have arbitrarily bad worst case performance.
In highest budget heuristic, when a group containingk tasks
arise, they are assigned to the robots with the topk budgets
(where the budget of a robot is the number of remaining tasks
that it can perform). The offline version of the problem that
we study here has been studied in [4] and can be solved
(near) optimally in polynomial time. We present simulation
results to compare the performance of our online algorithm to
the optimal offline solution on randomly generated instances.

This paper is organized as follows: In Section II, we
present the related work. In Section III, we give a formal
definition of the online multi-robot assignment problem for
groups of tasks. In Section IV, we present the repeated
auction algorithm and prove its performance guarantees.
Thereafter, in Section V, we present the highest budget
heuristic. In Section VI, we demonstrate the performance
of our algorithm with some example simulations. Finally, in
Section VII, we present our conclusions and outline future
avenues of research.

II. RELATED WORK

Task allocation is important in many applications of multi-
robot systems, e.g., multi-robot routing [5], multi-robotdeci-
sion making [6], and other multi-robot coordination problems
(see [7], [8]). There are different variations of the multi-robot
assignment problem that have been studied in the literature
depending on the assumptions about the tasks and the robots
(see [1] for a taxonomy of task allocation problems). One
axis of dividing the task assignment problem is as online
versus offline. In offline task allocation the set of tasks are
known beforehand, whereas in online problems the tasks
arise dynamically. In this paper we will consider the online
task allocation problem and therefore we will divide our
discussion of the relevant literature here into the offline
and online task allocation problems. Moreover, our objective
is to design algorithms for task allocation with provable
performance guarantees. Therefore, we will elaborate on
algorithms that provide performance guarantees.
Offline Task Allocation: In offline task allocation, the payoff’s
of a robot for each task is assumed to be known before-
hand. In the simplest version of the offline task allocation

problem (also known as the linear assignment problem),
each robot can perform at most one task and the robots
are to be assigned to tasks such that the overall payoff is
maximized. The linear assignment problem is essentially a
maximum weighted matching problem for bipartite graphs.
This problem can be solved in a centralized manner using
the Hungarian algorithm [9], [10]. Bertsekas [11] gave a
decentralized algorithm (assuming a shared memory model
of computation, i.e., each processor can access a common
memory) that can solve the linear assignment problemalmost
optimally. In subsequent papers, the basic auction algorithm
was extended to more general task assignment problems with
different number of tasks and robots and each robot capable
of doing multiple tasks [11], [12]. Recently, [13], [8] have
combined the auction algorithm with consensus algorithms
in order to remove the shared memory assumption and obtain
a totally distributed algorithm for the basic task assignment
problem. However all of this work assume that the tasks are
independent of each other. For the more general case, where
the tasks are organized into disjoint groups such that each
robot can be assigned to at most one task from each group
and there is a bound on the number of tasks that a robot can
do, [4] generalized the auction algorithm of [11] to give an
algorithm with near optimal solution. The problem studied
in this paper is the online version of the problem in [4].

For multi-robot routing problems, [5] has given different
auction algorithms with performance guarantees for different
team objectives. When the objective is to minimize the
total distance traveled by all the robots they provide a 2-
approximation algorithm. For all other objectives the perfor-
mance guarantees are linear in the number of robots and/or
tasks. For example, when allocatingm spatially distributed
tasks ton robots, for minimizing the maximum distance
traveled by a robot, their algorithm gives a performance
guarantee ofO(n).
Online Task Allocation: Even the simplest version of the
online task allocation problem, which is (a variation of) the
online linear assignment problem is NP-hard [1]. As stated
before, this is the online MWBMP where the edge weights
are revealed randomly one at a time, i.e., the tasks arrive
randomly and a robot already assigned to a task cannot be
reassigned. Greedy algorithms for task allocation, wherein
the task is assigned to the best available robot has been
used in a number of multi-robot task allocation systems (e.g.,
MURDOCH [3], ALLIANCE [14]) and therefore, have the
same competitive ratio of13 as [2], if the payoff’s are non-
negative and satisfy the Equation 6. Note that the greedy
algorithm gives a solution that is exponentially worse in the
number of robots, when the objective is to minimize the total
payoff [2]. This is different from the offline linear assignment
problem where both the maximization and minimization
problems can be solved optimally in polynomial time.

There are other variations of the task allocation problem
studied in the multi-robot task allocation community, as well
as operation research community that have been shown to
be NP-hard, and for many of them there are no algorithms
with worst case approximation guarantees [1]. Therefore, a

substantial amount of effort has been invested in developing
and testing heuristics for dynamic task allocation [15], [16],
[17]. These algorithms are based on distributed constraint
optimization (DCOP). Auction-based heuristics for multi-
robot task allocation in dynamic environments have also been
proposed, where the robots may fail during task execution
and the tasks need to be reassigned [18], [19].

III. PROBLEM FORMULATION

In this section, we give the formal definition of our online
multi-robot task assignment problem (denoted as “OTA”).

A. Definition of the Problem OTA

Basic Multi-robot Assignment Problem (MAP):Suppose
that there arenr robots, R = {r1, . . . , rnr}, and nt tasks,
T = {t1, . . . , tnt}, for the robots. InMAP, any robot can
be assigned to any task, and each robot can perform at
most Ni tasks. Performing each task needs a single robot,
so nt ≤ ∑nr

i=1Ni . Let fi j be the variable that takes a value
1 if task, t j , is assigned to robot,r i , and 0 otherwise. Let
ai j ∈ R be the payoff for the assignment pair(r i , t j), i.e.,
for assigning robotr i to taskt j . The objective inMAP is to
assign all tasks to robots to maximize the total payoff.

Task Group Constraint (TGC):The task setT is divided
into ns disjoint groups/subsets{T1, . . . ,Tns} so that∪ns

i=1Ti =
T, and each robot can perform at most one task from each
subset.

Online Multi-robot Assignment Problem with Task Group
Constraint Combining theTGC constraint withMAP, the
online task allocation (OTA) problem is:

Problem 1: Given nr robots, ns disjoint subsets of tasks
that arise one at a time, assign robots to the dynamically-
arising subsets of tasks (as they arise with no modification
of assignments later), such that the total payoffs of robot-
task assignment is maximized. Each task is performed by
one robot, and each robot ri performs at most one task from
each subset and at most Ni tasks in the whole mission.

Problem 1 can be written as an Integer Linear Program-
ming (ILP) problem:

max
{ fi j }

nr

∑
i=1

nt

∑
j=1

ai j fi j

s.t.
nr

∑
i=1

fi j = 1, ∀ j = 1, . . . ,nt (1)

∑
t j∈Tk

fi j ≤ 1, ∀i,k : i = 1, . . . ,nr ,k = 1, . . . ,ns (2)

nt

∑
j=1

fi j ≤ Ni , ∀i = 1, . . . ,nr (3)

fi j ∈ {0,1}, ∀i, j (4)
The above objective function is the total payoff of all
assignments. Constraint (1) implies that each task can be
done by exactly one robot and all tasks must be performed.
Constraint (2) and (3) mean that each robot can perform at
most one task from each subset, and at mostNi tasks in the
whole mission.

The problem OTA shares the same ILP formulation as
its offline counterpart studied in [4]. However, here the
payoffs ai j are not revealed to robots beforehand, and in-
stead, the payoff information related to tasks in subsetTk,
{ai j |t j ∈ Tk}, is revealed to robots only after all preceding
subsets of tasks have been performed. In other words, robots
get the payoff information{ai j |t j ∈ Tk} for round k (k ∈
{1,2, . . . ,ns}), at the beginning of the round. Note that if
ns = nt , i.e., each subset contains only one task, constraint
(2) can be removed since (3) would imply (2). Thus, the
online MWBMP [2], [20] (whereNi = 1,∀i) and online
transportation problem [21] are special cases of our problem.
Payoff Constraints: Following the online MWBMP litera-
ture [2], [20], we assume that the payoffs{ai j } are non-
negative:

ai j ≥ 0, ∀i, j, (5)

and satisfy the inequality below:

ai1 j1 +ai2 j1 ≥ |ai1 j2 −ai2 j2|, ∀i1, i2, j1, j2. (6)

Equation (6) implies that the payoff difference of assigning
any two robots to any task, is bounded by the payoff sum
of assigning the same two robots to any task. This condition
has an intuitive geometric interpretation. If we associatea
point in a metric space with each robot and each task, and
assumeai j to be the Euclidean distance between robotr i and
taskt j , then the above inequality (6) can be derived from the
triangle inequality in the metric space. We use this intuition
later to generate payoffs that satisfy inequality (6) for our
simulations in Section VI. Note that the inequality (6) does
not give any bound on the ratio of minimum possible to
maximum possible payoff, which can be arbitrarily high. If
the payoff constraints (5) and (6) are removed, any online
algorithm (either deterministic or randomized algorithms)
would lead to arbitrarily bad solution in the worst case (see
Appendix for details).
Constraints of Task Group Size: Depending on the size ofNi

and the number of tasks in each group (or task group size),
Problem 1 may not have a feasible solution, i.e., there may
be tasks that remain unassigned. Let the sequence of task
group sizes that arise during OTA be called atask profile.
In this paper, we are interested in task profiles where there
is a feasible assignment. An algorithm that is guaranteed to
find a feasible solution if one exists is called a complete
algorithm. As we will show later, for OTA,any algorithm
that is complete performs arbitrarily bad in the worst case.
We will now present some sufficient conditions on the task
profile under which we can guarantee feasible task allocation.
We call this constraint theStep Constraints of Task Subset
Size(SCTSS).

Suppose that we have sorted the initial budgets of all
robots in the ascending order:N1 ≤ . . .≤ Nnr . The SCTSS is
as follows:The size of the kth task subset,|Tk|, should satisfy
|Tk| ≤ nr − i when Ni < k≤ Ni+1, where N0 = 0.

The SCTSS defined above is consistent with the implicit
constraints of Problem 1 that the size of each subset must

nr
nr-1

……

nr-2

…
…

The order number of task subsets

S
ize b

o
u
n
d
 o

f task
 su

b
sets

N1 N2 ……

Fig. 1. Illustration of step constraints of task subset size. If the subset size
at each round is under the step bounds, the step constraints are satisfied.

be not bigger than the number of robots, i.e.,

|Tk| ≤ nr ,∀k = 1, . . . ,ns (7)

Furthermore, the step constraints extend the implicit con-
straint (7) to guarantee that when each subset of tasksTk

arises, there always exist sufficient number of different robots
with non-zero remaining budget to be assigned to tasks in
the subset, as proved below.

Lemma 1:Step Constraints of Task Subset Size are suffi-
cient to guarantee that any algorithm (which assigns different
robots to tasks in each subset) would lead to a feasible
solution, regardless of the task payoff profile.
Proof: Denoten(k)

r as the number of robots with non-zero
budget when task subsetTk arises. First, we observe that it
is impossible to exhaust robotr i ’s budget beforeTNi+1 arises.
So ∀i, whenk∈ (Ni ,Ni+1], robot r i+1, r i+1, . . . , rnr must still
be available to be assigned to one task inTk. Son(k)

r ≥ nr − i.
From definition of SCTSS,|Tk| ≤ nr − i. We get thatn(k)

r ≥
|Tk|, which means when each subset of tasksTk arises, there
always exist sufficient number of different robots with non-
zero remaining budget to be assigned to tasks in the subset.
So any algorithm, which assigns different robots to tasks in
each subset, would lead to a feasible solution.�

Note that since the size of each subset is 1 in [2], [20],
[21], any algorithm gives a feasible solution. In Problem 1,
finding a feasible solution depends on the initial budget of
robots and the size of each task subset, and it is independent
of the payoff profile. The SCTSS guarantees that any algo-
rithm would give a feasible solution. We will now show that
using a greedy repeated auction heuristic to solve the OTA
problem gives a solution within certain ratio of the optimal
off-line solution, for any profile of payoffs and subset sizes
(satisfying step constraints) in the worst case.

IV. GREEDY AUCTION ONLINE ALGORITHM

In this section, assuming that the constraints on the payoffs
and task profiles hold, we present an online algorithm
usinggreedy auction heuristic, and prove that the algorithm
can achieve a competitive ratio of 1

1+max(2,α) , where α is
the minimum of the maximum budget of a robot and the
maximum task group size. Subsequently, in Section V, we
prove that if there exist no constraints of task subset size
(except that the size of each subset is less than the number
of robots), an online algorithm for OTA is complete, if and
only if it usesthe highest-budget heuristic. However, in the

worst case, such online algorithm can still lead to very bad
performance compared to the optimal offline solution.

The basic idea of the greedy auction heuristic is as follows:
for each dynamically arising group of tasks (i.e., during each
round), use auction algorithm to assign robots with non-zero
budgets(the budgetof robot r i is the number of remaining
tasks that can be assigned tor i) to tasks. This guarantees
that the total payoffs gained by the selected robots would be
near-optimal among all possible assignments using available
robots at that round [4]. Below, we first briefly review the
basic idea of the auction algorithm.

The payoff information related to tasks in thekth round,
Tk, is revealed to the robots at the beginning of of roundk,
and we want to matchn(k)

r robots (the number of robots with
non-zero remaining budget at stepk, n(1)

r = nr) to |Tk| tasks
through a market auction mechanism, where each robot is
an economic agent acting in its own best interest. Although
each robotr i wants to be assigned to its favorite task, the
number of tasks in each subset is not bigger than the number
of robots according to (1) and (2), and the different interest
of robots will probably cause conflicts. This can be resolved
through the auction mechanism of bidding for tasks. In round
k, the robotsiteratively bid for the tasks in the setTk. The
price for taskt j at iterationt is p j(t), which is the highest bid
from robots at iterationt, and the robot assigned to the task
must payp j(t). Thus, at iterationt the net value of taskt j to
robotr i is ai j −p j(t). During each iteration, every unassigned
robot bids for the task with the highest net value to it, which
increases the task price. The iterative bidding from robots
leads to the evolution ofp j(t), which can gradually resolve
the interest conflicts among robots and lead to near-optimal
solution of the overall assignment.

So, for each round,k, we can use the auction algorithm
for n(k)

r robots to be assigned to|Tk| tasks. Sincen(k)
r ≥ |Tk|

(according to Lemma 1), we need to addn(k)
r −|Tk| virtual

tasks with small equal payoffs to all robots. The requirement
that each robot must know the current pricep j(t) for all
task t j during bidding implies the existence of a centralized
auctioneer or a shared memory for all robots to access. In [4],
[13], [8], for a connected multi-robot network, the auction
algorithm has been combined with a maximum consensus
technique so that the algorithm becomes totally distributed
without any centralized auctioneer. During each iterationt,
each robot,r i , in the connected network locally maintains
and updates a list of current highest bids,pi

j(t), for each
task,t j , from its own neighborhoodNr i :

pi
j(t) = max

rℓ∈Nri

pℓ
j(t −1)

This highest bid is used as local price of tasks. Since the
network is connected, the global highest bids eventually
propagates to all robots so that the solution quality remains
the same as that of original auction algorithm.

A single iteration of the auction algorithm for each robotr i

at roundk is described in Algorithm 1. All robots run copies
of Algorithm 1 sequentially. The algorithm terminates when

all robots have been assigned to their tasks (i.e.,P= pi
I (t +1)

for each robotr i when its turn comes).

Algorithm 1 Auction Iteration for Robotr i with non-zero
Budget at Stepk

1: Input: Tk, ai j , pℓ
j(t) for all j , ℓ : t j ∈ Tk, r l ∈ Nr i ,

< I ,P > // I: index of the task assigned to ri during
// r i ’s previous iteration;
// P: the corresponding bidding price from ri

2: // Update the local highest bid information:
3: for all t j ∈ Tk do
4: pi

j(t +1) = maxrℓ∈Nri
pℓ

j(t)
5: end for
6: // Update the assignment information:
7: if P < pi

I (t +1) then
8: // another robot has bid higher than ri ’s previous bid
9: Set I andP to be zero

10: // Collect information for new bids
11: Denotev j(t +1) = ai j − pi

j(t +1) // value of tj to ri

12: Select the best candidate taskt j∗k
from Tk, where j∗k =

argmaxj∈Tk v j(t +1)
13: Store the index of second best candidate fromTk:

j ′k = argmaxj∈Tk, j 6= j∗k
v j(t +1)

14: // Start new bids
15: Bid for t j∗k

with price:
16: b j∗k

= pi
j∗k
(t +1)+v j∗k

(t +1)−v j ′k
(t +1)+ ε

17: // Update assignment information and price informa-
tion:

18: Set I = j∗k, P = b j∗k
19: Set pi

j∗k
(t +1) = b j∗k

20: end if

Algorithm 1 can be summarized as follows. First, robot
r i updates its local price list of all tasks by maximizing
the price of each task in the lists of its neighbors (lines 2
to 5). Then, it updates its assignment information from its
previous iteration, since other robots may bid higher price
for its assigned task after its previous iteration (lines 6 to
9). If that is the case, the previous assignment of tasktI
for r i will be broken andr i makes a new bid. During the
bidding part of Algorithm 1 (lines 10 to 20), robotr i bids
for the task with the best values from the current subsetTk.
This guarantees that after the iteration, all constraints in the
problem are satisfied: (a) robotr i is assigned to one task of
the subset since it either switches to a new task or its previous
assignment is unchanged (please note we have introduced
some virtual tasks to the subset,r i is in fact assigned to at
most one task of the subset); (b) each task is assigned to at
most one robot, because each task either does not change
assignment status (assigned to previous robot or remains
unassigned) or switch from the previous assigned robot to
robot r i . The bidding price for the task is at leastε bigger
than its price at the beginning of the iteration: sincej∗k is the
best candidate task inTk, j ′k is the second best inTk,

b j∗k
− p j∗k

(t +1) = v j∗k
(t +1)−v j ′k

(t +1)+ ε ≥ ε

. Thus, the task receivingr i ’s bids must be assigned tor i at
the end of the iteration. The rule for setting the bidding value
of b j∗k

is related to the proof of optimality of the algorithm
(please refer to [11] for details).

The auction algorithm during each round,k, guarantees
a near-optimal assignment for that round.1 However, repeat-
edly applying the algorithm for each round of tasks does
not guarantee that the whole assignment is optimal. We
now present the competitive ratio of the repeated auction
algorithm. Letα = min(maxi Ni ,maxk |Tk|).

Theorem 1:Under the step constraints of task subset size,
the online sequential auction algorithm,alg1, will output
an assignment solution for OTA with total payoffA ≥

1
1+max(2,α)A

∗ in the worst case, whereA∗ is the solution by
the optimal algorithmO for OTA after all payoff information
has been revealed.
Proof: Suppose that we have relabeled the tasks so that the
assignment byalg1 is (r i , ti). Let’s consider an assignment
(r i , ti) at stepk. Suppose that algorithmO assigned the taskti
to a different robotr i′ . Below we need prove that the payoff
difference betweenaii and ai′ i , by assignments ofalg1 and
O, are not too big.

Assume thatr i′ is different fromr i . When we consider the
assignment of taskti by algorithm alg1, it can be divided
into four cases depending on the assignment status ofr i′ in
the procedure byalg1 at the time ofti ’s assignment:
(a) robotr i′ still has non-zero budgets byalg1 and it is not
assigned to any other tasks inTk by alg1: in this case, we
know thataii ≥ ai′ i , otherwise the auction algorithm would
have assignedr i′ to ti . If all assignments ofalg1 andO belong
to this case, thenA = ∑i aii ≥ ∑i′ aii ′ = A∗

(b) robot r i′ still has non-zero budgets byalg1 and it is
assigned to another taskti′ in Tk by alg1: in this case,
aii +ai′i′ ≥ aii ′ +ai′ i . Sinceaii ′ ≥ 0, we haveai′ i −aii ≤ ai′ i′ .
If all assignments ofalg1 andO belong to this case, we have
that A∗ = ∑i ai′ i ≤ ∑i aii +∑i′ ai′ i′ = 2∗A. So A≥ 1

2A∗

(c) robot r i′ has exhausted all its budgets byalg1, so it
must be assigned to other tasks before the subset|Tk| arrives.
Suppose thatr i′ was assigned to a taskti′ in Tk′ , there can
be two cases:
(c.1) robotr i is also assigned to a taskt j in Tk′ ; using the
metric constraints,

ai′ i −aii ≤ min(ai′i′ +aii ′ ,ai′ j +ai j)

≤
1
2
(ai′ i′ +aii ′ +ai′ j +ai j)

According to the property of auction algorithm,aii ′ +ai′ j ≤
ai′ i′ +ai j , so

ai′ i −aii ≤
1
2
(ai′ i′ +aii ′ +ai′ j +ai j)

≤
1
2
(2(ai′ i′ +ai j))

= ai′ i′ +ai j

1For simplicity of discussion, we can assume that the assignmentis
optimal, since it won’t change the following results.

So summing over each taskti on the left would lead to sum
over each taskti′ and t j on the right, corresponding to task
ti ,

∑
i
(ai′ i −aii) ≤ ∑

i′
ai′ i′ +∑

j
ai j

When i traverses through all tasks,i′ would also traverse all
tasks, so∑i′ ai′ i′ = A.

A∗ ≤ 2A+∑
j

ai j

, where eacht j corresponds to each taskti . Now consider at
most how many times a specificai j can repeat in∑ j ai j ,
which is bounded by how many times the robotr i′ can
be assigned to a task in|Tk′ |: Since each roboti can
be assigned for at mostNi − 1 times by alg1 to other
tasks thanti , and this case can be bounded by the largest
size of a subset|Tk′ | − 1 (recall thatr i has been assigned
to t j in Tk′), so a single specificai j can repeat at most
min(maxi(Ni −1),maxk(|Tk|−1)) times in∑ j ai j . So∑ j ai j ≤

A∗min(maxi(Ni −1),maxk(|Tk|−1)). So A≥ 1
1+α A∗

(c.2) robot r i was not assigned to any task inTk′ : using
metric constraints, we have thatai′ i −aii ≤ aii ′ +ai′i′ . Besides,
according to the property of auction algorithm,aii ′ ≤ ai′ i′ . So
ai′ i −aii ≤ 2ai′ i′ . If this case is general, then∑i(ai′ i −aii) ≤
2∑i′ ai′ i′ , which meansA∗ = ∑i ai′ i ≤ ∑i aii +2∑i′ ai′ i′ = 3∗A.
So A≥ 1

3A∗.
Since∀ti , at the time of assignment of taskti , it must be-

long to one case above. We get thatA≥min(1, 1
2, 1

1+α , 1
3)A∗.

So the competitive ratio of the greedy auction algorithm is
1

1+max(2,α) . �

Note that this result is consistent with the result in [2],
[20], where maxi Ni = maxk |Tk|= 1. The competitive ratio is
independent of the number of robots or the number of tasks.
Furthermore, when either the size of the task groups or the
maximum budget of a robot is constant, the competitive ratio
is constant. For example, when the number of tasks in each
group is 2 and/or each robot can perform at most 2 tasks, the
competitive ratio of the algorithm becomes1

3. The results
in this section can further be extended to a more general
setting, where different task groups can arrive simultaneously
in the same round, which we leave the details for a future
full version.

V. H IGHEST BUDGET HEURISTIC FOROTA

In this section, we present the highest budget heuristic
(HBH) and show that when the assumptions regarding the
task sizes in each group is removed, any online algorithm is
complete (i.e., the algorithm is guaranteed to find a feasible
solution if one exists) iff it uses the HBH. LetTk be the task
set for roundk. In the HBH, during each roundk, the tasks
are assigned to the robots with the top|Tk| remaining budgets.
As there can be multiple robots with the same remaining
budgets, there can be different variations of HBH heuristic
depending on how ties are broken. For example, if there
are more than|Tk| candidate robots, then we can assign the
robots randomly to the task or use an auction algorithm for
the assignment.

Theorem 2:Any online algorithm is complete for OTA iff
it uses the highest-budget heuristics (HBH).
Proof: Due to space constraints, we provide a sketch of the
proof and leave the details for a future full version. For the
necessary condition, consider the stepk0 when an online
algorithm A starts not to use HBH. We can construct an
instance so that during each following stepk > k0,the size of
task subset equalsn(k)

r by HBH, i.e., the number of robots
with non-zero budgets. In this instance, HBH can find a
feasible solution, whileA cannot sinceA would exhaust a
robot (whichA assigns a task to at stepk) at certain stepki

earlier thanHBH, and thus becomes infeasible at stepki +1.
For the sufficient condition, the key idea here is that HBH

online algorithm would maximize the number of robots with
non-zero remaining budgets,n(k)

r at each stepk. The reason is
that during each step, whenever a robot with lower budget is
assigned, HBH would guarantee that the robots with higher
budget must also be assigned. So when a robotr i is exhausted
by HBH at stepk, modifying previous assignments of HBH
cannot transfer the budgets of robots with budgets bigger
than 1 at stepk to robot r i and thus cannot increasen(k)

r .�
Theorem 3:Without constraints of task subset size, any

complete online algorithm (i.e., algorithms using HBH) has
arbitrarily bad performance in the worst case.
Proof: We prove this theorem by constructing a worst-case
example below. Consider robots{r1, r2, . . . rn}, whereN1 =
n+1, whileN2 = . . . = Nn = 1; task subsets arrive in the order
of {t1},{t2}, . . . ,{t2n}. Suppose∀t j : j ≤ n, the payoffsa1 j =
0,ai j = 1(∀i 6= 1); ∀t j : j ≥ n+1, the payoffsa1 j = 1,ai j =
0(∀i 6= 1). So HBH would assign taskst1, t2, tn+1 to r1 and
the rest of tasks to other robots, with total payoffs 1, while
the optimal offline solution would assign taskst1, t2, tn−1 to
r2, . . . , r2n and the rest of tasks tor1, leading to total payoffs
2n−1. So the competitive ratio is1

2n−1, which would become
very bad with the number of tasks increasing. Note that the
ratio is not bounded by the budget of robotr1, since we can
add any number of robots with same payoffs asr1 to average
the total budgets ofr1. �

Theorems 2 and 3 together imply that although HBH is
complete, there is no worst case performance guarantee.

VI. SIMULATION RESULTS

In Section IV, we derived an expression for the worst-case
competitive ratio of the repeated auction algorithm for the
OTA problem. In this section, we present simulation results
on random instances of a synthetic example to compare
the online algorithm solution to the near-optimal off-line
solution presented in [4]. The performance guarantee of
our algorithm is dependent on the problem instance data
parameters, namely, the maximum budget of a robot, the
maximum number of tasks in a group, and the payoffs. In
the auction algorithm the minimum amount by which a bid
should be updated, i.e.ε, is also a parameter. Since we
are interested in the performance of the algorithm as the
problem data is varied, for the results presented here we
assumeε = 0.1.

We considernr = 20 robots, where each robot performs
at most Ni = 3 tasks during the mission from a set of
nt = 60 tasks. The task setT is divided intons = 22 disjoint
subsets, with 3 tasks in the first 18 subsets, 2 tasks in the
following 2 subsets and 1 task in the last 2 subsets. The size
of task subsets are designed to satisfy the step constraints
of task subset size. To generate payoffs,ai j , that satisfy
constraints (5) and (6), we first randomly generate some
points (representing robots and tasks) in a two-dimensional
10× 10 square, then use the distance between each robot
and each task as the payoff of assigning the robot to the
task. The points are generated as shown in Figure 2: the
positions of a half robots are randomly generated in square
A, while those of the other half inB, and the positions of a
half tasks in earlier subsets are randomly generated in square
C while those of the other half in later subsets inA. The
parameteru is designed here to represent the uniformity of
payoff distributions. When we changeu from 0.01 to 10, the
uniformity of payoff distribution increases. We generate 100
random samples for each value ofu, and compute the mean
and standard deviation of performance ratio of the online
greedy auction algorithm over the optimal offline solution,
as shown in Figure 3.

b2

a2

b1

c1

c2

A

C

B

x

y

 a1

Fig. 2. The illustration of how we generate the payoffs between robots
and tasks. The coordinates of end points ofA: a1 = (0,0), a2 = (u,u);
B: b1 = (10−u,10−u), b2 = (10,10); C: c1 = (4.5−0.45u,4.5−0.45u),
c2 = (4.5+ 0.55u,4.5+ 0.55u). When u = 10, A, B andC would become
the whole 10×10 square. The arrows represent the expanding directions of
the squareA,B,C with parameteru increasing.

From Figure 3, we see that if the payoff distribution is
uniform (e.g.,u = 10), the performance of greedy auction
algorithm would be very close to that of optimal off-line
solution. The reason is that when the payoff distribution is
uniform, each robot would have the same expected payoffs
towards dynamically-arising tasks, so the optimal offline
algorithm would do almost the same assignments as the
greedy auction algorithm, since there is no need to sacrifice
the payoffs of earlier assignments in hope of gaining more
from later assignments. However, whenu decreases, (i.e.,
the payoff distribution becomes more and more nonuniform),
the performance ratio rapidly decreases, and approaches to
1
3 when u is as small as 0.1, which is consistent with the
conclusion of Theorem 1.

To see the effect of the termα = min(maxi Ni ,maxk |Tk|) in
the performance bound of Theorem 1, we also test different
Ni (or maxk |Tk|) values (for simplicity, we setNi = maxk |Tk|

in our examples). However, the results do not change with
differentNi (or maxk |Tk|) as shown in Figure 3 (three exam-
plesNi = 2,3,5 are shown in the figure, and by Theorem 1
their corresponding competitive ratio lower bounds are1

3, 1
4,

and 1
6, respectively). There are two possible reasons: first,

the third case (c.1) in the proof of Theorem 1, which leads
to the term min(maxi Ni ,maxk |Tk|), might statistically rarely
exist if we randomly generate the payoffs as described above
although there might exist few samples in the worst case
analysis; second, the bound we proved in Theorem 1 might
not be tight and can be further improved towards1

3, which
we will further explore in future.

0 2 4 6 8 10

0.4

0.5

0.6

0.7

0.8

0.9

1

Parameter u

P
er

fo
rm

an
ce

 R
at

io

Ni = 2

Ni = 3

Ni = 5

Fig. 3. The performance ratio of the solution by online greedyauction
algorithm over the optimal off-line solution changes with the parameteru,
representing the uniformity of payoff distribution.

VII. SUMMARY

In this paper we introduced the online multi-robot task
assignment problems (OTA), where tasks arrive in groups
and have group constraints when assigning them to robots
(i.e., each robotr i can perform at most one task from
each group and at mostNi tasks in the whole mission).
The task group constraints distinguish our work from, and
generalize previous theoretical work in online weighted
bipartite matching [2], [20]. We further assume constraints
of payoffs and task subset sizes, and design online algorithm
based on greedy auction heuristic to achieve performance
guarantee using competitive analysis. The competitive ratio is
independent of the number of robots and tasks, and becomes
a constant, assuming that either the size of each task group
or the budget of each robot is bounded by some constant.
We also show two negative results for the OTA problem (a)
without the assumptions on the payoffs, it is impossible to
design an online algorithm with any performance guarantee
and (b) without the assumption on the task group size profile,
any complete algorithm must use highest budget heuristic,
which has arbitrarily bad performance in the worst case.
Additionally, we present simulation results depicting the
average case performance of the repeated greedy auction
algorithm.

Future Work:One natural direction would be to improve
the bound achieved in Theorem 1, either proving it is
tight or reducing the bound towards13. Although worst-
case analysis is crucial in some adversarial environment or
situations with low tolerance of bad instances, one interesting
direction would be to do average performance analysis of our
online algorithms, and study which online algorithms would
perform better in specific payoff (or task group size) profile.

ACKNOWLEDGMENTS

This work was partially supported by AFOSR MURI grant
FA95500810356 and by ONR grant N000140910680.

APPENDIX

A. OTA Problem without Payoff Constraints

Here we remove the payoff constraints (5, 6) in OTA and
show negative results of online algorithm design in this case.

Theorem 4:Any deterministic online algorithm would
lead to arbitrarily bad performance for OTA without payoff
constraints (5,6) in the worst case.
Proof: Assume that (a) the number of task inTns is smaller
thannr and (b) the number of tasks equal to the total budgets
of all robots. Before the last stepns (where the last subset
of tasksTns will be assigned to robots), any deterministic
algorithm would have exhausted the budgets of at least one
robot r i∗ (since only|Tns| (|Tns|< nr) different robots will be
assigned to tasks inTns). So we can construct an example
that there exists a taskt j∗ ∈ Tns such thatai j ∗ = −∞ ∀i 6= i∗

and ai∗ j∗ = a0 where a0 is a constant. Then in this case,
any deterministic algorithm would output an assignment with
total payoffs−∞, while the optimal assignment would assign
robot i∗ to j∗, and thus have at least finite total payoffs.
So we conclude that in the worst case any deterministic
algorithm would have arbitrarily bad performance compared
to the optimal solution.�
From the proof above, we can see that the bad solution of de-
terministic algorithm is unavoidable due to the following two
aspects: one is the online property that payoff informationis
revealed dynamically so that it is impossible to prevent the
worst case mentioned above beforehand; the other is that the
constraint (3) prevents robotr i∗ to perform taskt j∗ even if
it would incur−∞ payoff.

Theorem 5:Any randomized online algorithm would lead
to arbitrarily bad performance for OTA without payoff con-
straints (5,6) in the worst case.
Proof: The basic idea of the proof is similar to that of
Theorem 4. Before the last stepns, any randomized algorithm
would have non-zero probability to assign at least one robot
r i∗ to tasks inTns (otherwise all tasks inTns would not be
assigned to any robot). So we can construct an example
that ai∗ j = −∞ ∀ j ∈ Tns. Then in this case, any randomized
algorithm would output an assignment with total expected

payoffs−∞, while the optimal assignment would have zero-
probability of assigning robotr i∗ to any task inTns, and thus
have at least finite total payoffs. So we conclude that in the
worst case any randomized algorithm would have arbitrarily
bad performance compared to the optimal solution.�

REFERENCES

[1] B. P. Gerkey and M. J. Mataric, “A formal analysis and taxonomy
of task allocation in multi-robot systems,”International Journal of
Robotics Research, vol. 23, no. 9, pp. 939–954, 2004.

[2] B. Kalyanasundaram and K. Pruhs, “Online weighted matching,” J.
Algorithms, vol. 14, pp. 478–488, May 1993.

[3] B. P. Gerkey and M. J. Mataric, “Sold!: Auction methods formulti-
robot coordination,”IEEE Transactions on Robotics, vol. 18, no. 5,
pp. 758–768, October 2002.

[4] L. Luo, N. Chakraborty, and K. Sycara, “Multi-robot assignment
algorithms for tasks with set precedence constraints,” inProceedings
of IEEE International Conference on Robotics and Automation, 2011,
May 2011.

[5] M. Lagoudakis, E. Markakis, D. Kempe, P. Keskinocak, A. Kleywegt,
S. Koenig, C. Tovey, A. Meyerson, and S. Jain, “Auction-based multi-
robot routing,” inRobotics Science and Systems, 2005.

[6] C. Bererton, G. Gordon, S. Thrun, and P. Khosla, “Auctionmechanism
design for multi-robot coordination,” inProc. Advances in Neural
Information Processing Systems Conf., 2003, p. 879C886.

[7] M. Dias, R. Zlot, N. Kalra, and A. Stentz, “Market-based multirobot
coordination: A survey and analysis,”Proceedings of the IEEE, vol. 94,
no. 7, pp. 1257 –1270, jul. 2006.

[8] H.-L. Choi, L. Brunet, and J. How, “Consensus-based decentralized
auctions for robust task allocation,”IEEE Transactions on Robotics,
vol. 25, no. 4, pp. 912–926, 2009.

[9] H. W. Kuhn, “The Hungarian method for the assignment problem,”
Naval Research Logistics, vol. 2, no. 1-2, pp. 83–97, March 1955.

[10] R. Burkard, M. Dell’Amico, and S. Martello,Assignment Problems.
Society for Industrial and Applied Mathematics, 2009.

[11] D. P. Bertsekas, “The auction algorithm: A distributed relaxation
method for the assignment problem,”Annals of Operations Research,
vol. 14, pp. 105–123, 1988.

[12] ——, “The auction algorithm for assignment and other network flow
problems: A tutorial,”Interfaces, vol. 20, no. 4, pp. 133–149, 1990.

[13] M. M. Zavlanos, L. Spesivtsev, and G. J. Pappas, “A distributed auction
algorithm for the assignment problem,” inProc. 47th IEEE Conf.
Decision and Control, 2008, pp. 1212–1217.

[14] L. Parker, “Alliance: an architecture for fault tolerant multirobot
cooperation,”IEEE Transactions on Robotics and Automation, vol. 14,
no. 2, pp. 220 –240, apr 1998.

[15] R. Nair, T. Ito, M. Tambe, and S. Marsella, “Task allocation in the
robocup rescue simulation domain: A short note,” inRoboCup 2001:
Robot Soccer World Cup V. London, UK: Springer-Verlag, 2002, pp.
751–754.

[16] P. Scerri, A. Farinelli, S. Okamoto, and M. Tambe, “Allocating
tasks in extreme teams,” inProceedings of the fourth international
joint conference on Autonomous agents and multiagent systems, ser.
AAMAS ’05, 2005.

[17] S. Okamoto, P. Scerri, and K. Sycara, “Allocating spatially distributed
tasks in large, dynamic robot teams,” inSubmitted to International
Conference on Intelligent Agent Technology, 2011.

[18] M. Nanjanath and M. Gini, “Repeated auctions for robusttask exe-
cution by a robot team,”Robotics and Autonomous Systems, vol. 58,
pp. 900–909, 2010.

[19] M. Bernardine Dias, M. Zinck, R. Zlot, and A. Stentz, “Robust
multirobot coordination in dynamic environments,” inProceedings
of 2004 IEEE International Conference on Robotics and Automation,
vol. 4, 2004, pp. 3435 – 3442.

[20] S. Khuller, S. G. Mitchell, and V. V. Vazirani, “On-linealgorithms
for weighted bipartite matching and stable marriages,”Theoretical
Computer Science, vol. 127, no. 2, pp. 255–267, 1994.

[21] B. Kalyanasundaram and K. R. Pruhs, “The online transportation
problem,” SIAM J. Discret. Math., vol. 13, pp. 370–383, May 2000.

