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Abstract— Autonomous swarm algorithms have been studied
extensively in the past several years. However, there is little
research on the effect of injecting human influence into a robot
swarm—whether it be to update the swarm’s current goals
or reshape swarm behavior. While there has been growing
research in the field of human-swarm interaction (HSI), no
previous studies have investigated how humans interact with
swarms under communication latency. We investigate the effects
of latency both with and without a predictive display in a basic
swarm foraging task to see if such a display can help mitigate
the effects of delayed feedback of the swarm state. Furthermore,
we introduce a new concept called neglect benevolence to
represent how a human operator may need to give time for
swarm algorithms to stabilize before issuing new commands,
and we investigate it with respect to task performance. Our
study shows that latency did affect a user’s ability to control
a swarm to find targets in the foraging task, and that the
predictive display helped to remove these effects. We also found
evidence for neglect benevolence, and that operators exploited
neglect benevolence in different ways, leading to two different,
but equally successful strategies in the target-searching task.

I. INTRODUCTION

Robotic swarms are made up of small, homogeneous

robots with limited capabilities that act through local in-

teractions to collectively achieve a variety of behaviors

including flocking [1], [2], [3], [4], deployment [5], [6],

and foraging [7], [8]. The principal advantage of swarms

is that, due to their large numbers and emergent behaviors,

they are typically robust to failure of individual robots. For

using swarm robotic systems in human-supervised missions,

it is imperative to understand the basic tenets of human-

swarm interaction (HSI) [9]. Key characteristics of swarm

robotic systems that make HSI challenging are (a) the swarm

behavior is self-stabilizing and takes some time to emerge

(b) individual robots in a swarm are very simple units

with limited communication hardware capabilities and (c)

robots have poor localization capabilities leading to errors

in interpreting the input of the operator. The communication

latency and the input error along with the self-stabilizing

nature of the emergent behaviors of robotic swarms create

challenges for the operator in understanding the current state

of the swarm and the effect of his or her command.
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In this paper, we present what we believe to be the first

user study in HSI under realistic assumptions of commu-

nication latency and localization heading errors, and study

the effects of latency and error on human performance in

controlling swarm robotic systems. We also study the use of

predictive displays to mitigate the effect of latency.

The extant literature on HSI [8], [9], [10], [11], [12],

[13], [14], [15], [16] have not studied the performance and

behavior of human operators in the presence of delayed

information transmission between the swarm and the human

and vice versa (exceptions being [17], [18], [19], [20] for

haptic control). In the haptic control studies, the operator uses

a force feedback and (possibly) visual information about the

robot state to apply a continuous control input and maintain

a robot formation. In contrast, in our problem, the operator

does not have any force feedback. Furthermore, the operator

influences the swarm system intermittently, meaning that

the timing difference between two commands issued by the

operator is much larger than the time step used in the discrete

state update equations of the robot.

A. Neglect Benevolence

Since swarms require time to stabilize after an operator

command is issued, it is possible for operator commands

to have different—sometimes adverse—effects depending on

the state of the swarm. To capture the idea that humans may

need to observe the evolution of the swarm state and wait

for stabilization before acting, we investigate a novel concept

called neglect benevolence. This concept is analogous to ne-

glect tolerance [21], [22] in human-robot interaction (HRI),

which is defined as the time a human can neglect a robot in a

multi-robot system of independent, non-coordinating robots

without degradation in system performance. For neglect

tolerance, it is assumed that the performance of an individual

robot degrades with time, and hence the attention of the

operator needs to be scheduled so that the time between

servicing robots is minimized [23], [24]. In contrast, neglect

benevolence captures the concept that it may be beneficial

to leave the swarm alone for a certain length of time after

issuing an instruction to allow the behavior to stabilize (since

the swarm state may not degrade monotonically with time).



B. Contributions

Our experimental results indicate that, as expected, there is

a degradation of performance due to latency. However, when

using predictive display, the performance of the operators

can be as well as it was in the absence of delay (control

conditions). Our results also indicate that, by exploiting

neglect benevolence in different ways, users came up with

different strategies to control the swarm robotic system (see

Section III).

II. TASK DESCRIPTION

Our study is designed to look at the ability of a human

operator to effectively influence a swarm operating under

algorithms that require time to exhibit emergent behaviors.

We created a simple foraging task that requires users to direct

a swarm around an open environment using instructions to

change swarm heading and flocking constraints. We also use

this study to look at the effect of communication latency

in the swarm-operator channel on this ability. Latency can

be caused by multiple factors, including limited radio power

of the robots and communication channel properties such as

limited bandwidth, which requires the communication of the

robots to be scheduled.

A. The Environment

We use three different environments of size 100x100

meters divided into six regions (Figure 1), with each region

containing one of three target frequencies: low (1-4), medium

(5-9), or high (10+). The target distribution is different across

the search missions that each participant solves, i.e. different

regions may have different frequencies between missions,

but there are always 40 targets in total. The interface that

participants use to issue commands to the swarm does not

show either the region boundaries or their target frequencies;

however, participants do receive a worksheet for each trial

showing the regions and their target frequencies.

Fig. 1. An example worksheet the participant receives before a condition.
The worksheet shows each of the six regions with the approximated number
of targets the robots could expect to find in each. Low = 1 − 4,Med =

5− 10, High = 10+.

We use Stage v. 3.2.2 [25] to simulate the environment,

the targets, and a swarm of 40 differential drive P2AT

robots. Robot controllers are implemented using the Robot

Operating System (ROS) [26]. Each robot is equipped with a

color sensor, allowing it to detect the colored targets, and an

additional, simulated sensor that allows the robots to sense

the location of a neighbor. Both have a 4 meter range, and the

latter allows each robot to estimate the direction of motion

of its neighbors from repeated observations of their location.

The graphical user interface is also implemented in ROS.

Each robot transmits its position and observations from its

color sensor to the user interface. When six or more robots

detect a target simultaneously, it is displayed on the map at

the centroid of the robots that sensed it. The total number

found is displayed on the side of the screen.

B. Human Influence

Users can influence the swarm with three commands:

stop, heading, and apply-constraints. The stop command

simply instructs the robots to stop their motors. The heading

command broadcasts a global heading to the swarm. To

simulate a localization error, every robot interprets the global

heading with respect to a local coordinate frame to compute

its goal heading. The orientation of this local coordinate

frame differs from the true orientation of the robot by an

error sampled from the Gaussian distribution N (0, 4π

9
).

Upon receiving the command, the robots turn toward their

respective goal heading and begin moving (Figure 2a). In

order to correct for the erroneous interpretations of the global

heading, each robot also executes a consensus algorithm

at a frequency of 0.5 Hertz. Robots sense the direction of

motion of their neighbors and update their goal heading to

the average goal heading of their neighbors and themselves.

By using the consensus algorithm, robots will change their

heading to the average heading of their neighbors, and all

robots in a connected component of the swarm will even-

tually move in the same direction (Figure 2b). The amount

of time needed to reach consensus depends on the spectral

properties of the connectivity graph of the robots [27].

If each robot is connected to every other robot, then the

consensus happens in one cycle. However, in general, the

robot connectivity graph is not complete and may not even

be connected as the robots move. In such cases, there will

usually be a bias in the heading of the swarms when the

headings converge.

Finally, the user can issue an apply-constraints command,

which applies biologically-inspired flocking constraints sim-

ilar to those in [1], [2], and [16]. These constraints force

robots to repel from each other if they are closer than 1.5

meters, and otherwise attract to neighbors further than 3

meters. Only the closest 5 neighbors are considered for these

constraints. If a robot is between 1.5 and 3 meters from each

of it’s neighbors, it proceeds toward the goal heading dictated

by the consensus algorithm (Figure 2c).

Applying the constraints serves two necessary functions:

the repulsive force spaces out the swarm to give better

coverage, and the attractive force helps prevent the swarm

from splitting into many disconnected subgroups. However,

these constraints were not automatically on for the duration

of the study because of the need for a swarm to have time to

reach consensus. Because the consensus algorithm required

robots to sense the positions of their neighbors over time



Fig. 2. The swarm in each of the three possible states. After the user issues a heading command, each robot moves toward their estimated goal heading
(a). After enough rounds of the consensus algorithm, the robots have all converged on an approximately identical heading (b). Finally, after the user issues
the flocking constraints, the robots attempt to stay between 1.5 and 3m of each other, and thus cover more area (c).

in order to get accurate heading estimates, if constraints

were applied automatically following a heading command,

much of this movement would be due to enforcing the 1.5

to 3m separation between robots. This introduces significant

noise to the consensus algorithm and increases the error

dramatically. Therefore, allowing the operator to activate

constraints allows for the opportunity to observe the swarm

and decide when the benefits given by the constraints are

more important than further consensus.

C. Experimental Design

The experiment consists of three conditions—the control,

latency, and predictive conditions. In all conditions, the

operator begins with an open environment and the swarm

of 40 robots positioned randomly in a 10x10 meter box at

the center.

In the control condition, there is no latency in either of

the human-to-swarm or swarm-to-human channels. In the

latency condition, however, each channel has a latency of

10 seconds, which provides a realistic latency that is easily

noticeable by a participant and forces them to make accurate

predictions if they wish to influence the swarm effectively.

This means that operator-issued commands will not reach

the robots until 10 seconds after issuing, and the state of the

swarm displayed in the interface for the user is 10 seconds

old. In the predictive condition, the latency remains present;

however, the interface gives the user a prediction of where

each member of the swarm will be in 20 seconds (the time it

takes for an operator’s command to travel to the swarm and

the result to return to the operator) by taking the heading and

speed (which is a constant 0.5 m/s) of each swarm member

and extrapolating the robot’s position that far in the future

(Figure 3). The prediction does not extend past the point the

robots would perform the user’s command. In other words,

if the user issued a command 3s ago, the prediction will only

show the swarm state 17s further into the future (which is 7

seconds ahead of the actual state).

Each participant has a different environment for each of

these conditions, and the order of both the conditions and

the maps are randomized for each participant in order to

remove any learning biases. 21 participants (8 men and 13

women) were recruited from the University of Pittsburgh and

surrounding areas to participate in the study. Each participant

was given a short explanation of the controls and goals of

the study and a 10-minute training session to familiarize

themselves with the interface, after which they completed

each of the three conditions.

Fig. 3. An illustration of the predictive display condition. The interface
projected a lighter shadow ahead of each robot to predict for the user where
the robot would be in 10 seconds, or when the next command is received.

III. RESULTS AND DISCUSSION

All evaluation measures were compared using analysis of

variance (ANOVA) tests, unless otherwise specified. We used

total coverage and number of targets found out of 40 as

global measures of success for a participant. Total coverage

is defined as the area of the environment that was visible by

6 sensors simultaneously at some point during the mission.

Furthermore, we looked for evidence of neglect benevolence

directly by investigating how the state of consensus at the



time of operator commands interacted with the swarm’s

progress along the goal heading, and measures of swarm

cohesion such as the number of connected components

and the average communication graph degree (i.e., average

number of neighbors for the robots in the swarm).

The overall mission performance for each participant is

measured in terms of the number of targets found. In the

control condition participants found 19.86 targets on average.

In the latency condition participants found 16.71 targets on

average, significantly fewer than in the control condition

(p = .021). Finally, in the predictive condition participants

found 18.86 targets on average, not significantly different

from the control condition (p = .467), see Figure 4. These

results show that the latency of 10 seconds impedes operator

performance in the latency condition, and that the predictive

display in the predictive condition prevents this impediment.

The behavior of operators can be distinguished by the

frequency, duration, and timing of the heading and apply-

constraints instructions. The frequency is given by the total

number of instructions during a condition, and the two

durations we analyzed were the average time between a

heading and a subsequent apply-constraints command (here-

after referred to as time to constraints), or the next heading

command (duration). Because only one heading instruction

could be active at a time, frequency and duration of heading

commands have an obvious relationship. The timing of

instructions is an important concept, since it relates to the

state of the swarm at the time of the instruction—meaning

two commands of the same type can lead to drastically

different effects depending on when they were issued.

The duration of heading instructions differs significantly

between conditions. The control condition, with a mean du-

ration of 26.6 seconds, differs significantly from the latency

(p = 0.002) and predictive conditions (p = 0.004), which

have means of 42.4 and 40.2 respectively. The latency and

predictive conditions do not differ significantly from each

other (p = 0.68), see Figure 5.
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Fig. 4. A boxplot of the number of targets found across conditions. The
median number of targets is shown above the median line.
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Fig. 5. A boxplot of heading command durations across conditions. The
median duration time in seconds is shown above the median line.

flexible, as operators may decide to issue constraints at

any point in time after a heading command, or issue a

new heading command without activating constraints at all.

On average, a participant did not use any constraints for

39.42% (std. deviation of 30% and median of 39.41%) of

their heading instructions, with no differences (p > 0.7)

across conditions or between any two conditions. There

are, however, significant differences across participants. In

fact, combining all conditions, participants cover the entire

spectrum, from using constraints for only 9% of heading

commands up to using constraints after every one. Exactly

2 participants used constraints for 0% to 25% of heading

commands, 6 for 25% to 50%, 6 for 50% to 75%, and 7 for

75% to 100%. To investigate the effect of the application of

constraints, we grouped all missions with a high (100% to

78%), medium (78% to 45%), or low (45% to 0%) number

of headings commands for which constraints were applied.

The boundaries were chosen to obtain equal sized groups

(across conditions and participants). Table I summarizes the

main results comparing these groups. Performance in terms

of targets found does not differ between these groups, but

the total area swept is significantly different, with fewer

constraints (low) leading to less overall area that is covered

by at least six sensors. On the other hand, many constraints

(high) lead to a larger error between the heading of the

swarm and the operator’s goal heading, and fewer constraints

(low) have more heading instructions leading to a consensus

(74%) and more robots in a consensed state when the next

instruction is issued (69%). In addition, more constraints lead

to fewer connected components (2.12) and more neighbors

for each robot (4.79) on average.

These results suggest that operators employ different

strategies to find targets. Some operators use constraints often

and earlier to cover a wider area at the expense of higher

heading errors, while others prefer to give the consensus

more time, leading to a smaller deviation from the operators

goal heading at the expense of coverage and swarm cohesion.

The differences in operator behavior between the control,



Measure high medium low p

Duration 42.9 34.3 31.8 0.085
Time until constraints 4.78 17.2 25.9 <0.001
Consensus reached by 14% 54% 74% <0.001
Number of neighbors 4.79 4.16 3.75 <0.001
Connected components 2.12 3.23 3.92 <0.001
Robots in largest component 27.2 23 20.3 0.006
Heading interrupted 0.795 0.43 0.26 <0.001
Heading error 0.496 0.381 0.38 0.011

Total area swept 1949 1761 1330 0.040
Targets found 18.7 18.5 18.2 0.933

TABLE I

TABLE COMPARING THREE GROUPS WITH 100% TO 78% (HIGH), 78%

TO 45% (MEDIUM), 45% TO 0% (LOW) APPLICATION OF CONSTRAINTS.

latency, and predictive conditions are significant for heading

duration, but not the average time to constraints. A difference

between either of the two conditions with a 10 second

latency and the control was expected, since operators have

to wait 10 seconds to obtain information in order to decide

whether constraints are needed, and since the activation of

constraints takes 10 seconds to arrive at the swarm. In fact,

across all instructions, only 27% in the latency condition and

30% in the predictive condition have constraints activated

later than 20 seconds, meaning that, unlike with heading

commands, operators often issued the constraints prior to

seeing the effect of the heading instruction on the swarm.

The predictive condition has a significantly higher time to

constraints (p = 0.023) than the control condition, with a

mean of 19.39 and median of 19, see Figure 6. However,

the latency condition is not significantly different (p = 0.12)

from the control condition with means of 16.91 and 11.15
and medians of 13 and 12. This indicates that there is some

adaptation of strategies to conditions and that operators are

often using the activation of constraints regardless of whether

they have information about the swarm state. Our results

above, however, show that operators already employ a wide

variety of strategies that differ across participants.
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Fig. 6. The average time to the activation of constraints. The two
black dots represent outlier trials, where two participants issued constraints
considerably later on average in the latency and prediction conditions,
respectively.

Measure short medium long p

Duration 19.3s 33.9s 56.0s <0.001
Time until constraints 11.25 18.53 17.68 0.141
Constraints activated 52% 54% 76% 0.012
Consensus reached by 11% 19% 18% 0.141
Number of neighbors 3.76 4.14 4.82 <0.001
Connected components 3.60 3.19 2.45 0.005
Robots in largest component 21.97 23.14 25.54 0.267
Heading interrupted 0.580 0.400 0.514 0.138
Heading error 0.353 0.409 0.496 0.005

Total area swept 1204 1707 2149 <0.001
Targets found 19.57 17.95 17.90 0.378

TABLE II

TABLE COMPARING THREE GROUPS WITH SHORT, MEDIUM, OR LONG

DURATIONS FOR HEADING COMMANDS .

A closer look at the duration of heading instructions can

cast some light on the effects of different behaviors on the

swarm state. Participants with either short, medium or long

heading instructions, see Table II, show a similar pattern than

the activation of constraints in Table I. The targets found

does not differ significantly, but the area covered with at

least 6 sensors does (p < .001), demonstrating that the short

duration group compensates for less area swept by using

fewer constraints activated and thus a smaller heading error.

A. Support for Neglect Benevolence

The above results clearly show support for neglect benev-

olence. Early activation of constraints leads to larger head-

ing errors and a mismatch between the operators desired

direction and the direction of the swarm. However, letting

a swarm move with constraints active for a long time,

without interrupting with new heading instructions, improves

its cohesion and ability to cover area with its sensors. Fre-

quent and short commands, on the other hand, may provide

an operator more control over the direction by providing

new inputs more frequently, but this leads to an increase

in the number of connected components and disturbs the

swarm’s cohesion by frequently deactivating constraints. In

other words, we have shown that operators developed two

equally successful strategies around the neglect benevolence

of the swarm with respect to these two processes that either

stabilize the consensus and lower the heading error, or

stabilize the flocking formation and improve coverage. While

we found some behavioral differences across control, latency,

and predictive conditions, there is no direct evidence that

latency affects some strategies differently than others.

B. Support for the Predictive Display

We also demonstrated that a predictive display helps

participants overcome the latency issues and find the same

number of targets as they would without any latency present.

There are two possible explanations for this finding. First, the

predictive display gave the operators the ability to time their

new heading instructions appropriately. If, for instance, an

operator wanted to explore a region entirely, the prediction

allowed them to see when the swarm would reach the edge

of the region or map and issue a new heading command so



that the swarm would receive it at the proper time. Second,

the predictive display also allowed users to easily identify

groups that may break off, and to identify the state of

consensus of the swarm. If a swarm of robots is about to

split in two because two subgroups are moving at different

headings and may not reach consensus before splitting, the

predictive display will show these two subgroups 20 seconds

in the future—at which point their splitting, if unaltered by

constraints or consensus, is readily apparent. Similarly, if

the swarm has not reached consensus, the predictive display

will show them significantly more detached and spread out

in 20 seconds time, whereas the prediction for a swarm at

consensus will look more or less similar to the current state.

IV. CONCLUSIONS AND FUTURE WORKS

Overall, this study provides support for neglect benevo-

lence. The possible commands in the study provided both

costs and benefits depending on the state of the swarm at the

time the commands were issued. Frequent redirections of the

swarm gave the user more control over the direction, and thus

location, of the swarm, but sacrificed other characteristics

necessary for a foraging or exploration task performed with

a swarm, including coverage and swarm cohesion.

This led to two basic types of operators. Some preferred

a higher accuracy for the heading of the swarm, while

others preferred a constrained motion in a more spread out

swarm. Due to the nature of the swarm algorithms and

localization errors, high heading accuracy and high coverage

using constraints are not possible simultaneously. Therefore,

participants had to decide which characteristics were more

important. For the present study, both strategies achieved

success; however, other tasks may be better achieved with

one or the other. Future research could help determine for

which tasks each of the above strategies is most suitable.

Furthermore, latency had a negative effect on the number

of targets found, but only if the operator was not supported

by a predictive display, demonstrating that the prediction

enabled operators to regain some of the original performance.

Latency also seemed to significantly impact the frequency

with which operators issued commands. As this is the first

study to investigate latency in HSI, future work should

address latency issues for human control of other tasks and

swarm algorithms, varying latency times, and using different

methods of predicting future swarm states.
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