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Abstract— In this paper we present an implicit time-stepping
scheme for multibody systems with intermittent contact by
incorporating the contact constraints as a set of complemearity
and algebraic equations within the dynamics model. Two prinary
sources of stability and accuracy problems in prior time st@ping
schemes for differential complementarity models of multilody

The primary sources of stability and accuracy problems are
polyhedral approximations of smooth bodies, the decogplin
of collision detection from the solution of the dynamic time
stepping subproblem, and approximations to the quadratic
Coulomb friction model. This paper focuses on the develop-

systems are the use of polyhedral representations of smooth ment ofgeometrically implicibptimization-based time-stepper

bodies and the approximation of the distance function (arisg
from the decoupling of collision detection from the solutim of the
dynamic time-stepping subproblem). Even the simple exampl of
a disc rolling on a table without slip encounters these prot#ms.

for dynamic simulation. More specifically, state-of-the-a
time-steppers [16, 15, 9] use geometric information ole@in
from a collision detection algorithm at the current timegdan

We assume each object to be a convex object described bythe state of the system at the end of the time step is computed

an intersection of convex inequalities. We write the contdc
constraints as complementarity constraints between the cact

force and a distance function dependent on the closest pogbn
the objects. The closest points satisfy a set of algebraicrstraints

obtained from the KKT conditions of the minimum distance

problem. These algebraic equations and the complementasyit
constraints taken together ensure satisfaction of the coatt
constraints. This enables us to formulate ageometrically implicit

time-stepping scheme i(e., we do not need to approximate
the distance function) as a nonlinear complementarity prokem

(NCP). The resulting time-stepper is therefore more accurte;

further it is the first geometrically implicit time-stepper that does
not rely on a closed form expression for the distance functio.

We demonstrate through example simulations the fidelity of
this approach to analytical solutions and previously desdbed

simulation results.

|. INTRODUCTION

(by solving a dynamics time step subproblem) without mod-
ifying this information. Thus, state-of-the-art time{spers
can be viewed asxplicit methods with respect to geometric
information. We develop the first time-stepping method that
is implicit in the geometric information (when the distance
function is not available in closed form) by incorporating
body geometry in the dynamic time-stepping subproblem. In
other words, our formulation solves the collision detattio
and dynamic stepping problem in the same time-step, which
allows us to satisfy contact constraints at the end of the tim
step. The resulting subproblem at each time-step will be a
mixed nonlinear complementarity problem and we call our
time-stepping scheme geometrically implicittime-stepping
scheme.

To illustrate the effects of geometric approximation, con-
sider the simple planar problem of a uniform disc rolling on a

To automatically plan and execute tasks involving intehorizontal support surface. For this problem, the exacttswi
mittent contact, one must be able to accurately predict tieeknown,i.e.,the disc will roll at constant speet infinitum.
object motions in such systems. Applications include ltaptHowever, when the disc is approximated by a uniform regular
interactions, collaborative human-robot manipulatiarghsas polygon, energy is lost a) due to collisions between thacest
rearranging the furniture in a house, as well as industriahd the support surface, b) due to contact sliding that is
automation, such as simulation of parts feeders. Due to ttesisted by friction and c¢) due to artificial impulses getenta
intermittency of contact and the presence of stick-slig-fri by the approximate distance function that is to be satisfied a
tional behavior, dynamic models of such multibody systentke end of the time-step. We simulated this example in dVC [3]
are inherently (mathematically) nonsmooth, and are thfis diusing the Stewart-Trinkle time-stepping algorithm [16heT
ficult to integrate accurately. In fact, commercially aghle parametric plots in Figure 1 show the reduction of kinetic
software systems such as Adams, have a difficult time simrergy over time caused by the accumulation of these effects
ulating any system with unilateral contacts. Users expect The top plot shows that increasing the number of edges, with
spend considerable effort in a trial-and-error search fuvdy the step-size fixed, decreases the energy loss; the enesgy lo
simulation parameters to obtain believable, not necdgsam@pproaches a limit determined by the size of the time-step. T
accurate, results. Even the seemingly simple problem ofbattom plot shows reducing energy loss with decreasing step
sphere rolling on a horizontal plane under only the influensize, with the number of vertices fixed at 1000. However, even
of gravity is challenging for commercial simulators. with the decrease in time-step an energy loss limit is redche
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(a) As the number of edges of the “rolling” polygon in-

creases, the energy loss decreases. The computed value

obtained by our time-stepper using an implicit surface

description of the disc is the horizontal line at the top. The

time step used is 0.01 seconds.
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constraints. In Section V, we give examples that validat an
elucidate our time-stepping scheme. Finally we present our
conclusions and lay out the future work.

II. RELATED WORK

Dynamics of multibody systems with unilateral contacts can
be modeled as differential algebraic equations (DAE) [7] if
the contact interactions (sliding, rolling, or separatiageach
contact are known. However, in general, the contact interac
tions are not knowm priori, but rather must be discovered as
part of the solution process. To handle the many possésliti
a rigorous theoretical and computational framework, the@ho
is formulated as a differential complementarity problenC®)

[4, 17]. The differential complementarity problem is salve
using a time-stepping scheme and the resultant system af equ
tions to be solved at each step is a mixed (linear/nonlinear)
complementarity problem. Let € R, v . € R" and let
g:R™ x R" — R™  f:R™ x R"2 — R"2 be two vector
functions and the notatio < x | y > 0 imply thatx is
orthogonal toy and each component of the vectors are non-
negative.

Definition 1: The differential (or dynamic) complementar-
ity problem is to findu andv satisfying

a=g(u,v), u, free
0<v L f(u,v)>0
Definition 2: The mixed complementarity problem is to

find u andv satisfying

(b) For a given number of edges, the energy loss decreases
with decreasing step size, up to a limit. In this case, thé lim

is approximately 0.001 seconds (the plots for 0.001, 0.0005
and 0.0001 are indistinguishable).

g(u,v) =0, u, free
0<v L f(u,v)>0

The three primary modeling approaches for multibody sys-
tems with unilateral contacts are based on three different a
sumptions about the flexibility of the bodies. The assunmgtio
from most to least realistic (and most to least computatipna
complex) are: 1) the bodies are fully deformable, 2) the ésdi
These plots make it clear that the discretization of geometiave rigid cores surrounded by compliant material, 3) the
and linearization of the distance function lead to the actif odies are fully rigid. The first assumption leads to finite
of loss in energy in the simulations. element approaches, for which one must solve very large

To address these issues and related problems that we hdgiffecult complementarity problems or variational inedjtiak
encounteredd(g., parts feeding), we present a highly accuat each time step. The second assumption leads to smaller
rate geometrically implicit time-stepping method for cerv subproblems that can be solved more easily [15, 13], but
objects described as an intersection of implicit surfadéss  suitable values of the parameters of the compliant layer are
method also takes into consideration other important neali  difficult to determine. The assumption of rigid bodies leads
elements such as quadratic Coulomb friction. This methdld wio the smallest subproblems and avoids the latter problem of
provide a baseline for understanding and quantifying therer determining material deformation properties.
incurred when using a geometrically explicit method andiwhe Independent of which underlying assumption is made, the
making various linearizing approximations. Our ultimatea methods developed to date have one problem in common that
is to develop techniques for automatically selecting therep fundamentally limits their accuracy — they are not impheith
priate method for a given application, and to guide methgdspect to the relevant geometric information. For example
switching, step size adjustment, and model approximations at the current state, a collision detection routine is dalle
the fly. to determine separation or penetration distances betwesen t

Our paper is organized as follows. In Section Il we surveyodies, but this information is not incorporated as a fuorcti
the relevant literature. Section Il presents the dynammoslel of the unknown future state at the end of the current time
for multi-rigid-body systems with an elliptic dry frictiolaw. step. A goal of a typical time-stepping scheme is to guaeante
In Section IV we develop a new formulation of the contaatonsistency of the dynamic equations and all model comggrai

Fig. 1. For a disc rolling on a surface, plots of the reductidkinetic energy
over time caused by approximating the disc as a uniform aegublygon.



at the end of each time step. However, since the geomette exposition, we ignore the presence of joints or bildtera
information at the end of the current time step is approxédatconstraints in the following discussion. However, all oéth
from that at the start of the time step, the solution will be idiscussion below holds in the presence of bilateral coimssra
error.

Early time-steppers used linear approximations of thelloca To describe the dynamic model mathematically, we first
geometry at the current time [16, 1]. Thus each contact wagroduce some notation. Let; be the position and orientation
treated as a point on a plane or a line on a (non-parallel) liog body j in an inertial frame and,; be the concatenated
and these entities were assumed constant for the durationveftor of linear velocitiesv and angular velocitiesv. The
the time step. Besides being insufficiently accurate in sorgeneralized coordinates), and generalized velocityy of
applications, some unanticipated side-effects arose [5].  the whole system are formed by concatenatingand v;

Increased accuracy can be obtained in explicit schemesrigpectively. Let\;, be the normal contact force at thith
including curvature information. This was done by Liu andontact and\, be the concatenated vector of the normal
Wang [9] and Pfeiffer and Glocker [14] by incorporating kinecontact forces. Led;; and \;, be the orthogonal components
matic differential equations of rolling contact (Montari2]). of the friction force on the tangential plane at thk contact
Outside the complementarity formalism, Kry and Pai [8] andnd A\¢, A, be the respective concatenated vectors. Lgt
Baraff [2] also make use of the contact kinematics equaiionsbe the frictional moment about th#h contact normal and
dynamic simulations of parametric and implicit surfacesahtg A, be the concatenated vector of the frictional moments. The
respectively. instantaneous dynamic model can then be written as follows.

The method of Tzitzouris [19] is the only geometrically =~ Newton-Euler equations of motion:
implicit method developed to date, but unfortunately ituiegs .
thzft the distance functi)n between the bodies and ¥W(;[Tgfels M(@)2 = Wndnt WA Woro + Wede - Aapp+ Ay (1)
derivatives be available in closed form. However, it is [illles whereM(q) is the inertia tensof\,,,;, is the vector of external
that this method could run successfully after replacing therces, \,,, is the vector of Coriolis and centripetal forces,
closed-form distance functions with calls to collisionetdton W, W, W,, and W, are dependent oy and map the
algorithms and replacing derivatives with difference appr normal contact forces, frictional contact forces, andtifical
mations from multiple collision detection calls, but poégdral moments to the body reference frame.
approximations common to most collision detection package Kinematic Map:
would generate very noisy derivatives. To our knowledge, )
such an implementation has not been attempted. One other q=Glq)v @
problem with Tzitzouris’ method is that it adapts its stephere G is the matrix mapping the generalized velocity of
size to precisely locate every collision time. While this igshe body to the time derivative of the position and oriewiati
a good way to avoid interpenetration at the end of a timene JacobianG may be a non-square matrie.¢, using a
step, it has the undesirable side-effect of forcing the ste@ unit quaternion to represent orientation) I&{ G = 1.
to be unreasonably small when there are many interacting Nonpenetration ConstraintsThe normal contact con-
bodies [10]. The method we propose does not suffer frogiraint for thesth contact is

this problem.

IIl. DYNAMIC MODEL FORMULTIBODY SYSTEMS . . . . .
where v;, is a signed distance function agap function

In complementarity methods, the instantaneous equatigqge the ith contact with the property)in(q,t) > 0 for
of motion of a rigid multi-body system consist of fiVeseparation,zpin(q,t) = 0 for touching, andy,(q,t) < 0
parts: (a) Newton-Euler equations,(b) Kinematic map for interpenetration. The above gap function is defined & th
relating the generalized velocities to the linear and amgulconfiguration space of the system. Note that there is usually

velocities, (c) Equality constraints to model jointsid) no closed form expression faf, (q, t).
Normal contact condition to model intermittent contactd an Friction Model:

(e) Friction law. Partga) and(b) form a system of ordinary ) . ,
differential equations(c) is a system of (nonlinear) algebraic (Ait, Aio, Air) € @rgmax —(vie Ay + vioAip + VirAyy) :
equations,(d) is a system of complementarity constraints, (Nig, Nigs Ai) € Fi(Nin, i) }
and (e) can be written as a system of complementarit : . . _ -
constraints for any friction law that obeys the maximum wor Ilhere.‘g IS tgef_relzétl\:)e ;_elgqty ?t g)ntait_and;he ;rfctlon
dissipation principle. In this paper we use an elliptic dr§ IpSOQI is defined byF;(Ain, i) = {(Ait; Aio, Air)

2 2
friction law [18]. Thus, the dynamic model is differential (2 ) + (@) + (L) < piX3} whereeg, e, ande;,

€e; €io €ir
complementarityproblem. To solve this system of equationsaretgiven positive constants defining the friction ellipsand
we have to set up a discrete time-stepping scheme agngdis the coefficient of friction at théth contact.
solve a complementarity problem at each time step. WeWe use a velocity-level formulation and an Euler time-
present below the continuous formulation as well as a Eulstepping scheme to discretize the above system of equations

time-stepping scheme for discretizing the system. To sfgnpl Let ¢, denote the current time, and be the time step.



Use the superscripté and ¢ + 1 to denote quantities at the IV. CONTACT CONSTRAINT

beginning and end of théth time step respectively. Using |, this section we rewrite the contact condition (Equatipn 3
v~ W —vh)/handg = ("' — q‘)/h, and wiiting a5 a complementarity condition in the work space, combine
in terms of the impulses we get the following discrete timg \with an optimization problem to find the closest points,
system. and prove that the resultant system of equations ensures tha
Myt = Myt + A(W A £ WA 4wl the contact constraints are ;gtisfied. Let us consideritthe
LW AL 4 ) co.ntaclt. For ease of exposm_on, we assume her_e_ that each
. , T . app vp object is a convex object_descrlbed by a smgle mphcnmf
qQ 7 =q +hGr A more general formulation where each object is described by
0< h)\fl+1 Ln(gH) >0 an intersection of implicit surfaces is given in AppendixL4et
041l 4+l Al I1N ) I91N s the two objects be defined by convex functigf{s;) < 0 and
OGS Nig s A € argmax —((vg ™) Al + (vig) N g(&) < 0 respectively, wherg; and &, are g:(e c)oordinates
+ (Ufrﬂ) Nir) of points in the two objects. Lea; and a; be the closest
. h()\fjl, )\f;q, )\fjl) € Fi(h\in, i)} points on the two objects. The equation of an implicit stefac
(4) has the property that for any poigt the point lies inside the
u(])bject for f(x) < 0, on the object surface fof(x) = 0, and
outside the object foif (x) > 0. Thus, we can define the gap
function in work space as eithgi(az) or g(a;) and write the
complementarity conditions as either one of the followiwg t

The argmax formulation of the friction law has a usef
alternative formulation obtained from the Fritz-John opality
conditions [18]:

EfUp, o W{ v 4+ pioa =0 conditions:
EgUpnOWZVlJrl‘FpoOU:O OS/\mJ_f(ag)ZO 6
E?UpnOW?VZJrl"'proo':O 0<Ain Lg(a;) >0 ©)
(Upn) o (Upn) — (Ef)71 (Pt opt) — (Eg)71 (Po © Po) wherea; anda, are given by
1 .
— (E)™ (prop:) 20 o argmin {[|& — &7 (&) <0, g(&) <0} (7)
5

It can be shown easily from the Karush-Kuhn-Tucker (KKT)
where the impulsgp) = hA(,), the matricesE:, Eo, E:, conditions of Equation 7 thai; anda. are the solutions of
and U are diagonal withith diagonal element equal tothe following system of algebraic equations.

e, €o, €, and pu; respectively,o is a concatenated vector
of the Lagrange multipliers arising from the conversiomiro a1 —ay = ~LVf(a) = 12Vg(as) ®)
the argmax formulation and; is equal to the magnitude of f(a1) =0, g(az) =0

the slip velocity at contact, ando connotes the Hadamard\heres, andi, are the Lagrange multipliers. The geometric

product. ] o meaning of the first two equations is that the normals to the
The above subproblem at a time step is either an LG syrfaces at their closest points are aligned with the lin

or an NCP depending on the time evaluation W) the jqining the closest points. The solution to Equation 8 gives

- 1 ' - :
approximation used for,(q"""), and the representation of,e ¢josest point when the two objects are separate. However
the friction model. IfW ., are evaluated dt and we use a first whena, = a,, the solution is either the touching point of the

order Taylor series expansion fgt,(q) and a linearized rep- o surfaces or a point lying on the intersection curve of the
resentation of the friction ellipsoid, we have an LCP. HoeV .4 surfaces 2. Thus. as written Equations 8 and 6 do not
the approximations involved introduce numerical art$aat guarantee non-penetration. However, note that the diimc

discussed in Section I. Moreover, the linear approximatibn
g(x) <=0 2:

the friction ellipsoid also leads to certain artifacts. bntrast, 00 <=0

if we evaluateW, at ¢ + 1, use a quadratic friction law \/

(Equation (5)), and use,(q‘*!), we have an NCP. We call y

this formulation ageometrically implicitformulation because ftg<=0
it ensures that the contact conditions are satisfied at theen /\
the time step. However, evaluating, (q‘*!) is possible only <=0

if V\{G have a closed fo_rm expression for the distance fU”Ct'O_rﬂg. 2. Three Contact cases: (left) Objects are separatd(@)iObjects are
which we do not have in general. Instead, we propose to defigéching (right) Objects are intersecting.

the gap function in terms of the closest points between tioe tw

objects and provide a set of algebraic equations for findifgtween touching points and intersecting points is that the
these closest points during the time step. The next sectioormals to the two surfaces at the touching points are aligne
discusses this approach in detail and proves that the ¢omnsglit while it is not so for intersection points. When = as, we

will enforce satisfaction of contact constraints at the efd lose the geometric information that the normals at the two
the time step. points are aligned if we write our equations in the form above




Rewriting the above equations in terms of the unit vectorslling without slip on a plane that we studied in SectionheT

allows us to avoid this problem. second example, taken from [18], consists of a sphere sginni
V/(ar) on a horizonFaI surface that comes to rest due to torsional
a; —ay = —|la; — azl\m friction. The time taken by the sphere to come to a complete
! stop is known analytically and we demonstrate that the tesul
Vfla1) = Vyg(az) (®)  of our simulation agree with the analytical predictionseTh
V(a1 Vg(az)| final example consists of a small ball moving in contact with
fa1) =0, g(az) =0 two larger fixed balls. We include it here to compare our

Proposition: Equation 6 and 9 together represent the consolutions with those based on earlier approaches [18, 9]. Al
tact constraints,.e., the two objects will satisfy the contactof our numerical results were obtained by PATH [6], a free
constraints at the end of each time step if and only golver that is one of the most robust complementarity prable
Equation 6 and 9 hold together. solvers available.

Proof: As d_iscussed_ above. _ A Example 1: Disc on a Plane
Note that since the first two vector equations are equatiiitg un

vectors, there are only two independent equations for eanch, . ; . . i
the above system hdsindependent equations hvariables. Section 1. For |Ilus_trat|ve purposes, we explain the fo.m'“"”
We can now formulate the mixed NCP for the geometricaII)P—f the full dyrlam|c model_ n qletan. The .”0””?" axis (.)f the
implicit time-stepper. The vector of unknownscan be parti- contact fram_en alvygys points n the merpag];—ams (_j|regt|on
tioned intoz — [u, v] whereu — [v, a1, as, P, Po; Pil and tangential axis always coincides with the:-direction.

) o : The mass matrixM is constant and the only force acting on
dv = [pn, o]. Th lit traint th d NCP ; ) . ST
andv = [pn, o] © equalily constraints in the mixe the body is due to gravity. The equation of the disc is given by

In this example we revisit the unit disc example from

are: filz,y) = (x —qz)? + (y — qy)* — 1, whereq is the location
- r+1 ¢ 41, 041 I4+1, 041 s ) = A8 ™ Y o dy) o S T
O0=-Mv™ +Mv + W, p," + W p; of the center of the disc in the inertial frame. L#t be the
+ WiHplt + Wit pit + pl, + Pl closest point on body 1 (the disc) to theaxis. Similarly, let
vf(afzﬂ) ay be the closest point on the-axis to body 1 ¢», = 0 and
0= (aftt —alth) 4 |altt - a§+1||v7;+1 can be removed from the system of unknowns). Given this
. . IV£ (@)l information, the matrices for this system can be shown to be:
_ Vi@ Vg(a5™) M = diagim, m, 0.5m) Papp = [0, —9.81 - m - h,0]T.
IVf@)] - Vg(az™)] (10)
0= f(alt? f t
! él+1> Wa = r" ®@n Wi = r ®
0=g(ay™) o
_ B2 (+1 TN\l+1. (+1 (41 {+1 —
0= EtUpn+ © (Wt ) " v " + Pt °o i Va1f1(a‘§+l) - BEZH@I _ qm;:|
0= EgUpiﬂ o (WZ)Z-HVZ-H + pf)“ oglt! _ 1y Ay . .
0 = E2Up/t! o (WT)H 1 4 pltl o glH1 wherer? is the vector from the center of gravity of the disc
et . ' to a; and® connotes the 2D analog of the cross product.
The complementarity constraints enare: There are 9 unknowns for this systemz =
(1 (+1 v, aj, a o] We can now formulate the
P f(a ) [ ’ 1, 2.5 Pn, ptal ) i
0< |:O.Il]+1:| 1 { =0 (11) entire system of equations for this simple model:
where 0= —Mv*' 4+ My’ + Wit pt + Wittt 4 po,
-1
¢=Up, " o Up;* — (EF)  (pi"opt!) (12)
—1 —1 4 4 4 4 ~
—(E2) (po"ope™) — (B (pi"op™) 0=ay" —a;™ +|lay"" —a;™'[|n (13)
041
In the above formulation, we seee R6" 9 v € R?"c the () — LW y (14)
vector function of equality constraints majps v] to R6m» 97 [Va, f1(a;™)]]
and the vector function of complementarity constraints snap () = fl(afﬂ) (15)
[u, v] to R?"< wheren, andn, are the number of bodies and 0< 0+1
. . . <fi (32 ) (16)
number of contacts respectively. If using convex bodiey,onl
: ; — gL e 041, 041
the number of contacts can be determined directly from the) = up,” (Wy v + 0" p; 17)
H o nbfl .
number of bodiesp, = > " . 0< ‘u2pfl+1pfl+1 _prrlprrl (18)
V. ILLUSTRATIVE EXAMPLES where equations 13 and 14 each provide one independent

In this section we present three examples to validate oequation.
technique against known analytical results and previous ap The initial configuration of the disc ig = [0, 1, 0], initial
proaches. The first example is the same example of a di&docity isv = [-3,0,3], mass ism = 1, andu = 0.4.
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Figure 1(a) shows the kinetic energy of the disc for our

implicit representation along with the Stewart-Trinkle RC or
implementation using various levels of discretizationtaslis oLr ; )
along the horizontal surface. When using an implicit curve oz % 1

representation to model the disc and our formulation we get 03r ]

no energy loss (within the numerical tolerancel6f ¢ used

Force (N)

04 i ]

for our simulations) as seen by the horizontal line. Whengisi 05 - ]
the LCP formulation we have energy loss as discussed earlier 06 - 1
07} {‘0‘ ——
08 e e e K K K e K-y Ao
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B. Example 2: Sphere on a Plane Time (s)

Here we consider a Sphere Spinning on a p|ane about fh@ 4. . FOT(..‘.ES for Example_ 2. The tangent_i:_:ll forces are bofiorGthe
normal of the plane. The initial configuration of the sphese Ecvti'tfhz,'sn}fﬁoggﬁ;ﬂéhfo;?;i'f?;'sglfiﬁgans't'ons doozwhen the sphere
q=1[0, 0,1, 1, 0, 0, 0]7 where the first three elements
are the position of the center of the sphere and the 4ast
are the unit quaternion representing the orientation. miii  C. Example 3: Sphere on Two Spheres
generalized velocity i = [0, 0, 0, 0, 0, 1.962]7, the first

h I he li he | h | This example consists of a small ball rolling and sliding on
three eements.ar_et € linear terms, the last three ee'"EE”tStwo larger balls, and is chosen to compare our model with
angular. The friction parameters used wefe= 1, ¢, = 1,

> du— A : o d those presented in [18] and [9]. Figure 5 shows a small unit
i%o_seor':l andy = 0.2. A step size ofh = 0.07 seconds was sphere in simultaneous contact with two larger fixed spheres

The sphere of radius 10 units is located(@t 0, 0) in the
From the initial conditions given, the sphere should roiate inertial frame and the sphere of radius 9 units is located

place with a constant deceleration due to the torsionaidric gt (0, 11.4, 0). There is also a constant force @f,, =
Figure 3 shows a plot of the velocities for the sphere given th_0, 2.6, —9.81, 0, 0, 0]7 applied to the small sphere. With
the time-stepping formulation. The analytical solution fllis  this force, the sphere initially has one of its contactsimgll
problem predicts that all velocities except should be zero, while the other contact is simultaneously sliding, theingl
and w. should be decreasing linearly to 0 with a slope of sontact transitions to sliding, and both contacts evehtual
1.962, reaching 0 at exactly= 1 seconds. The plot shows thatseparate. It is important to emphasize that all these tiansi

we agree with the analytical solution except that we reaoh z&ye captured using a fixed time step implementation.
velocity att = 1.05, since we are using a fixed time step and

the time at which spinning stops is in the middle of the time
step. The friction forces (Figure 4) also follow the analgti
solution. The tangential component of friction forcelisThe
tangential moment does not drop @aat 1.05 s, since we are
using an impulse-based time-stepping formulation with edix
time step and there is a torsional moment betw@®s to 1
second which contributes to the impulse. Our results match
those of the Tzitzouris-Pang and Stewart methods presented
in [18].

2 T
s '® e “® é; ? i
g ii I '\'0\.\5 as E;’ ] Fig. 5. A small sphere in contact with two large spheres.
§ Li | n , The initial configuration of the small sphere i§ =
€ osl 1 [0, 6.62105263157895, 8.78417110772903, 1, 0, 0, 0]7.
g osf - The initial velocity isv = [ 0, 0, 0, 0, 0, 0]. The friction
g 04 r ° ] parameters arez; = 1, ¢, = 1, ¢, = 0.3, andp = 0.2. There
g 0'2 I S ] were a total of 28 unknowns in our NCP formulation. We used
02 ‘ ‘ ‘ ‘ ‘ ‘ a step sizeh = 0.01 (Tzitzouris-Pang usé = 0.1).
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The generalized velocity of the sphere is shown in Fig-
ure 6. The smooth velocity profile agrees well with the
Fig. 3. Linear and angular velocities for Example 2. All \@ties except nonlinear Tzitzouris-Pang formulation [18]. The Liu-Wang
w are zero throughout the simulation. formulation [9] experienced non-smooth velocity jumps whe
the small sphere separated from the larger fixed spheres,
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which they attributed to an explicit time-stepping scheine.
the LCP Stewart-Trinkle implementation, the velocity plexfi
were very non-smooth. These results further confirm our
belief that both linearization and explicit time-steppitegd ¢
to inaccuracies.

Force (N)
Speed (m/s)

10

o
T

o

1 L 1 1 L It L L L
0 0.5 1 15 2 25 3 35 4 4.5 5
Time (s)

Fig. 8. Force and sliding speed at contact 2. The valug ef 0.2

KA
o
T
.

Velocity: linear (m/s), angular (rad/s)
(9
T
L

KA
(9]
T
N

where we sets = b = ¢ = 1 for a unit sphere centered at

N
S)

0 05 1 15 2 TimZ:(s) 3 35 4 45 5 the origin. This flexibility allows us to test various shafss
altering the 3 parameters, while the more difficult dynainica
Fig. 6. Velocities of small moving sphere. equations remain unaltered. For example, changing:thec

parameters would allow us to model ellipsoids rolling on
The fidelity of our method is further emphasized by Figellipsoids; the Tzitzouris-Pang formulation cannot be l@gp
ures 7 and 8 that show the forces and sliding speed magnitudiege there is no analytical gap function.
at the two contacts. Contadt starts as a sliding contact
and we see the sliding speed increases as the normal force VI. CONCLUSION
decreases. A_ISO’ the_magnltu_de_z of the fr|ct|on_ f_orce is bqua We presented the first geometrically implicit time-stempin
to uA1,, consistent with our friction law for a sliding contact.

) | ds. th Il soh fscheme for objects described as intersections of convex in-
At approximately 3.2 seconds, the small sphere separaes fry, \jities. This approach overcomes stability and acgurac
the large sphere at this contact, and all forces acting aacon

o problems associated with polygonal approximations of ¢moo
1 and the sliding speed _drop to zero. C_:ontaaln_the other objects and approximation of the distance function for tlwe o
hand starts out as a rolling contact until approximatety 3

ds when | o lidi ina the rolli jects in intermittent contact. We developed a new formatati
seconds when it transitions to sliding. During the rollif@pe .. \he contact constraints in the work space which enabled
the frictional magnitude is bounded Ao,

icti o A2, @S required by ¢ 1o formulate a geometrically implicit time-stepping sote
the friction law, and the sliding speed is 0. At the transitio g o NCP, We demonstrated through example simulations the
to sliding, the magnitude of the friction force becomes équﬁdelity of this approach to analytical solutions and prexsty
to p2, and the sliding speed begins to increase. Finally, 8k rined simulation results.
apprommat_elyt = 36 seconds,_ t_he contact breaks and all We see several directions for future work. We would like to
forces at this contact and the sliding speed drop to zero. address the question of existence and uniqueness of s@utio
. of the NCP we formulate. We will perform more extensive
B numerical experimentation, and compare these solutiotts wi
/" nomelforce solutions obtained when the closest distance is computed
25t 1 through a function call. We plan to precisely quantify the
tradeoffs between the computation speed and physical accu-
racy of simulations for different object representatioasy(,
,, polyhedral, implicit, spline), friction approximationand the
1r 1 choice between geometrically explicit or implicit methods
Although we have restricted our discussion to convex object
we believe that this framework can be extended to non-convex
o o5 1 15 2z 25 3 35 4 45 objects described as unions of convex objects as well as
Time (5) parametric surfaces. Finally, we want to incorporate cfiié

Fig. 7. Force and sliding speed at contact 1. Contact 1 isyalvetiding impact laws to simulate a broader class of problems.
until separation, hence thenormal force curve and friction magnitude curve
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as either one of the following two sets of conditions:
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