
Provably-Good Distributed Algorithm for Constrained Multi-Robot
Task Assignment for Grouped Tasks

Lingzhi Luo
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213
lingzhil@cs.cmu.edu

Nilanjan Chakraborty
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213
nilanjan@cs.cmu.edu

Katia Sycara
Robotics Institue

Carnegie Mellon University
Pittsburgh, PA 15213
katia@cs.cmu.edu

Abstract—In this paper, we present provably-good distributed
task assignment algorithms for a heterogeneous multi-robot
system where the tasks form disjoint groups and there are
constraints on the number of tasks a robot can do (both withinthe
overall mission and within each task group). Each robot obtains a
payoff (or incurs a cost) for each task and the overall objective for
task allocation is to maximize (minimize) the total payoff (cost)
of the robots. In general, existing algorithms for task allocation
either assume that tasks are independent, or do not provide
performance guarantee for the situation where task constraints
exist. We show that our problem can be solved in polynomial time
by a centralized algorithm (by reducing it to a minimum-cost
network flow problem) and then present a distributed algorithm
to provide an almost optimal solution. The key aspect of our
distributed algorithm is that the overall objective is (almost)
maximized by each robot maximizing its own objective iteratively
(using a modified payoff function based on an auxiliary variable,
called price of a task). Our distributed algorithm is polynomial
in the number of tasks as well as the number of robots.

Index Terms—Multi-robot task assignment, Task allocation,
Auction algorithm, Distributed Algorithm.

I. I NTRODUCTION

For autonomous operations of multiple robot systems, task
allocation is a basic problem that needs to be solved ef-
ficiently [1], [2]. The basic version of the task allocation
problem (also known as linear assignment problem in combi-
natorial optimization) is the following:Given a set of agents
(or robots) and a set of tasks, with each robot obtaining some
payoff (or incurring some cost) for each task, find a one-to-
one assignment of agents to tasks so that the overall payoff
of all the agents is maximized (or cost incurred is minimized).
The basic task assignment problem can be solved (almost)
optimally in polynomial time by centralized algorithms [3],
[4] and distributed algorithms with a shared memory1 [5].
Generalizations of the linear assignment problem where the
number of tasks and agents are different and each agent is
capable of doing multiple tasks can also be solved optimally
by both centralized and distributed algorithms [4], [6], [7].
However, in all of these works, it is assumed that the tasks
are independent of each other and an agent can do any number
of tasks. In practice, robots have limited battery life and thus
there is a limit on the number of tasks that a robot can do.
Furthermore, the tasks may not be independent and may occur

1In a shared memory model of distributed computation, it is assumed that
there is a memory accessible to all agents where the results of computation
can be stored.

in groups, where there is a constraint on the number of tasks
that a robot can do from each group. Therefore, in this paper,
we introduce and study the multi-robot task allocation problem
with group constraints, where robots have constraints on the
number of tasks they can perform (both within the whole
mission and within each task group).

More specifically, the multi-robot (task) assignment problem
for grouped tasks (MAP−GT) that we study can be stated as
follows: Given nr robots and nt tasks, where (a) the tasks are
organized into ns disjoint groups, (b) each robot has an upper
bound on the number of tasks that it can perform within the
whole mission and also within a group, and (c) each robot, ri ,
has a payoff, ai j for each task, tj , find the assignment of the
robots to tasks such that the sum of the payoffs of all the robots
is maximized. For concreteness, a task group can be thought
of as acompound taskcomposed of more than one atomic
task where one robot is required for each atomic task. As
an illustrative example, consider the problem of transporting
objects from a start location to a goal location where an
object needs to be carried by multiple robots. Such pick and
place tasks are common in many application scenarios like
automated warehouse, automated ports, and factory floors. If
three robots are required to carry an object then the overall
task of carrying the object can be decomposed into three
atomic tasks of robots holding the object at three different
places and moving with it. Thus, the three atomic tasks
form a task group where each task in a group has to be
performed by one robot and the robots have to execute the
tasks simultaneously. The energy costs incurred by the robots
in transporting an object may be different because the weights
and load carrying capabilities of the robots may be different
and the force transmitted from the object to the robots may be
different depending on the holding location. Thus, the problem
of assigning robots to tasks forpick and placeoperations for
object transport to minimize total energy cost can be modeled
as aMAP−GT with each robot constrained to do at most
one task within each task group Our work here focuses on the
design and theoretical analysis of algorithms (both centralized
and distributed) for multi-robot task assignment for grouped
tasks.

We first show that the multi-robot assignment problem for
grouped tasks can be reduced to a minimum cost network
flow problem. Thus,MAP−GT can be solved optimally in
polynomial time by using standard algorithms for solving
network flow problems [4]. We then present a distributed

iterative algorithm for solvingMAP−GT where it is assumed
that the robots have access to a shared memory (or there is
a centralized auctioneer). Our algorithm is a generalization of
the auction algorithm developed by Bertsekas [5] for solving
linear assignment problems. We prove that byappropriately
designing and updating an auxiliary variable for each task,
called the price of each task, each robot optimizing its own
objective function leads to a solution where the overall ob-
jective of all the robots is maximized. Mathematically, the
price of a task is the Lagrange multiplier (or dual variable)
corresponding to the constraint that each task can be done by
exactly one robot. The shared memory maintains the global
values of the price of each task. However, assumption of
the availability of such a shared memory may be unrealistic
for many deployments of multi-robot systems. Therefore, we
also present a totally distributed algorithm, where each robot
maintains a local value of the global price and updates it using
a maximum consensus algorithm. In our distributed algorithm,
each robot iteratively assigns itself (and informs its neighbors)
to the tasks that is most valuable to it based on her payoff
and local price information. We prove that this algorithm
converges to the same solution as the algorithm with the shared
memory assumption. This is analogous to the work in [8],
where the distributed algorithm with a shared memory by [5]
for linear assignment problem was made totally distributedby
combining it with a maximum consensus algorithm.

Our algorithm forMAP−GT provides a solution that is
almost-optimal, namely, within a factor ofO(ntε) of the
optimal solution wherent is the number of tasks andε
is a parameter to be chosen. This approximation guarantee
is called almost-optimal, since we can chooseε to make
the solution arbitrarily close to the optimal solution. The
running time of our algorithm for the shared memory model
is O(nrn2

t
max{ai j }−min{ai j }

ε). For the totally distributed model,
we will need to multiply the complexity by the diameter of
the communication network of the robots, which is at most
nr . Thus, our algorithm is polynomial in the number of robots
and number of tasks. However, it is pseudo-polynomial in the
payoff values.

This paper is organized as follows: In Section II, we
discuss the related literature on multi-robot task allocation.
In Section III, we give a formal definition of the multi-robot
assignment problem for groups of tasks with constraints on the
number of tasks that a robot can do. In Section IV, we present
the assignment algorithm with shared-memory model and in
Section V, we briefly discuss how to extend the algorithm to
a totally distributed algorithm with consensus techniques. In
Section VII, we demonstrate the performance of our algorithm
with some example simulations. Finally, in Section VIII, we
present our conclusions and outline future avenues of research.
This work is an extension of our previous work that appeared
in [9].

II. RELATED WORK

Task allocation is important in many applications of multi-
robot systems, e.g., multi-robot routing [10], multi-robot deci-
sion making [11], and other multi-robot coordination problems

(see [12], [13]). There are different variations of the multi-
robot assignment problem that have been studied in the
literature depending on the assumptions about the tasks and
the robots (see [1], [12], [14] for surveys), and there also
exists multi-robot task allocation systems (e.g., Traderbot [15],
[16], Hoplites [17], MURDOCH [18], ALLIANCE [19]) that
build on different algorithms. One axis of dividing the task
assignment problem is as online versus offline. In offline task
allocation the set of tasks are known beforehand, whereas in
online problems the tasks arise dynamically. In this paper,we
will consider the offline task allocation problem and therefore
we will divide our discussion of the relevant literature here
into the offline and online task allocation problems. Moreover,
our objective is to design algorithms for task allocation with
provable performance guarantees. Therefore, we will elaborate
on algorithms that provide performance guarantees.
Offline Task Allocation: In offline task allocation, the payoff’s
of a robot for each task is assumed to be known beforehand.
In the simplest version of the offline task allocation problem
(also known as the linear assignment problem), each robot
can perform at most one task and the robots are to be
assigned to tasks such that the overall payoff is maximized.
The linear assignment problem is essentially a maximum
weighted matching problem for bipartite graphs. This problem
can be solved in a centralized manner using the Hungarian
algorithm [3], [4]. Bertsekas [5] gave a distributed algorithm
(assuming a shared memory model of computation, i.e., each
processor can access a common memory) that can solve the
linear assignment problemalmost optimally. In subsequent pa-
pers, the basic auction algorithm was extended to more general
task assignment problems with different number of tasks and
robots and each robot capable of doing multiple tasks [5],
[7]. Recently, [8] have combined the auction algorithm with
consensus algorithms in order to remove the shared memory
assumption and obtain a totally distributed algorithm for the
basic task assignment problem. Different from the dual-based
approach above, primal approach has also been proposed for
task assignment [20], which has recently been adapted to
multi-robot domain [21]. However all of this work assume
that the tasks are independent of each other. For the more
general case, where the tasks are forming disjoint groups such
that each robot can be assigned to at most one task from each
group and there is a bound on the number of tasks that a robot
can do, [9] generalized the auction algorithm of [5] to give an
algorithm with almost optimal solution.

In the above discussion, the total payoff of a robot depends
on the individual tasks assigned to a robot, but it does not
depend on the sequence in which the tasks should be done or
the combination of tasks that the robots perform. For multi-
robot routing problems, where the individual robot payoffs
depend on the sequence in which the tasks are performed,
[10] has given different auction algorithms with performance
guarantees for different team objectives. When the objective
is to minimize the total distance traveled by all the robots
they provide a 2-approximation algorithm. For all other objec-
tives the performance guarantees are linear in the number of
robots and/or tasks. For example, when allocatingm spatially
distributed tasks ton robots, for minimizing the maximum

distance traveled by a robot, their algorithm gives a perfor-
mance guarantee ofO(n). In [13], the task allocation problem
considered is path-dependent (e.g., the payoffs of assigning
multiple tasks to one robot depend on the order of assigning
tasks to the robot), and a distributed algorithms (CBBA) are
designed by combining consensus techniques with auction
and bundle algorithms to achieve a conflict-free assignment
solution. In [22], [23], CBBA was extended to the situation
with asynchronous communication channel among agents and
large changes in local situational awareness so that each agent
can build bundles and perform consensus locally. However,
constraints among tasks are not considered in the work. In
[24], a distributed algorithm was designed to solve the task
allocation problem with coupled constraints among tasks (e.g.,
assignment relationship, where the value of a task depends on
whether other tasks have been assigned or not, and temporal
relationship, where the value of a task depends on when it is
performed relative to other tasks). However, no performance
guarantee is achieved in the work. The problem of forming
coalition of robots to single tasks has been studied to optimize
the total performance of all tasks [25], [26], [27], [25] has
provided heuristics to balance the task allocation of robots
and avoid disproportionate task load compared to robots’
capacity. It is assumed that every robot can communicate with
every other robot, which might not be a realistic assumption
in some operating scenarios. [27] presented a few efficient
heuristics for the problem with inter-task resource constraints,
and analyzed their performance bounds.

Market-based approaches [12] have been proposed for
multi-robot task allocation based on the inspiration of real trad-
ing markets and their distributed nature, where any robot can
keep exchanging/subcontracting its assigned tasks to maximize
profits. Market-based approach has shown good experimental
results in practise, however, there is no general provable
performance guarantee of its solution. Although there exists
auction procedure in this approach, the market-based method
is very different from primal-dual based auction algorithm[5]
in how to iteratively set the bidding price for tasks.

Online Task Allocation: Even the simplest version of the
online task allocation problem, which is (a variation of) the
online linear assignment problem is NP-hard [1]. As stated
before, this is the online MWBMP where the edge weights are
revealed randomly one at a time, i.e., the tasks arrive randomly
and a robot already assigned to a task cannot be reassigned.
Greedy algorithms for task allocation, wherein the task is
assigned to the best available robot has been used in a number
of multi-robot task allocation systems (e.g., MURDOCH [18],
ALLIANCE [19]) and therefore, have the same competitive
ratio of 1

3 as [28], if the payoff’s are non-negative and satisfy
some technical assumptions. Note that the greedy algorithm
gives a solution that is exponentially worse in the number of
robots, when the objective is to minimize the total payoff [28].
This is different from the offline linear assignment problem
where both the maximization and minimization problems can
be solved optimally in polynomial time. For the general case
of online task assignment with grouped tasks, [29] provided
competitive analysis of greedy auction algorithm developed
in [9], and proved an approximation ratio of the algorithm.

There are other variations of the task allocation problem
studied in the multi-robot task allocation community, as well as
operation research community that have been shown to be NP-
hard, and for many of them there are no algorithms with worst
case approximation guarantees [1]. Therefore, a substantial
amount of effort has been invested in developing and testing
heuristics for dynamic task allocation [30], [31], [32]. These
algorithms are based on distributed constraint optimization
(DCOP). Auction-based heuristics for multi-robot task alloca-
tion in dynamic environments have also been proposed, where
the robots may fail during task execution and the tasks need
to be reassigned [33], [34].

III. PROBLEM STATEMENT

In this section, we give the formal definition of our multi-
robot task assignment problem with grouped tasks. We will
first introduce some notations. Suppose that there arenr robots,
R= {r1, . . . , rnr}, andnt tasks,T = {t1, . . . ,tnt}, for the robots.
Let ai j ∈R be the payoff for the assignment pair(r i ,t j), i.e.,
for assigning robotr i to task t j . Without loss of generality,
we assume that any robot can be assigned to any task. Each
task must be performed by exactly one robot. Each robot can
perform at mostNi tasks (we call,Ni , thebudgetof robot r i).
Since, performing each task needs a single robot, we should
have ∑nr

i=1Ni ≥ nt , for all tasks to be performed. Letfi j be
the variable that takes a value 1 if task,t j , is assigned to
robot, r i , and 0 otherwise. The task setT forms ns disjoint
groups/subsets{T1, . . . ,Tns} so that∪ns

k=1Tk = T. We assume
that each robot,r i , can perform at mostNk,i tasks from task
group Tk, which we call the task group constraints (TGC).
Mathematically, TGC can be written as

∑
j : t j∈Tk

fi j ≤ Nk,i , ∀i = 1, . . . ,nr , k = 1, . . . ,ns (1)

The overall objective is to assign all tasks to robots so
that the total payoff from the assignment is maximized. The
multi-robot task assignment problem with grouped tasks can
formally be stated as follows:

Problem 1. Given nr robots andnt tasks with the tasks
forming ns disjoint groups, maximize the total payoffs of
robot-task assignment such that each task is performed by
exactly one robot, each robotr i performs at mostNi tasks in
the overall mission and at mostNk,i tasks from a task group
Tk.

Problem 1 can be written as an integer linear program (ILP)
given below

max
nr

∑
i=1

nt

∑
j=1

ai j fi j

s.t.
nr

∑
i=1

fi j = 1, ∀ j = 1, . . . ,nt , (2)

nt

∑
j=1

fi j ≤ Ni , ∀i = 1, . . . ,nr , (3)

∑
j : t j∈Tk

fi j ≤ Nk,i , ∀i = 1, . . . ,nr ,k = 1, . . . ,ns, (4)

fi j ∈ {0,1}, ∀i, j. (5)

In the above formulation, the optimization variables are the
binary assignment variables,fi j . Equation (2) states that each
task must be assigned to exactly one robot. Equation (3) gives
the budget constraints of each robot. Note that the above
problem is a generalization of the linear assignment problem
(LAP). In LAP, Equation (4) is not present and in Equation (3),
Ni = 1.

Remark 1. Generally speaking, the assignment payoffai j can
be considered as the difference between assignment benefit
bi j and the assignment costci j , i.e., ai j = bi j − ci j . Thus, if
cost ci j is the only component to be considered, (i.e.,bi j =
0), Problem 1 would become an assignment problem in the
form of cost minimization. Note that some papers use the term
payoff for the benefitbi j and the term utility forai j . In the
context of this paper, we will use the terms payoff and utility
interchangeably.

The MAP−GT problem defined above can be solved in
polynomial time in the number of tasks and number of robots
by a centralized algorithm by reducing it to a network flow
problem. We will then use a dual decomposition-based method
to design a distributed algorithm forMAP−GT and also show
that the algorithm can be made totally distributed. For clarity
of exposition, we will first present the solutions toMAP−GT
under the following assumptions: (a)Nk,i = 1 for all task
groups, i.e., each robot can do at most one task from each
group and (b) each robot has to perform exactlyNi tasks
during the mission. In Section VI, we will show how these
assumptions can be removed. ThusMAP−GT problem with
assumptions (a) and (b) above can be written as:

max
nr

∑
i=1

nt

∑
j=1

ai j fi j (6)

s.t.
nr

∑
i=1

fi j = 1, ∀ j = 1, . . . ,nt (7)

nt

∑
j=1

fi j = Ni , ∀i = 1, . . . ,nr (8)

∑
j : t j∈Tk

fi j ≤ 1, ∀i = 1, . . . ,nr ,k = 1, . . . ,ns (9)

fi j ∈ {0,1}, ∀i, j (10)

Note that the constraints above implicitly imply that (a) the
number of tasks in any subset must be no more than the
number of robots (otherwise at least one task in the subset
cannot be performed), i.e., maxns

k=1 |Tk| ≤ nr , and (b) the
number of subsets must be no less than anyNi (otherwise
r i cannot be assigned toNi tasks), i.e.,ns ≥ maxnr

i=1Ni .

IV. A LGORITHM DESIGN AND PERFORMANCEANALYSIS

In Section IV, we design algorithms to get the optimal (or
almost-optimal) solution for multi-robot task assignmentwith
grouped tasks under assumptions (a) and (b) in Section III.
First, we show how to reduce the problem to a min-cost
network flow problem, which can be solved in polynomial
time usingcentralizednetwork flow algorithm (Section IV-A).
Second, we look at adistributedway to find the optimal solu-
tion, where a centralized controller is not required, and instead
each robot can make decisions on its own in a distributed
way. In Section IV-B, we design a distributed algorithm, which
extends the basic auction algorithm for LAP in [5], and prove
that the algorithm can achieve an almost-optimal solution.
The algorithm is implemented in each single robot, so the
decision-making process is distributed. However, each robot
needs a shared memory (i.e., a centralized component) to
access some global information of each task, i.e., the highest
up-to-date bidding price of each task from all robots, which
are auxiliary variables created and maintained during the
algorithm implementation. In Section V, we remove the shared
memory assumption to make our algorithm totally distributed,
by using consensus techniques among networked multi-robot
system. Thus robots do not need to know the global price
information of each task. Instead, each robot just needs to
get the local task price information through local peer-to-peer
communication with its neighbors. In this way, we remove the
shared memory requirement and make the algorithm totally
distributed. The distributed algorithm can still achieve the
almost-optimal solution quality.

A. Centralized Solution: Reduction to network flow problem

For anyMAP−GT problem, we can construct a correspond-
ing minimum-cost network flow problem, whose solution
would lead to the solution of theMAP− GT problem in
polynomial time. A minimum cost network flow problem is
defined as follows: Given a flow network, which is a directed
graphG = (V,E) with (a) some nodes inV acting as source
nodes and sink nodes respectively, and (b) each edge inE
having a positive capacity, some cost and some non-negative
flow amount, find a route of the flows from the source to
sink nodes such that the total flow cost is minimized, where
the cost of sending a flow along each edge is defined as the
product of flow amount and edge cost, while the flows satisfy
the capacity constraints of edges, and conservation constraints
for all nodes except source and sink nodes [35].

The MAP−GT problem can be reduced to a network flow
problem by the following construction (shown in Figure 1).
We form a directed graphG = (V,E), with a set of nodes
V = R

⋃
T

⋃
S, and edgesE = E1

⋃
E2, where

• Nodes: R= {r i |i = 1, . . . ,nr} represent robots,T = {t j | j =
1, . . . ,nt} represent tasks,S = {Ti,k|i = 1, . . . ,nr ,k =
1, . . . ,ns} are introduced as auxiliary nodes to represent
each task subsetTk for each robotr i .

• Edges: E1 = {(r i ,Ti,k)|i = 1, . . . ,nr ,k = 1, . . . ,ns}, and
E2 = {(Ti,k,t j)|∀i, j,k, s.t., t j ∈ Tk}.

• Source and sink nodes:All nodes inR are source nodes
with supplyNi (i.e., the total amount of flow out from a

source noder i), and all nodes inT are sink nodes with
demand 1 (i.e., the total amount of flow into a sink node).

• Capacity and cost of edges:The capacity of all edges in
E is 1. The cost for edges inE1 is 0, while for edges
(Ti,k,t j) in E2 is −ai j .

• Flow: the variablefi j , associated with each edge inE2

betweenTi,k and t j , represents the flow from nodeTi,k

to nodet j , wheret j ∈ Tk. Amount of other flows along
edges inE1 can be determined from{ fi j }, according to
the flow conservation and edge capacity constraints, but
they do not change the objective since the cost of edges
in E1 is set to be zero.

Fig. 1. Reduction to the minimum-cost network flow problem. For display
purpose, just robotr1, its corresponding nodesT1,k and edges are shown. For
each other robotr i , there are another set of nodes{Ti,k|k = 1, . . . ,ns}, edges
{(r i ,Ti,k)|k = 1, . . . ,ns} and{(Ti,k,t j)|∀t j ∈ Tk}, which are omitted.+N1 and
−1 represent nodes’ supply and demand;[0,1] shows that the capacity of flow
along the edges is 1.

The optimal solution forMAP−GT can be obtained by
solving the minimum-cost network flow problem for the
network constructed above. This can be seen by noting the
following facts:

• Constraint (7) gives the demand constraint at each sink
node, which is equal to 1 and Constraint (8) gives the
supply constraint at each source node, which isNi .

• The capacity constraints on the edges inE1 are identical
to constraints (9) that state that the maximum flow from
any r i to any task group subsetTi,k is 1.

• The objective function of the network flow problem,
namely, min∑i ∑ j ci j fi j is equal to the objective function
max∑i ∑ j ai j fi j , sinceci j = −ai j for edges inE2 and the
cost of edges inE1 is 0.

• The constraints of minimum-cost flow problem yield a to-
tally unimodular coefficient matrix. Besides, all the edge
capacities in our constructed flow problem are bounded
by integers, which leads to integral optimal solution [35].
So Constraints (10) are satisfied.

Thus our assignment problem can be equivalently expressed
as a network flow problem. In the solution of the minimum-
cost network flow problem, the non-zero (value 1) flow inE2

corresponds to the optimal assignment ofMAP−GT problem
in Section III, i.e., if in the optimal solution of minimum-
cost flow problem, fi j = 1, then we construct the optimal
assignment by assigning taskt j to robotr i . The minimum-cost

network flow problem is a classical problem that has been
studied extensively. Centralized polynomial-time algorithms
exist that can be used to compute the optimal solution [35].
Therefore, we can directly use the off-the-shelf algorithms to
solveMAP−GT in a centralized way.

To solve theMAP−GT problem as a network flow problem,
a centralized controller is required that knows the payoffsand
budgets of all the robots. The controller solves the problem,
and then sends back commands to robots prescribing their task
assignments. However, in applications of multi-robot systems,
where a centralized controller is usually vulnerable if not
infeasible, there is often need for distributed algorithmsso that
robots can make decisions by themselves in the field according
to the information they possess. For ease of exposition we first
present the distributed algorithm assuming a shared memory
model. We call this an auction-based algorithm following the
use of the terminology in [5] for LAP. We then present the
totally distributed version of our algorithm.

B. Distributed Solution: Auction-based Algorithm Design

In this section we present a distributed solution with a
shared memory for MAP-GT. Generally speaking, our solution
approach falls within the class of methods known as dual
decomposition methods in the optimization literature [36].
The intuition for our solution approach can be understood
by looking at the dual of the optimization problem given
by Equations (6) - (9). Note that Equation (7) states that
each task can be assigned to one robot and hence gives a
constraint among the robots, i.e., these are thecomplicating
constraints. All the other constraints are constraints belonging
to each robot. The dual function,q(p) obtained by dualizing
the complicating constraints is

q(p) = maxfi j

nr

∑
i=1

nt

∑
j=1

ai j fi j +
nt

∑
j=1

p j(1−
nr

∑
i=1

fi j)

s.t.
nt

∑
j=1

fi j = Ni , ∀i = 1, . . . ,nr

∑
j :t j∈Tk

fi j ≤ 1, ∀i = 1, . . . ,nr ,k = 1, . . . ,ns

(11)

where p j is the dual variable corresponding to the constraint
that task t j can be done by exactly one robot, given by
Equation (7). The variablep j is called theprice of task t j .
The variablep is the nt × 1 vector consisting of the price
of all the tasks. The dual optimization problem can then be
written as

minp j maxfi j

nr

∑
i=1

nt

∑
j=1

ai j fi j +
nt

∑
j=1

p j(1−
nr

∑
i=1

fi j)

s.t.
nt

∑
j=1

fi j = Ni , ∀i = 1, . . . ,nr

∑
j :t j∈Tk

fi j ≤ 1, ∀i = 1, . . . ,nr ,k = 1, . . . ,ns

(12)

From the dual problem given by Equation (12), we can deduce
that if the price vector of all tasks,p, is fixed, the objective

can be maximized by each individual robot,r i , solving the
following problem:

maxfi j

nt

∑
j=1

(ai j − p j) fi j

s.t.
nt

∑
j=1

fi j = Ni

∑
j :t j∈Tk

fi j ≤ 1, ∀k = 1, . . . ,ns.

(13)

This suggests the following iterative approach that we use in
this paper. Our solution approach is an extension of the auction
algorithm [5] developed for linear assignment problems. In
each iteration, for a given price vector, each robot solves the
optimization problem given by Equation (13) andbids for the
tasks for which it has the most value (subject to the budget
constraints and task group constraints). In the bid, the price
each robot sets for the tasks it selects is according to a certain
rule. The price vector (or dual variable) gets updated by a
centralized coordinator by setting the price of each task tothe
maximum price in the received bids. Then the biding process
repeats until the bids do not change. The primary challenge in
designing such an iterative algorithm is the design of the price
update rule such that it is guaranteed that each robot trying
to maximize its own value of assignment converges to an
assignment that satisfies all the constraints and maximizesthe
overall objective. Note that, in the above iterative scheme, the
budget constraints and the task group constraints are always
satisfied during the iterations. The bidding process also ensures
that the assignments are always integral (orfi j ∈ {0,1}, i.e., a
robot is not assigned to a fraction of a task). However, multiple
robots may want the same tasks (i.e., there may be conflicts
in the assignment). The price update rule has to ensure that
the bidding process converges and there are no assignment
conflicts at the end.

We will now introduce some notation to rewrite Equa-
tion (13) compactly and also introduce some terminology that
we will be using in the proofs of convergence and (almost)
optimality of our method. In the discussion below we will use
the terms time and iteration interchangeably. Let the pricefor
taskt j at time (or iteration)τ be p j(τ). The net value of a task
t j to robot r i at time τ is vi j (τ) = ai j − p j(τ). The iterative
bidding from robots leads to the evolution ofp j(τ).

For robotr i , let j∗k be the index of the task with maximum
value from task groupTk and vi j ∗k

be the value of this task,
i.e.,

vi j ∗k
= maxt j∈Tk{ai j − p j(τ)}.

Let J∗i be the index set{ j∗k}k=1,...,ns. Let Ji ⊆ J∗i be the
index set of the tasks assigned to robotr i at any time (we
omit the explicit dependence ofJ∗i andJi on τ for notational
simplicity). From Equation (13), every robotr i wants to be
assigned to a task setTJi = {t j | j ∈ Ji} with maximum value
while satisfying its constraints|Ji |= Ni andTJi

⋂
Tk ≤ 1,∀k =

1, . . . ,ns. Mathematically,

∑
j∈Ji

(ai j − p j(τ)) = ∑(
(Ni)
max)

k=1,...,ns
{vi j ∗k

} (14)

where the operator max(Ni) takes in a collection of numbers as
an argument and returns theNi biggest values of the collection
and we abuse notation slightly so that

(
(Ni)
max)k=1,...,ns{vi j ∗k

} , (
(Ni)
max){vi j ∗k

|k = 1, . . . ,ns}.

Therefore the right hand side of Equation (14) gives the sum
of the Ni biggest values of the tasks from each group (for
robot r i). When Equation (14) is satisfied, we say robotr i is
happy. If all robots are happy, we say the whole assignment
and the prices at iterationτ areat equilibrium.

Suppose we fix a positive scalarε. When each assigned task
for robot r i is within ε of being in the set ofr i ’s maximum
values, that is,

{ai j − p j(τ)| j ∈ Ji} ≥ (
(Ni)
max)k=1,...,ns

(max
t j∈Tk

(ai j − p j(τ))− ε)

(15)
(after sorting both the left and right sets of (15) above, any
value in the left set is no less than its corresponding value in
the right set), we say robotr i is almost happy. If all robots
are almost happy, we say the whole assignment and the prices
at iterationτ arealmost at equilibrium.

Price Update Rule:In the discussion above, we have
described the procedure by which each robot computes the
set of tasksJi for which it bids. We will now describe the
price update procedure for the tasks for which robotr i bids.
Let j ′k be the index of the task with second best value from
task groupTk, i.e.,

j ′k = argmaxt j∈Tk, j 6= j∗k
vi j .

Let j∗k′ be the index of the(Ni + 1)-th highest value task in
J∗i . The new price of each taskj∗k ∈ Ji is

p j∗k
(τ +1) = p j∗k

(τ)+ (v j∗k
(τ)−max{v j∗

k′
(τ),v j ′k

(τ)})+ ε.
(16)

In words, the new price of a task is the old price plus the value
that would have been lost if the robot could not be assigned to
a task inJi but were instead assigned to the next best candidate
task. The new task price guarantees that even after price update
in the iteration, the selected tasks still havealmost the most
value for the robot with relaxation valueε. The termε is a
parameter of choice and it needs to be added to ensure that
the value of a task whose price has changed increases by at
least ε. This parameter is introduced to avoid the algorithm
from cycling when the value of a task is equal for two robots.

We will now present the overall auction-based algorithm
for task allocation for grouped tasks. We denote bypi

j(τ), the
price for taskt j held by robotr i . During any given iteration,
any subset of robots may take part in the bidding (one extreme
being that one robot bids in every iteration and the other
extreme being that all robots bid in every iteration). For ease
of exposition, we will present the algorithm and proofs of
performance of the algorithm assuming that the robots bid
sequentially in a pre-specified order (with one robot bidding
in every iteration). The algorithm consists of the following
steps:

1) Initialization: Setτ = 0, and initialize the price variables,
p j(τ) = 0 for each taskt j .

2) Bidding step: Robot, r i , using the price vectorp j(τ),
computes the set of tasksJi that it will bid for and com-
putes the updated pricespi

j(τ + 1),∀ j ∈ Ji , if required.
It communicatespi

j to the auctioneer.
3) Price Agglomeration Step: Set p j(τ +1) = maxi{pi

j(τ +
1)}, ∀ j = 1, . . . ,nt . Communicatep j(τ +1) to all robots.

4) Convergence Condition: If p j(τ + 1) = p j(τ), ∀ j =
1, . . . ,nt , stop; otherwise,τ = τ +1 and go to step 2.

The key step in the above algorithm is the bidding step for
each robot which is described in Algorithm 1. In the above
discussion, for ease of exposition, we have assumed that robots
bid sequentially during any iteration round. This is known
as Gauss-Siedel iteration [7]. However, for convergence we
do not need the robots to bid sequentially. In fact, as we
will discuss later, the robots can bid simultaneously (Jacobi
iteration) or asynchronously and can converge to an (almost)
optimal solution as long as there is a bound on the number of
iterations within which a robot makes a bid. We compare the
performance of the Jacobi iteration versus the Gauss-Siedel
iteration in Section VII.

Algorithm 1 describes in detail the bidding procedure that
each robot uses to compute its own bids. As before, in
Algorithm 1, let Ji(τ) be the index set of tasks that robot
i bids for at time τ. Let Ki(τ) be the index of the task
groups (or subsets) from which the tasks have been assigned
to the robots at timeτ. The bid prices for robotr i at time
τ before agglomeration is denoted bypi(τ) (pi is a nt × 1
vector) andp is a nt ×1 vector denoting the prices of all the
tasks after agglomeration. As before, we will usep j to denote
the j-th component ofp, i.e., the price of the taskj after
agglomeration.

During the first part of Algorithm 1 (from Lines 3 to 9),
robot r i updates its assignment information from its previous
iteration. Since other robots may have bid higher price for
its assigned tasks a robot first checks for tasks whose price
is greater than the price set by the robot (Line 5). For tasks
whose price is greater than the bid of the robots in the previous
iteration, the previous assignments are broken and new bids
are computed. On the other hand, if none of the previously
assigned tasks have higher bids than the bids of robotr i , robot
r i does not compute any new bids.

During the bidding part of Algorithm 1 (from Lines 11 to
33), robot r i keeps theN′

i assigned tasks since its previous
iteration, and computes theNi −N′

i tasks (Line 21) with the
best values from different subsets (which do not contain any
of N′

i already assigned tasks). Lines 15 to 17 and line 21
guarantees that after the iteration, all constraints for robot r i

are satisfied, namely, (a) robotr i is assigned to exactlyNi

tasks (N′
i previously assigned tasks plusNi −N′

i newly assigned
tasks); (b)r i is assigned to at most one task in each subset.
The price for each newly assigned task is updated, using the
price update rule in Equation (16) in Lines 26 to 31 using the
information in Line 18.

Remark 2. At the end of every iteration a task may be
assigned or unassigned and further, a task may be assigned to
multiple robots. However, if a task is assigned at the beginning
of the iteration, it never becomes unassigned at the end of the

Algorithm 1 Bidding Procedure For Robotr i

1: Input: ai j ,∀ j; p(τ); Tk,∀k; Ji(τ −1), Ki(τ −1), pi(τ).
2: Output: Ji(τ), Ki(τ), pi(τ +1).
3: // Update the assignment information:
4: for j ∈ Ji do
5: if pi

j(τ) < p j(τ) then
6: // another robot has bid higher than ri ’s previous bid
7: Ji = Ji \ { j}; Ki = Ki \ {k|t j ∈ Tk};
8: end if
9: end for

10: N′
i = |Ji | // Number of tasks still assigned to robot ri .

11: // Collect information for new bids
12: vi j (τ) = ai j − p j(τ) // Value of task, tj , to robot, ri .
13: // Select the best and second best candidate task from each

subset Tk
14: for k = 1, . . . ,ns do
15: if k 6∈ Ki then
16: j∗k = argmaxj∈Tk vi j (τ) // Best candidate task
17: end if
18: j ′k = argmaxj∈Tk, j 6= j∗k

vi j (τ) //Second best candidate task
19: end for
20: //Select the Ni −N′

i best candidate tasks from task groups
not in Ki

21: J̄ = argmax
(Ni−N′

i)
k6∈Ki

v j∗k
(τ); K̄ = {k|t j ∈ Tk, j ∈ J̄};

22: // Store the index of(Ni +1)-th best candidate task
23: j∗k′ = argmaxk6∈(Ki∪K̄) v j∗k

(τ); k′ = {k|t j∗
k′
∈ Tk′};

24: // Update price and assignment information
25: Ji(τ) = Ji(τ −1)∪ J̄; Ki(τ) = Ki(τ −1)∪ K̄;
26: for j = 1, . . . ,nt do
27: if j ∈ J̄ then
28: j∗k = j;
29: pi

j∗k
(τ + 1) = pi

j∗k
(τ) + vi j ∗k

(τ) −

max{vi j ∗
k′
(τ),vi j ′k

(τ)}+ ε;
30: else
31: pi

j(τ +1) = pi
j(τ);

32: end if
33: end for

iteration. This is because a robot potentially removes a task
from its list only when the task price is higher than the price
it bid for. Thus, there is another robot that is also assignedto
the task and removing the task from one robot’s list does not
change the assignment status. Also, there has to be at least
one robot that is the highest bidder, so, it does not remove the
task from its task list if no other robot placed a higher bid.

Remark 3. The price of an assigned task is strictly positive
and non-decreasing. In other words, at the end of every
iteration, either the price of a task remains the same or
it increases. This is evident from the price update rule in
Equation (16) which ensures that the price increases by at
least ε, whenever a robot submits a new bid on the task.
Mathematically,

p j∗k
(τ +1)− p j∗k

(τ) = v j∗k
(τ)−max{v j∗

k′
(τ),v j ′k

(τ)}+ ε ≥ ε.

Thus if a task receives infinite number of bids, its price will
become+∞. The price of an unassigned task is zero.

Remark 4. In the sequential (Gauss-Siedel) implementation,
two robots cannot possibly bid the same price for a task. The
reason is that the robot, which bid later for the same task, must
strictly increase the bidding price by at leastε. However, in the
simultaneous (Jacobi) implementation, multiple robots might
bid the same highest price for a task at certain iteration. In
this situation, when those robots receive task price from the
auctioneer at the end of the iteration, any of them would think
that the task has been assigned to itself since the price is
the same as its own bidding price, which could potentially
cause assignment conflicts. One easy way to resolve this
issue is to add a robot identifier to the bidding price for any
task. When the auctioneer receives same bids for a task from
different robots, it can assign the task to one robot according
to certain rule, e.g., giving robots with larger identifier higher
priority, and communicate the new price as well as assigned
robot identifier to all robots. In this way, robots can know
whether the task has been assigned to it or not even when
multiple robots bid the same price for that task. Besides,
in the distributed setting without a centralized auctioneer,
when robots update their maintained local task price list and
associated robot identifiers, they can use similar consistent
predefined rule to determine the robots’ priority to break bid
ties.

We will now answer the following questions about the per-
formance of task allocation algorithm presented above:(a)Will
the algorithm terminate with a feasible assignment solution in
a finite number of iterations? (b) How good is the solution
when the task allocation algorithm terminates? For question
(a) above, we will first show that when the task allocation
algorithm terminates, the solution will be a feasible solution.
We will then show that the algorithm will terminate in a finite
number of iterations.

Lemma 1. When the task allocation algorithm terminates, i.e.,
the convergence condition is satisfied, the achieved assignment
must be a feasible solution for Problem 1, i.e., Equations(7)
to (10) are satisfied.

Proof: During every iteration, when each robot computes
its bids by Algorithm 1 it is ensured that each robot bids for
Ni tasks and there is at most one task from each task group
(i.e., Equations (8), (9), and (10) are always satisfied after
every iteration). When the algorithm terminates, it implies
that a robot,r i , has been assigned toNi tasks and no other
robot has bid higher forr i ’s assigned tasks. Furthermore,
since the total number of tasks and the sum of the budget of
the robots are same, all tasks are assigned (i.e., there can be
no task with price zero) and each task is assigned to exactly
one robot. Therefore, Equation (7) is also satisfied.�

Lemma 1 implies Algorithm 1 is sound, i.e., when it outputs
a solution, the solution is feasible. The next result asserts that
Algorithm 1 always terminates in finite number of iterations
assuming the existence of at least one feasible assignment for
the problem. The proof relies on the conlcusions in Remarks 3,
4 and the following lemma.

Lemma 2. If a robot ri bids for infinite number of times, all

tasks in the task groups where ri does not have fixed assigned
tasks will receive infinite number of bids.

Proof: Since there are finite number of tasks, at least one
task should receive receive infinite number of bids for a robot
to bid infinite times. In any task group,Tk, if there exists one
task, t j , which receive finite number of bids, its price would
be finite, and its value forr i must be bigger than those tasks in
Tk receiving infinite number of bids. This would imply thatt j

should receive more bids than other tasks inTk, which leads to
the contradiction. So all tasks inTk receive infinite number of
bids and thus have the price of+∞ (according to Remark 4).�

Theorem 1. If there is at least one feasible solution for
Problem 1, Algorithm 1 for all robots will terminate in a finite
number of iterations.

Proof: If the algorithm continues infinitely, there must be
some subsets{Tk|k ∈ K∞} where all tasks have+∞ price
according to Lemma 2 above. DenoteT∞ =

⋃
k∈K∞ Tk. Suppose

some robots{r i |i ∈ I∞} has already been assigned toN∗
i tasks

from T \T∞, and are still bidding for its remainingN∞
i tasks

from T∞ (please note, hereN∞
i = Ni −N∗

i does not necessarily
equal toN′

i in Algorithm 1 since all those tasks inT∞ are not
stably assigned to any robot). DenoteR∞ = {r i |i ∈ I∞}.

Each taskti ∈T∞ remains assigned (according to Remark 3).
Each robotr i ∈ R∞ needs to be stably assigned toN∞

i more
tasks, but all tasks inT∞ cannot fill up all∑i∈I∞ N∞

i positions.
So

|T∞| < ∑
i∈I∞

N∞
i .

Note that the above inequality is strict, since there must beat
least one robotr i ∈ R∞ that has remaining tasks unassigned
(otherwise the algorithm terminates).

On the other hand, each robot must already be assigned
to exactly one task in each subsetTk,k 6∈ K∞ (according to
Lemma 2 above). We have

∑
i∈I∞

Ni = ∑
i∈I∞

N∗
i + ∑

i∈I∞
N∞

i .

Suppose in any feasible assignment,N̂∗
i andN̂∞

i are the number
of assigned tasks forr i in T \T∞ and T∞, respectively.Ni =
N̂∗

i + N̂∞
i . It is easy to see that eachN∗

i (i ∈ I∞) has reached
the biggest possible value,∑i∈I∞ N∗

i ≥ ∑i∈I∞ N̂∗
i . So

∑
i∈I∞

N̂∞
i ≥ ∑

i∈I∞
N∞

i > |T∞|.

It means that in any feasible assignment, the number of
assigned tasks inT∞ for R∞ is bigger than the number of
tasks in T∞. By contradiction, we know that Algorithm 1
must terminate in a finite number of iterations if there exists
a feasible solution for Problem 1.�

According to the proof of Theorem 1, the running
time of our algorithm for the shared memory model is
O(nrn2

t
max{ai j }−min{ai j }

ε), whereO(nt) is the running time of

Algorithm 1 for each robot, andnt
max{ai j }−min{ai j }

ε is the
maximum number of rounds for all robots to run Algo-
rithm 1 (since the upper bound of total task price increase is

nt(max{ai j}−min{ai j}). Lemma 1 and Theorem 1 together
prove that Algorithm 1 is both sound and complete.

Infeasibility check:In the case when there does not exist
any feasible solution, the robots can detect that situationin
a distributed way during the bidding procedure. The bidding
procedure itself would guarantee that task group constraint (9)
is always satisfied since each robot would bid for at most one
task from each group. Constraint (7) might be violated due
to the fact that∑i Ni < nt . In that case, Algorithm 1 would
output an almost-optimal solution given the budget constraints
of robots, and leave some tasks unassigned. Moreover, the
robots can detect that situation after the algorithm terminates
by checking whether there still exist tasks with initial zero
price.

The infeasibility caused by budget constraint (8) can be
detected whenever a robot start continuing bidding for a task
with negative values to it. At that time, the robot can check
the price of other tasks: if all tasks have non-zero price, the
robot can detect that there does not exist any feasible solution
since it implies that∑i Ni < nt ; if the number of tasks with
zero price (tasks which have not received any bids) isnp0,
the robot can detect the infeasibility if it continues bidding
for tasks with negative values fornp0 rounds since it implies
that the structure of task groups prevents a feasible solution
satisfying task group constraint as well as budget constraint.
In this case, the robot detecting the infeasibility could send
out a message to its neighbors to stop the bidding procedure.
Please note that this infeasibility mainly comes from the strict
budget constraint that each robotr i must be assigned to exactly
Ni tasks. When we relax this budget constraint in Section VI so
that each robot can perform at mostNi tasks, this infeasibility
would not exist.

We now want to prove the performance of Algorithm 1. The
result relies on the following theorem.

Theorem 2. After each iterationτ of robot ri , ri ’s newly
assigned tasks together with the task prices pj(τ + 1) keep
r i almost happy, i.e., (15) is satisfied.

Proof: First, let us prove it holds true for the first iteration.
At the beginning of the first iteration,r i does not have any
assigned tasks. According to Algorithm 1,r i bids for task set
tK = {t j∗k

|k∈K∗} (using the task prices at the beginning of the
iteration) that makesr i happy, i.e.,

{ai j ∗k
− p j∗k

(τ)|k ∈ K∗} = (
(Ni)
max)k=1,...,ns

(max
j∈Tk

(ai j − p j(τ))).

Now, p j∗k
(τ + 1) = b j∗k

= p j∗k
(τ) + v j∗k

(τ) −
max{v j∗

k′
(τ),v j ′k

(τ)}+ ε, and v j(τ + 1) = v j(τ),∀ j 6∈ { j∗k|k ∈

K∗}, so

ai j ∗k
− p j∗k

(τ +1) = max{v j∗
k′
(τ),v j ′k

(τ)}− ε
= max{v j∗

k′
(τ +1),v j ′k

(τ +1)}− ε.

So the value of any task intK to robot r i is within ε of the
maximum value of any task in its own subset and other subsets
{Tk|k 6∈ K∗}, so

{ai j ∗k
−p j∗k

(τ +1)|k∈K∗}≥ (
(Ni)
max)k=1,...,ns

(max
j∈Tk

(ai j −p j(τ))−ε),

which means (6) is satisfied.
Second, we prove that the unchanged tasks assigned tor i

sincer i ’s previous iteration, must still be in the new assignment
of r i . That is, those tasks are still among tasks, which maker i

almost happy after the iteration. Denote the index set of those
tasks ast ′K . Since these tasks did not receive any bid from other
robots sincer i ’s previous iteration, their prices (and hence their
values) tor i do not change. Meanwhile any other tasks’ price
either remain the same or increase after receiving bids, so
their values tor i reduce. So tasks int ′K must still be in the
new assignment to maker i almost happy. Since the bidding
process to get newly assigned tasks is the same, the newly
assigned tasks must also be in the new assignment to maker i

almost happy (due to similar proof for the first iteration).
So the conclusion is true for each iterationt of r i , i.e., after

each iterationt of r i , r i ’s newly assigned tasks together with
the task pricesp j(τ +1) keepr i almost happy.�

Since Theorem 2 holds true for all robots, we get the
corollary below.

Corollary 1. When Algorithm 1 for all robots terminates, the
achieved assignment and price are almost at equilibrium.

Theorem 3 below gives performance guarantee for Algo-
rithm 1.

Theorem 3. When Algorithm 1 for all robots terminates, the
achieved assignment{(i,(l i1, . . . , l iNi))|i = 1, . . . ,nr} must be
within ∑nr

i=1Niε of an optimal solution.

Proof: Denote ({(i,(l i1, . . . , l iNi))|i = 1, . . . ,nr}) as any fea-
sible assignment, i.e.,

(
Ni⋃

k=1

tl ik)
⋂

Tm ≤ 1,∀i,m : i = 1, . . . ,nr ;m= 1, . . . ,ns

(
Ni⋃

k=1

tl ik)
⋂

(

Nj⋃

k=1

tl jk) = /0 if i 6= j (17)

Denote {pj | j = 1, . . . ,nt} as the set of task prices when
Algorithm 1 terminates for all robots and{p j | j = 1, . . . ,nt}
as any set of task prices.

First, we want to give an upper bound for the optimal
solution.

Ni

∑
k=1

(ail ik − pl ik) ≤ (
(Ni)
max)k=1,...,ns

(max
j∈Tk

(ai j − p j))

⇒
nr

∑
i=1

Ni

∑
k=1

(ail ik − pl ik) ≤
nr

∑
i=1

(
(Ni)
max)k=1,...,ns

(max
j∈Tk

(ai j − p j))

⇒
nr

∑
i=1

Ni

∑
k=1

(ail ik) ≤
nt

∑
j=1

p j +
nr

∑
i=1

(
(Ni)
max)k=1,...,ns

(max
j∈Tk

(ai j − p j))

Since it holds true for any set of price and any feasible
assignment, we haveA∗ ≤ B∗, whereA∗ is the optimal total
payoffs of any feasible assignment.

A∗ = max
l ik satisfy(17)

nr

∑
i=1

Ni

∑
k=1

(ail ik)

B∗ = min
p j : j=1,...,nt

B

= min
p j : j=1,...,nt

(
nt

∑
j=1

p j +
nr

∑
i=1

(
(Ni)
max)k=1,...,ns

(max
j∈Tk

(ai j − p j)))

On the other hand, according to Corollary 1, we have

nr

∑
i=1

Ni

∑
k=1

(ail ik
− pl ik

) ≥
nr

∑
i=1

(
(Ni)
max

k=1,...,ns
)(max

j∈Tk
(ai j − pj))−

nr

∑
i=1

Niε

nr

∑
i=1

Ni

∑
k=1

ail ik
≥

nt

∑
j=1

pj +
nr

∑
i=1

(
(Ni)
max

k=1,...,ns
)(max

j∈Tk
(ai j − pj))−

nr

∑
i=1

Niε

≥ B∗−
nr

∑
i=1

Niε ≥ A∗−
nr

∑
i=1

Niε

∑nr
i=1 ∑Ni

k=1ail ik
is the total payoffs of the achieved assignment

by Algorithm 1, and

A∗ ≥
nr

∑
i=1

Ni

∑
k=1

ail ik
≥ A∗−

nr

∑
i=1

Niε

So it is within ∑nr
i=1Niε of an optimal solution.�

Please note, if all the payoffs are integers, and we setε <
1

∑nr
i=1Ni

, the achieved assignment will be optimal.

V. TOTALLY DISTRIBUTED ASSIGNMENT ALGORITHM

In this Section, we combine our algorithm with distributed
algorithms for maximum consensus in multiagent systems to
make the algorithm totally distributed. In Algorithm 1, each
robot r i can compute its own bid, however, it needs to obtain
the global price informationp(τ) from an agent that has
access to the price information of all the other agents. For
linear assignment problems, the auction algorithm in [5] that
required a shared memory has been combined with distributed
maximum consensus algorithm in [8] so that the algorithm is
totally distributed. We follow a similar procedure.

Consider a connected network,G, where the nodes of the
network represent the robots and there exists a link between
two robots if they can communicate with each other. In
maximum-consensus [37], each robotr i ∈Rhas a price for task
t j aspi

j , and the goal is to obtain the highest price of task held
among all robots for each task, i.e.,p j = maxr i∈R pi

j (denoter∗

the robot which has the pricep j). The maximum initial value
p j can propagate to the whole connected network, if every
robot keeps updating its value using the local maximum value
among its neighbors.

Suppose that at iterationτ, each robotr i has the value of
task j as pi

j(τ). Starting from initial valuepi
j(0), the robot

needs to update its value:

pi
j(τ +1) = max

k∈N
+

i

pk
j(τ) (18)

whereN
+

i = {i}∪Ni, andNi is the set ofr i ’s neighbors in
networkG. Eventually, each robot can get the true maximum
value of taskt j , and the number of iterations taken for robot
r i to get the true pricep j is the length of the shortest path
from r i to r∗, which is at most the number of robotsnr . Thus,
each robot can obtain the global price information, based on
repeated local interaction with its neighbors.

Modification of Algorithm 1 to form a distributed algorithm:
As stated before, suppose at iterationτ, the price of taskt j that
r i maintains ispi

j(τ), then the vector of prices thatr i maintains
is that [pi

1(τ), pi
2(τ), . . . , pi

nt
(τ)], where nt is the number of

tasks. At the beginning of Algorithm 1, we can add a part
wherer i updates its price information of each taskt j , pi

j(τ),
using Equation 18. A robot,r i , may use underestimated price
for bidding during some iterations due to two factors: (a)r i

maintains the price of all tasks using local maximum insteadof
global maximum; (b) the price of each task at each iteration
may increase (due to new bids). However, the current true
price information will eventually propagate tor i in at mostnr

iterations (given the network is connected). So after combining
with consensus techniques, the performance of Algorithm 1
does not change except that the convergence time may be
delayed by a factor of∆, where ∆ ≤ nr is the diameter of
the robot network.

The price update and bidding procedure can be implemented
either in synchronous or asynchronous way. During each
bidding iteration, each robot needs to communicate with its
direct neighbors to update the local maximum task price. The
size of a message that each robot needs to communicate with
its neighbor isO(nt), the order of the number of tasks.

Almost-optimality of the modified algorithm:Similar proof
as for Theorem 1 can be used to prove that the new algorithm
with consensus technique would also terminate in finite num-
ber of iterations at a feasible solution if there exist at least one
such solution. Theorem 2 also holds true if we change the price
in the theorem from true values to robots’ estimate from local
maximum, i.e., all robots are almost happy with respect to its
maintained task price each time after its bidding iterations;
since we assume the robots form a connected network, the
accurate task price information at iterationτ (i.e., the global
highest bid price of the tasks at that time), would eventually
propagate to the whole network within at most∆ iterations.
When the algorithm terminates, the price information stored
by all robots does not change and must reach the true values
due to propagation, so Theorem 2 holds true for the true price
values. Thus Theorem 3 also holds true.

Thus in the ditributed algorithm, a near-optimal task allo-
cation can be performed by the robots with private knowledge
about their own payoffs and budgets without sharing it with
other robots. Each robot in a connected network can make
decisions based on updated local price information from its
own neighbors. The task allocation algorithm becomes totally
distributed for both the decision process and the information
collecting process.

VI. EXTENSIONS

In this section, we discuss a few extensions to the basic
MAP-GT problem formulation, including the relaxation of
budget constraint (8) and task group constraint (9).

A. Relaxation of budget constraint

In the basic problem we assumed that the number of tasks
robotr i can perform is exactlyNi . In this subsection, we relax

this constraint so that each robot can do at mostNi tasks as
indicated in Equation (3).

To solve the extended problem in a centralized or distributed
way, we modify the input instances in the following way: since
the total budgets of robots must be no less than the number of
tasks, i.e.,∑i Ni ≥ nt , we add∑i Ni −nt virtual tasks (denote
the set of virtual tasks asTV) to the original tasks. Every single
virtual task forms a separate task group. The payoffs between
any virtual task and any robot is set to be identical, i.e.,ai1 j =
ai2 j , ∀ two robotsi1, i2, and taskt j ∈ TV . Then we can apply
the same algorithms described in Section IV-A and IV-B. The
virtual tasks are auxiliary and only exist in the input to the
algorithm, and get removed in the output assignment solution,
i.e., if a robot is assigned toz virtual tasks after the algorithms
terminate, the robot would havez remaining unused budgets.

The soundness and completeness of the method above
comes directly from the soundness and completeness of the
algorithms in Section IV. The optimality of the method can
be proved as follows. According to Theorem 3, for the new
input instance with virtual tasks, we have

A′ = ∑
i

∑
j∈J′i

ai j ≥ A∗′−∑
i

Niε,

whereJ′i is the set of tasks assigned to robotr i , including the
possibly assigned virtual tasks. Since the virtual tasks have
the same payoffs for any robot, we can cancel their payoffs
in our assignment solutionA′ and the optimal solutionA∗′,
which leads to

A = ∑
i

∑
j∈Ji

ai j ≥ A∗−∑
i

Niε,

whereJi is the set of tasks assigned to robotr i , excluding the
possibly assigned virtual tasks.

To solve the extended problem in a distributed way, we
cannot directly use the method above. The reason is that each
robot does not know other robots’ budget, and thus does not
know how many virtual tasks there are in the modified input
instance. The way to resolve this issue is to change the bidding
procedure: each time a robot detects that it is bidding for a task
with non-positive value, it should stop bidding for that task and
meanwhile reduce its budget by one. The reason is that if we
set the payoffs of virtual tasks to be zero in the above method,
a robot would bid for virtual task if and only if the values of
other tasks are negative; and robots would not compete for the
same virtual tasks. So the modified bidding procedure above
can lead to the same solution in a distributed way without
assuming that a robot knows other robots’ budgets.

B. Relaxation of task group constraint

In the basic problem we assumed that each robot can
be assigned to at most one task from each group. In this
subsection, we relax this constraint so that each robotr i can
be assigned to multiple tasks in each groupTk, but the number
of tasks it can be assigned to in each group is bounded byNk,i ,
as indicated in Equation (4).

To address this extension, we need to modify the procedure
for selecting tasks that should be bid upon (line 16 and 18),
in the bidding procedure of Algorithm 1. First, instead of

selecting the best candidate task from each subsetTk, we
select the bestNk,i tasks fromTk to form a candidate task
setJ∗k ; second, instead of storing the index of the second best
candidate task from each groupTk, we store the index of the
(Nk,i +1)-th best candidate task,j ′k, for future bid price update.
The rest of the algorithm remains the same.

The proof of soundness, completeness, and optimality of the
modified algorithm is similar to the proof for Algorithm 1. The
difference is that in the optimality proof, instead of showing
that the bestNi candidate tasks are selected from different task
group to satisfy the basic task group constraint (9), we need
to show that the selectedNi tasks are the best candidate tasks
satisfying the extended task group constraint (4).

VII. S IMULATION RESULTS

In Section IV, we designed Algorithm 1 for theMAP−GT
problem, and proved the performance guarantee of the de-
signed algorithm. In this section, we use simulations with
randomly generated test cases to check the influence of the
control parameterε and robot network diameterδ on the
algorithm’s solution quality and running time. According to
Theorem 3, we know thatε is a key control parameter of
the algorithm, which directly influences its solution quality.
According to the complexity analysis, we know that the
convergence time of the algorithm depends onε as well as the
robot network diameter. We will use the number of rounds as
a measure of the convergence time. One round is completed
when all robots have bid once. Thus for sequential bidding,
each round consists ofnr iterations.

Consider nr = 20 robots, where each robotr i performs
Ni = 3 tasks from a set ofnt = 60 tasks. The task setT
forms ns = 20 disjoint subsets, with 3 tasks in each subset.
We randomly generate payoffsai j from a uniform distribution
in (0,20). We tested different values ofε varying between 0.1
and 10. Initially, we assume that each robot can communicate
with all other robots, i.e.,δ = 1. Later we perform simulations
for various network diameters∆. For eachε, we generated
100 samples with different payoffs drawn from the uniform
distribution, and we compared the mean and standard deviation
of performance ratio of our solution to the optimal solution,
as well as the convergence time of the algorithm.

Figure 2 shows the change in solution performance with the
control parameterε. Whenε is as small as 0.1, the total assign-
ment payoffs achieved by our algorithm is almost equal to the
optimal solution. Whenε increases, the difference between our
solution and the optimal solution is increased, but our solution
is still very close to the optimal solution (within 95% of the
optimal solution). Figure 3 shows the change in convergence
time of our algorithm withε. The number of rounds decreases
with increasingε, which means with higherε, Algorithm 1
converges faster. In Figure 2 and Figure 3, we show the results
of both sequential implementation (Gauss-Seidel iteration) and
simultaneous implementation (Jacobi iteration). As shownin
Figure 2, although the two implementations might converge to
different solutions, their solution quality is close. As shown in
Figure 3, simultaneous implementation needs more number of
rounds to converge, however, since robots bid simultaneously

instead of one by one in one round, its actual convergence
time is shorter than sequential implementation.

From Figure 2 and 3, we can see that there is a tradeoff
between the solution quality and the convergence time, which
can be adjusted byε. With biggerε, the algorithm converges
faster but solution quality degrades while with smallerε, the
algorithm solution is better at the cost of slower convergence
time. In this example,ε = 1 can achieve a good balance
between the above two performance indicators.

0 1 2 3 4 5 6 7 8 9 10
0.8

0.85

0.9

0.95

1

Control Parameter ε

P
er

fo
rm

an
ce

 R
at

io

of
 o

ur
 s

ol
ut

io
n

to
 o

pt
im

al
 s

ol
ut

io
ns

Sequential implementation

Simultaneous implementation

Fig. 2. Total payoffs of assignment by our algorithm as a function of
parameterε , which is the minimum possible price increase during the bidding
procedure. The optimal solution can be achieved when we setε < min di f f

∑nr
i=1 Ni

where min di f f is the minimum difference between any two individual
payoffs ai j .

0 1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

Control parameter ε

N
um

be
r

of
 b

id
di

ng
 r

ou
nd

s
of

 o
ur

 a
lg

or
ith

m

Sequential implementation
Simultaneous implementation

Fig. 3. Convergence time of our algorithm as a function of parameter
ε . The solid (dashed) line shows the number of rounds for the sequential
(simultaneous) implementation of our algorithm to terminate.

To test the effect of maxai j − minai j , we fixed ε, and
adjusted the payoff distribution bounds, i.e., we draw payoff
values from a uniform distribution over(0,a), where a is
adjustable for different samples. Figure 4 and 5 show the
results of performance ratio as well as the convergence time.
Actually the effect of adjustinga is equivalent of adjusting
ε, i.e., when we increasea by β times, it is equivalent to
decreasingε by β times, because it is just the scale change
of a andε.

In the simulation results above, we assume the robot
connection network is a complete graph, i.e., each robot
can communicate with all other robots. Next we will check
how the robot network diameter∆ influences the algorithm’s
solution quality and convergence time. Figure 6 and Figure 7
compare the results of complete network(∆ = 1), line network
(∆ = nr −1), circle network (∆ = ⌊nr/2⌋), and network with
diameter∆ = 5. From Figure 6, we can see that the solution
performance is almost the same for different robot network
structure. Figure 7 shows that the convergence time does

Fig. 4. Total payoffs of assignment by our algorithm as a function of
parametera, which is the up-bound of the uniform distribution where we
draw payoffs. We fixε = 0.5, and generate 100 samples for each different
a∈ {1,2, . . . ,10,20, . . . ,100}.

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

Payoff distribution upper bound a

N
um

be
r

of
 b

id
di

ng
 r

ou
nd

s
of

 o
ur

 a
lg

or
ith

m

Fig. 5. Convergence time of our algorithm as a function of parametera.

depend on the robot network diameter∆. Further examination
reveals that the slower convergence time in networks with
larger diameter is mainly due to the final price propagation
even after most robots have converged to their assigned tasks.
The total number of effective bids from all robots do not
change too much, as shown in Figure 8.

0 1 2 3 4 5 6 7 8 9 10
0.8

0.85

0.9

0.95

1

Control parameter ε

P
er

fo
rm

an
ce

 r
at

io
 o

f

ou

r
so

lu
tio

n
to

 o
pt

im
al

 s
ol

ut
io

n

Line network (∆ = 19)
Circle network (∆ = 10)
Random network (∆ = 5)
Complete network (∆ = 1)

Fig. 6. Total payoffs of assignment by our algorithm for different robot
network diameter∆. We fix ε = 0.5, and generate 100 samples for each
different ε .

0 1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

Control parameter ε

N
um

be
r

of
 b

id
di

ng

ro
un

ds
 o

f o
ur

 a
lg

or
ith

m

Line network (∆ = 19)
Circle network (∆ = 10)
Random network (∆ = 5)
Complete network (∆ = 1)

Fig. 7. Convergence time of our algorithm for different robot network
diameter∆.

VIII. S UMMARY

In this paper we introduced a class of multi-robot task
assignment problems called task assignment with grouped

0 1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

Control parameter ε

N
um

be
r

of
 to

ta
l b

id
s

of
 o

ur
 a

lg
or

ith
m

Line network (∆ = 19)
Circle network (∆ = 10)
Random network (∆ = 5)
Complete network (∆ = 1)

Fig. 8. Total number of bids from all robots in our algorithm for different
robot network diameter∆.

tasks, where the tasks form disjoint sets or groups. We pre-
sented a distributed dual-decomposition based task allocation
algorithm which is an extension of the auction algorithm
proposed by Bertsekas for solving linear assignment problems
for unconstrained tasks [5]. In our problem model, the number
of tasks each robot can perform is bounded by its budget,
and each robot must be assigned to exactly one task. The
objective is to find an assignment so that the total payoffs are
maximized while respecting all constraints. We proved thatour
algorithm always terminates in a finite number of iterations
and we obtain a solution within a factor ofO(ntε) of the
optimal solution, wherent is the total number of tasks andε
is a parameter to be chosen. We first presented our algorithm
using a shared memory model of distributed computation and
then indicated how consensus algorithms can be used to make
it a totally distributed algorithm. We also presented simulation
results characterizing the performance of our algorithm.

Future Work: One of our future work is to extend our
distributed algorithm design scheme to other more compli-
cated multi-robot task assignment problem, e.g., generalized
assignment problem where each task would consume different
budgets from different robots, or quadratic assignment problem
where the payoffs of assigning one robot to different tasks
depend on the order of its performing tasks. Another future
direction is to consider the online version of task assignment
where tasks might arise dynamically and robot might not know
the payoff information beforehand. Finally, we also plan to
implement and test our distributed algorithm on the platform
of multiple Turtlebots.

ACKNOWLEDGMENTS

This work was partially supported by AFOSR MURI grant
FA95500810356 and by ONR grant N000140910680.

REFERENCES

[1] B. P. Gerkey and M. J. Mataric, “A formal analysis and taxonomy of
task allocation in multi-robot systems,”International Journal of Robotics
Research, vol. 23, no. 9, pp. 939–954, 2004.

[2] N. Michael, M. M. Zavlanos, V. Kumar, and G. J. Pappas, “Distributed
multi-robot task assignment and formation control,” inProc. IEEE Intl.
Conf on Robotics and Automation, 2008, pp. 128–133.

[3] H. W. Kuhn, “The Hungarian method for the assignment problem,”
Naval Research Logistics, vol. 2, no. 1-2, pp. 83–97, March 1955.

[4] R. Burkard, M. Dell’Amico, and S. Martello,Assignment Problems.
Society for Industrial and Applied Mathematics, 2009.

[5] D. P. Bertsekas, “The auction algorithm: A distributed relaxation method
for the assignment problem,”Annals of Operations Research, vol. 14,
pp. 105–123, 1988.

[6] D. P. Bertsekas and D. A. Castanon, “The auction algorithm for
transportation problems,”Annals of Operations Research, vol. 20, pp.
67–96, 1989.

[7] D. P. Bertsekas, “The auction algorithm for assignment and other
network flow problems: A tutorial,”Interfaces, vol. 20, no. 4, pp. 133–
149, 1990.

[8] M. M. Zavlanos, L. Spesivtsev, and G. J. Pappas, “A distributed auction
algorithm for the assignment problem,” inProc. 47th IEEE Conf.
Decision and Control, 2008, pp. 1212–1217.

[9] L. Luo, N. Chakraborty, and K. Sycara, “Multi-robot assignment al-
gorithms for tasks with set precedence constraints,” inProceedings of
IEEE International Conference on Robotics and Automation,2011, May
2011.

[10] M. Lagoudakis, E. Markakis, D. Kempe, P. Keskinocak, A.Kleywegt,
S. Koenig, C. Tovey, A. Meyerson, and S. Jain, “Auction-based multi-
robot routing,” inRobotics Science and Systems, 2005.

[11] C. Bererton, G. Gordon, S. Thrun, and P. Khosla, “Auction mechanism
design for multi-robot coordination,” inNIPS, 2003.

[12] M. Dias, R. Zlot, N. Kalra, and A. Stentz, “Market-basedmultirobot
coordination: A survey and analysis,”Proceedings of the IEEE, vol. 94,
no. 7, pp. 1257 –1270, jul. 2006.

[13] H.-L. Choi, L. Brunet, and J. How, “Consensus-based decentralized
auctions for robust task allocation,”IEEE Transactions on Robotics,
vol. 25, no. 4, pp. 912–926, 2009.

[14] A. R. Mosteo and L. Montano, “A survey of multi-robot task allocation,”
Instituto de Investigacin en Ingenierła de Aragn (I3A), Tech. Rep., 2010.

[15] A. Stentz and M. B. Dias, “A free market architecture forcoordinating
multiple robots,” CMU Robotics Institute, Tech. Rep., 1999.

[16] M. B. Dias and A. Stentz, “A free market architecture fordistributed
control of a multirobot system,” in6th International Conference on
Intelligent Autonomous Systems (IAS-6), July 2000, pp. 115 – 122.

[17] N. Kalra, D. Ferguson, and A. Stentz, “Hoplites: A market-based
framework for planned tight coordination in multirobot teams,” in
Proceedings of the 2005 IEEE International Conference on Robotics
and Automation, April 2005, pp. 1170 – 1177.

[18] B. P. Gerkey and M. J. Mataric, “Sold!: Auction methods for multirobot
coordination,” IEEE Transactions on Robotics, vol. 18, no. 5, pp. 758–
768, October 2002.

[19] L. Parker, “Alliance: an architecture for fault tolerant multirobot cooper-
ation,” IEEE Transactions on Robotics and Automation, vol. 14, no. 2,
pp. 220 –240, apr 1998.

[20] M. L. Balinski and R. E. Gomory, “A primal method for the assignment
and transportation problems,”Management Science, vol. 10, no. 3, pp.
578–593, 1964.

[21] L. Liu and D. A. Shell, “A distributable and computation-flexible
assignment algorithm: From local task swapping to global optimality,”
in Robotics: Science and Systems, 2013.

[22] L. B. Johnson, S. S. Ponda, H. Choi, and J. P. How, “Improving
the efficiency of a decentralized tasking algorithm for uav teams with
asynchronous communication,” inAIAA Guidance, Navigation, and
Control Conference, August 2010.

[23] ——, “Asynchronous decentralized task allocation for dynamic environ-
ments,” in Proceedings of the AIAA Infotech@Aerospace Conference,
March 2011.

[24] A. K. Whitten, H.-L. Choi, L. Johnson, and J. P. How, “Decentralized
task allocation with coupled constraints in complex missions,” in Amer-
ican Control Conference (ACC), June 2011.

[25] L. Vig and J. A. Adams, “Multi-robot coalition formation,” IEEE
Trasactions on Robotics, vol. 22, no. 4, 2006.

[26] T. Service and J. Adams, “Coalition formation for task allocation:
theory and algorithms,”Journal of Autonomous Agents and Multi-Agent
Systems, vol. 22, pp. 225–248, 2011.

[27] Y. Zhang and L. Parker, “Considering inter-task resource constraints
in task allocation,” Journal of Autonomous Agents and Multi-Agent
Systems, vol. 26, pp. 389–419, 2013.

[28] B. Kalyanasundaram and K. Pruhs, “Online weighted matching,” J.
Algorithms, vol. 14, pp. 478–488, May 1993.

[29] L. Luo, N. Chakraborty, and K. Sycara, “Competitive analysis of re-
peated greedy auction algorithm for online multi-robot task assignment,”
in Proceedings of IEEE International Conference on Robotics and
Automation, 2012, May 2012.

[30] R. Nair, T. Ito, M. Tambe, and S. Marsella, “Task allocation in the
robocup rescue simulation domain: A short note,” inRoboCup 2001:
Robot Soccer World Cup V. London, UK: Springer-Verlag, 2002, pp.
751–754.

[31] P. Scerri, A. Farinelli, S. Okamoto, and M. Tambe, “Allocating tasks
in extreme teams,” inProceedings of the fourth international joint
conference on Autonomous agents and multiagent systems, ser. AAMAS
’05, 2005.

[32] S. Okamoto, P. Scerri, and K. Sycara, “Allocating spatially distributed
tasks in large, dynamic robot teams,” inSubmitted to International
Conference on Intelligent Agent Technology, 2011.

[33] M. Nanjanath and M. Gini, “Repeated auctions for robusttask execution
by a robot team,”Robotics and Autonomous Systems, vol. 58, pp. 900–
909, 2010.

[34] M. B. Dias, M. Zinck, R. Zlot, and A. Stentz, “Robust multirobot
coordination in dynamic environments,” inProceedings of 2004 IEEE
International Conference on Robotics and Automation, vol. 4, 2004, pp.
3435 – 3442.

[35] A. V. Goldberg, E. Tardos, and R. E. Tarjan,Paths, Flows and VLSI-
Design (eds. B. Korte, L. Lovasz, H.J. Proemel, and A. Schrijver).
Springer Verlag, 2009, ch. Network Flow Algorithms, pp. 101–164.

[36] S. Boyd and L. Vandenberghe,Convex Optimization. Cambridge
University Press, 2004.

[37] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks
of agents with switching topology and time-delays,”IEEE Transactions
on Automatic Control, vol. 49, no. 9, pp. 1520–1533, 2004.

