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Abstract

It is known in literature that a wheeled mobile robot (WMR), with fixed length
axle, will undergo slip when it negotiates an uneven terrain. However, motion without
slip is desired in WMR’s since slip at the wheel-ground contact may result in significant
wastage of energy and may lead to a larger burden on sensor based navigation algo-
rithms. To avoid slip, the use of a variable length axle (VLA) has been proposed in the
literature and the kinematics of the vehicle has been solved depicting no-slip motion.
However, the dynamic issues have not been addressed adequately and it is not clear if
the the VLA concept will work when gravity and inertial loads are taken into account.
To achieve slip-free motion on uneven terrain, we have proposed a three-wheeled WMR
architecture with torus shaped wheels, and the two rear wheels having lateral tilt capa-
bility. The direct and inverse kinematics problem of this WMR has been solved earlier
and it was shown by simulation that such a WMR can travel on uneven terrain with-
out slip. In this paper, we derive a set of 27 ordinary differential equations (ODE’s)
which form the dynamic model of the three-wheeled WMR. The dynamic equations
of motion have been derived symbolically using a Lagrangian approach and computer
algebra. The holonomic and non-holonomic constraints of constant length and no-slip,
respectively, are taken into account in the model. Simulation results clearly show that
the three-wheeled WMR can achieve no-slip motion achieved even when dynamic effects
are taken into consideration.

Key Words: Wheeled Mobile Robot Kinematics and Dynamics, Uneven

Terrain, Slip-free Motion.

1 Introduction

It is a well known fact that for wheeled mobile robots moving on uneven terrain, in general,
there is slip at the wheel-terrain contact points. This is because, on uneven terrain there is
no unique axis of vehicle rotation that is compatible with all wheel contacts [Waldron, 1995].
This is the principal reason that prevents us from applying the techniques used for kinematic
analysis of WMR’s moving on flat terrain [Alexander, 1989, Muir, 1987] to WMR’s moving
on uneven terrain. The two main problems with slipping of WMR’s on uneven terrain are:
a) most autonomous WMR’s use odometry to localize their positions during navigation and
slip at the wheel-ground contact points leads to accumulation in localization error, and b)
slipping leads to large wastage of power which is at a premium in missions like planetary
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exploration. The prevention of slip is still an open question, and in this paper, we propose
a novel WMR architecture and show by analysis and simulations that the proposed WMR
can negotiate uneven terrain without slipping.

There has been a variety of WMR architectures proposed for WMR’s on uneven ter-
rain [Bickler, 1998, Sreenivasan and Waldron, 1996, Wilcox, 1987]. These WMR’s are all
capable of adapting on uneven terrain but not capable of slip free motion. The prob-
lem of slipping of WMR’s on uneven terrain has been studied by Sreenivasan et. al
[Choi et. al., 1999, Davis et.al., 1997, Sreenivasan and Nanua, 1996]. The researchers have
proposed the use of variable length axle (VLA) and performed kinematic analysis to demon-
strate no-slip motion capability[Choi et. al., 1999] with VLA. However, there are a few lim-
itations of using a VLA – a) at high inclinations there is slipping due to gravity loading, and
b) the dynamic slip due to inertial loading becomes large at higher speeds. To overcome
the limitations in VLA, the use of an actuated VLA has been proposed. An actuated VLA,
however, requires accurate measurement of slip to obtain the desired actuator output. Choi
and Sreenivasan [Choi and Sreenivasan, 1999] have noted that the problem of slip is essen-
tially kinematic in nature and the use of redundant actuation without paying attention to
the kinematic design of the vehicle is an unlikely solution to the problem.

It may be noted that one important feature of all the above mentioned work is that
they model the wheel as a thin (rigid) disk. On a flat ground this is reasonable since the
contact point always lies in a vertical plane passing through the center of the wheel. How-
ever, on uneven terrain this is not the case in general and the contact point may vary along
the lateral surface of the wheel due to terrain geometry variations. In this paper, we use
torus shaped wheels in single point contact with an arbitrary terrain, modeled as a smooth

and (at the least) C3 continuous surface, and connected to the vehicle body by a passive

rotary joint allowing lateral tilting of the wheel. This concept possess some similarity to
the active camber control [Mackle 2002, Harty, 2003, Zachrison 2003] proposed in the au-
tomobile industry. In active camber control, the wheels are allowed to tilt and a special
tire profile is used to increase the friction between tire and road. Active camber control
helps in prevention of skidding at sharp corners and reduction of stopping distance at high
speeds. However, an important distinction is that the tilting of the tires is actively con-
trolled, where as in our case the lateral tilting mechanism is passive. The architecture of the
three-wheeled WMR with torus shaped wheels and passive joint for lateral tilting was pre-
sented in [Chakraborty and Ghosal, 2003, Chakraborty, 2003], and the direct and inverse
kinematic analysis was performed to demonstrate slip-free motion capability on uneven ter-
rain. However, no-slip motion may not be possible if the effects of gravity and inertial
forces are considered, and it is imperative to perform a dynamic analysis to demonstrate
the no-slip motion capability of the WMR. Moreover, the availability of a dynamic model
of the WMR is helpful to design and implement advanced model-based control techniques.

In WMR literature, most of the dynamic analysis on uneven terrain is essentially quasi-
static in nature, where gravity is taken into account but inertial effects are ignored (see, for
example, [Farritor, 1998]). In this paper, we use a Lagrangian formulation for multi-body
systems subjected to holonomic and non-holonomic constraints [Haug, 1989] and derive
the equations of motion of the WMR. As mentioned above, we have used a torus as a model
for the wheels of the mobile robot. Although the motion of a disk on a plane is a standard
textbook problem in dynamics, to the best of our knowledge, the equations of motion of a
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toroidal wheel moving on uneven terrain has not been reported. Therefore, we first present
the derivation of the equations of motion of a toroidal wheel moving with single point
contact on an uneven terrain. The approach for a single toroidal wheel is extended to the
three-wheeled WMR. The dynamic equations of motion are derived symbolically as a set of
27 second-order ODE’s subjected to 21 non-holonomic and 3 holonomic constraints. The
derivation of the dynamic model, simulation results and demonstration of no-slip motion
when the wheels are subjected to driving and steering torques are the main contributions
of this paper.

This paper is organized as follows: In the next section, we present a brief overview of
the Lagrangian method of derivation of the equations of motion for a multi-body system
subject to holonomic and non-holonomic constraints. Then, we present the derivation of
the equations of motion of a single wheel moving on uneven terrain. Thereafter, we derive
the equations of motion for the three-wheeled robot. The simulation results are provided
next to demonstrate no-slip capability of the WMR. Lastly, we present our conclusions and
identify the areas of future where work.

2 Equations of Motion of a Single Toroidal Wheel

In this section, we derive the equations of motion of a single wheel moving on uneven
terrain. First, we give a brief review of the Lagrangian formulation of a system subjected
to holonomic and non-holonomic constraints.

Let KE denote the kinetic energy and PE denote the potential energy of the system
under consideration. Then the Lagrangian (L) is given by,

L = KE - PE (1)

The Lagrange’s equations of motion are given by,

d

dt

(

∂L

∂q̇i

)

−
∂L

∂qi
= Qi + τi (2)

where,

qi = generalized coordinates, i=1,....,n

Qi = component of generalized force acting along the ith coordinate

= F ·
∂Vi

∂q̇i
+ M ·

∂ωi
∂q̇i

Vi, ωi = linear and angular velocities

F = forces acting on the body

M = moments acting on the body

τi = component of constraint force, τ , acting along the ith coordinate

τ = [Ψ]Tλ

[Ψ] = constraint matrix

λ = Lagrange multipliers
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When the number of generalized coordinates are equal to the number of degrees of freedom
of the system, τi = 0, and equation (2) reduces to the Euler-Lagrange equations of motion for
unconstrained systems. In the case holonomic constraints are present, they are differentiated
to obtain

[Ψ]q̇ = 0 (3)

which gives the required [Ψ] matrix. For non-holonomic constraints, the constraints are
directly available in terms of the first derivatives of generalized coordinates and they are
rearranged to be expressed in the form

Φ(t) + [Ψ]q̇ = 0 (4)

If there is no explicit dependence on time, t, as in our case, Φ(t) is zero, and we can combine
the holonomic and non-holonomic constraints to obtain the constraint equations as [Ψ] = 0.
For m holonomic and non-holonomic constraints, the constraint matrix is a m × n matrix
and the constraint forces are given by [Ψ]Tλ. The equations of motion can now be written
as,

[M(q)]q̈ + C(q, q̇)q̇ + V(q) = Q + [Ψ]Tλ (5)

where, [M(q)] is the (n×n) inertia matrix, C(q, q̇) is the (n×n) matrix of centripetal and
Coriolis acceleration terms, and V(q) is the (n× 1) vector containing gravity terms. Since
[M(q)] is always invertible, equation (5) can be written as,

q̈ = [M(q)]−1(Q−C(q, q̇)q̇−V(q)) + [M(q)]−1[Ψ]Tλ (6)

Differentiating the constraints [Ψ]q̇ = 0, we get

[Ψ]q̈ + ˙[Ψ]q̇ = 0 (7)

Substituting equation (6) in equation (7),

[Ψ]{[M(q)]−1(Q−C(q, q̇)q̇ −V(q)) + [M(q)]−1[Ψ]Tλ} + ˙[Ψ]q̇ = 0 (8)

Solving above equation (8) for λ we get,

λ = −{[Ψ][M(q)]−1[Ψ]T }−1{ ˙[Ψ]q̇ + [Ψ][M(q)]−1(Q−C(q, q̇)q̇ −V(q))} (9)

After substituting equation (9) in equation (5), we get the equations of motion of a con-
strained dynamical system.

2.1 Equations of Motion for a Wheel

Figure 1 shows a torus wheel in single point contact with an uneven terrain. For the motion
of the torus wheel on uneven terrain we choose the generalized coordinates q to be

q = (uw, vw, ug, vg, ψ)T (10)

where, uw, vw are the coordinates of the point of contact on the wheel expressed in the
frame {w}, ug, vg are the coordinates of the point of contact on the ground expressed in
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Figure 1: Torus-shaped wheel on uneven terrain.

frame {0} (see figure 1) and ψ is the angle between the X-axes of the two Gaussian frames
at the point of contact. The transformation matrix of {w} with respect to {0} is given by

0
w[T] = 0

1[T]12[T]23[T]34[T]4w[T]

0
w[T] =

(

0
w[R] 0pw

0 1

)

(11)

where the individual transformation matrices are as given in the appendix A. In the above
equation, 0

w[R] represents the (3 × 3) rotational matrix which gives the orientation of the
wheel in {0} and pw represents the position vector of the center of the wheel in {0}. The
kinematic equations of contact for the motion of the wheel on uneven terrain can be derived
from Montana’s contact equation ([Montana 1988]) and is given as

(u̇w, v̇w)T = [Mw]−1([Kw] + [K∗])−1[(−ωy, ωx)
T − [K∗](vx, vy)

T ]

(u̇g, v̇g)
T = [Mg]

−1[Rψ]([Kw] + [K∗])−1[(−ωy, ωx)
T + [Kw](vx, vy)

T ]

ψ̇ = ωz + [Tw][Mw](u̇w, v̇w)T + [Tg][Mg](u̇g, v̇g)
T (12)

0 = vz

where [M(·)], [K(·)], [T(·)] are the metric, curvature and torsion of the two surfaces (see
[Chakraborty and Ghosal, 2003, Chakraborty, 2003] for details) and

[K∗] = [Rψ][K2][Rψ ]T (13)

with [Rψ] given by

[Rψ] =

(

cos(ψ) − sin(ψ)
− sin(ψ) − cos(ψ)

)

In equation (12), ωx, ωy and ωz are the angular velocities and vx, vy and vz are the linear
velocities of frame {2} relative to frame {1} expressed in frame {2}. To model rolling
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without slip vx, vy are set to zero in equation (12). It may be noted that vz = 0 ensures
that the two surfaces do not loose contact.

The angular velocity of the wheel in {w} and the linear velocity of the wheel center in
{0} can be obtained as

Ω̂ = 0
w[R]T

0
w

˙[R] =







0 −Ωz Ωy

Ωz 0 −Ωx

−Ωy Ωx 0






(14)

0Vw =0 ṗw (15)

The angular velocity of the wheel (Ω = (Ωx,Ωy,Ωz)
T ) and the linear velocity of its center

(Vw) can also be obtained from equations 12 after appropriate frame transformations. The
kinetic energy of the wheel is given by

KE =
1

2
ΩT [Iw]Ω +

1

2
mw

0Vw
2 (16)

where mw is the mass of the wheel and [Iw] is the moment of inertia matrix of the wheel in
{w}. In the case of the torus wheel [Iw] is given as

[Iw] =







1
4mw(3r1

2 + 4r2
2) 0 0

0 1
8mw(5r1

2 + 4r2
2) 0

0 0 1
8mw(5r1

2 + 4r2
2)







The potential energy of the wheel is given by

PE = mwgzwc (17)

where zwc is the height of the center of the wheel in {0} and is obtained from the third
component of the position vector of the center of the wheel, pw. The components of the
mass matrix, Mij , can be obtained by extracting from the kinetic energy term

KE =
1

2

5
∑

i,j=1

Mij q̇iq̇j

The components of the matrix of centrifugal and Coriolis terms, Cij, can be obtained from
the mass matrix as

Cij =
1

2

5
∑

k=1

(

∂Mij

∂qk
+
∂Mik

∂qj
−
∂Mkj

∂qi

)

The components of the vector of gravity terms [V(q)] can be obtained from the potential
energy term as

Vi =
∂(PE)

∂qi

For motion without slip the non-holonomic constraints can be obtained from equations (12),
and are given by

(vx, vy)
T = −[Mw](u̇w, v̇w)T + [Rψ][Mg](u̇g, v̇g)

T = (0, 0)T (18)
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From the above, we can obtain the constraint matrix [Ψ] and hence its derivative [Ψ̇].
Using the matrices [M(q)], [C(q, q̇)], [V(q)], [Ψ], [Ψ̇] and equations (6), (9) we form the
equations of motion of a single wheel rolling without slip on uneven terrain. The algorithm
for the solution of the dynamics problem is outlined below:

• Generate the surface:
The ground digital elevation model (DEM) is assumed to be known and a spline
representation of the surface is generated. For dynamics, we need at least C 3 continuity
of the surface,1 hence we can use a fourth degree B-spline to generate the surface.
The surface representation and its derivatives are computed using built-in MATLAB

functions.

• Form the equations of motion:
The equations of motion are formed in the manner outlined above. We have a set of
5 second order ODE’s in 5 variables (namely, uw, vw, ug, vg, ψ) which can be solved
with any ODE solver using appropriate initial conditions. The ODE’s are formed
symbolically using Mathematica [Wolfram, 1999].

• Obtain initial conditions:
The initial conditions are to be chosen such that they satisfy the non-holonomic con-
straints. The initial values for uw, vw, ug, vg, ψ can be chosen arbitrarily, depending
on the desired position and orientation of the wheel in which we want to start. Among
the first derivatives, namely u̇w, v̇w, u̇g, v̇g, ψ̇, we can choose only three. The other two
are to be determined from the non-holonomic no-slip constraints given by equation
(18).

• Solve equations of motion:
The 5 second order equations of motion can be solved with appropriate ODE solver
using initial conditions as obtained above. This gives the evolution of uw, vw, ug, vg,
ψ and its first derivatives u̇w, v̇w, u̇g, v̇g, ψ̇ in time.

2.2 Results and Discussion

We have tested the algorithm on various synthetically generated surfaces [Chakraborty, 2003].
We present one such result for the motion of the torus wheel on the surface shown in the
figure 2. In this simulation, we assume that there are no external applied force or moment
acting on the wheel i.e. Qi = 0. The initial conditions used are

ug = 4.00103 m, vg = 0.49346 m, uw = 1.5698 rad, vw = 3π
2 rad, ψ = −3.141545 rad,

u̇w = 0 rad/s, v̇w = 2 rad/s, u̇g = 0 m/s, v̇g = 0.5975 m/s, ψ̇ = 0 rad/s.

Figure 3 shows the variation of wheel parameters, uw, vw, and ψ. It can be seen that
the wheel tilts as it rolls on the uneven surface. Due to this, the trace of the wheel center
and the contact point, as shown in figure 4, is different. Figure 5 shows that the wheel rolls

1
C

3 continuity is required since [Ψ̇] is required and [Ψ̇] contains third partial derivatives of the surface
function.
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without slip as the velocity components of the wheel contact point at the wheel-ground
contact is almost 0. The conservation of energy is depicted by figure 6 which also shows
the variation in potential and kinetic energy as the wheel moves over the uneven terrain.
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Figure 2: Uneven terrain used for simulations.
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Figure 3: Variation of parameters for single wheel moving on uneven terrain.

3 Kinematics of the Three-wheeled WMR

For motion of a WMR on uneven terrain without slip we propose a model of a three-wheeled
mobile robot consisting of three toroidal wheels attached to a rigid (moving) platform by
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Figure 4: Locus of wheel center and ground contact point for single wheel moving on uneven
terrain.
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Figure 6: Conservation of energy and the variation of potential and kinetic energy.
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rotary joints. The rear wheels have two rotary joints with one of the joints being passive
and one actuated. The passive joint allows lateral rotation of the toroidal wheels (i.e.,
rotation about an axis perpendicular to the axle and lying in the plane of the platform)
and the actuated joint represents a motor or an actuator for in-plane rotation of the wheel.
The front wheel can be steered (i.e., rotated about an axis perpendicular to the plane of
the top platform) and it has no lateral tilt capability. In this configuration, we can model
the vehicle instantaneously as an equivalent hybrid series-parallel mechanism as shown in
figure 7. As mentioned in equation (12), at the wheel-ground contact point, we have one
holonomic constraint, vz = 0, which ensures contact is always maintained. Moreover, at
each instant, we have 2 non-holonomic constraints which prevents instantaneous sliding, and
these are vx = 0 and vy = 0. Intuitively, this suggests us to model the wheel-ground contact
point, instantaneously as a three-degree-of-freedom(DOF) joint. It may be noted that this
joint is different from a three-DOF spherical joint due to the presence of 2 non-holonomic
constraints which restrict the motion at any instant only in terms of achievable velocities
and we call this a “non-holonomic” joint. The other joints in the mechanism, namely the
joints allowing rotation of the wheel, lateral tilt and steering, are modeled as traditional 1
DOF rotary joints.
Now using Gruebler’s criterion for a mechanism

DOF = 6(n− j − 1) +
∑

fi (19)

we find the DOF of the mechanism as 3, with total number of links n as 8, number of joints
j as 9, and the total number of degrees of freedom (3 for each wheel ground contact and 1
for each of the 6 rotary joints),

∑

fi = 15. Therefore, three of the joint variables should be
actuated and we choose rotation at the two rear wheels, θ1 and θ2, and the steering at the
front wheel, φ3, as the actuated variables. The two lateral tilts at the rear wheels, δ1 and δ2,
and the rotation of the front wheel θ3 are the passive variables which need to be computed.
As the vehicle is subjected to non-holonomic (and non-integrable) no-slip constraints, the
inverse kinematics problem can at best be formulated in terms of the first derivatives of the
kinematic variables and the kinematic variables are obtained by integration. The inverse
kinematics problem for the 3-DOF vehicle can be stated as:

Given any three of the velocities of the top platform Vpx
, Vpy

, Vpz
,Ωpx

,Ωpy
,Ωpz (Vpx

, Vpy
, Vpz

are the components of the linear velocity vector of the center of the platform or any other
point of interest and Ωpx

,Ωpy
,Ωpz

are the components of the angular velocity vector of the
platform) and the geometric properties of the ground and wheel, find the two drive inputs
to the rear wheels (θ̇1, θ̇2) and the steering input to the front wheel (φ̇3).

2

To solve this problem we proceed as follows:

1. Generate the Surface:

As described in section 2, we use B-splines to reconstruct the surface from elevation
data. From the interpolated surface we find expressions for the metric, curvature and
torsion form for the ground. We also obtain expressions for the metric, curvature and
torsion form for the torus shaped wheel.

2Instead of the angular velocities Ωpx
, Ωpy

, Ωpz
, we may use the Euler angle rates α̇, β̇, γ̇, where γ, β, α

is a 3-2-1 Euler angle parametrization of orientation.
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2. Form contact equations:

For each wheel we write the 5 differential equations (see equation (12)), yielding a
total of 15 ODE’s in 15 contact variables uwi

, vwi
, ugi

, vgi
, and ψi, where i = 1, 2, 3.

Since the wheels undergo no-slip motion, we set vx = vy = 0 for each of the wheels in
equation (12).

3. Relate angular velocities of wheel and platform:

The quantities ωx, ωy and ωz in the contact equations for each wheel are the three
components of angular velocities of frame {2} with respect to frame {1} and are
unknown. These are related to the angular velocity of the platform Ωx,Ωy,Ωz and
the input and passive joint rates. In the fixed coordinate system, {0}, we can write
for each wheel

0(ωx, ωy, ωz)
T =0 (Ωpx

,Ωpy
,Ωpz

)T +0 ωinput (20)

where the skew symmetric form of 0ωinput can be written for each wheel as

0ω̂input = ˙0[R]in
0[R]in

T

0[R]in =0
p [R][R(e3, φi)][R(e2, δi)][R(e1, θi)] i = 1, 2 or 3

and e1 = (1, 0, 0)T , e2 = (0, 1, 0)T , e3 = (0, 0, 1)T . Note that for the 3-DOF vehicle
φ1 = φ2 = δ3 = 0.

The above equation (20) couples all 5 sets of ODE’s and we get a set of 15 coupled
ODE’s in 21 variables. These are the 15 contact variables uwi

, vwi
, ugi

, vgi
, ψi (i =

1, 2, 3), the 3 wheel rotations θ1, θ2, θ3, the 2 lateral tilts δ1, δ2, and the front wheel
steering φ3. Out of these, the rates of the three actuated variables, θ1, θ2 and φ3, are
assumed to be known.

4. Obtain velocity of platform:

The angular velocity and the linear velocity of the center of the platform can be
expressed in terms of the 15 wheel variables ui, vi, ugi

, vgi
, ψi (i = 1, 2, 3) and its first

derivatives with respect to time. If γ, β, α be a 3-2-1 Euler angle parametrization
representing the orientation of the platform we have

0Ωpx
= α̇ cos(β) cos(γ) − β̇ sin(γ) = f1(ui, vi, ugi

, vgi
, ψi, u̇i, v̇i, u̇gi

, v̇gi
, ψ̇i)

0Ωpy
= α̇ cos(β) sin(γ) + β̇ cos(γ) = f2(ui, vi, ugi

, vgi
, ψi, u̇i, v̇i, u̇gi

, v̇gi
, ψ̇i) (21)

0Ωpz
= γ̇ − α̇ sin(β) = f3(ui, vi, ugi

, vgi
, ψi, u̇i, v̇i, u̇gi

, v̇gi
, ψ̇i) i = 1, 2, 3

Also, let xc, yc, zc be the coordinates of the center of the platform in {0}. The linear
velocity of the center of the platform is given by

0(Vpx
, Vpy

, Vpz
)T =0 (ẋc, ẏc, żc)

T =0 Vwi
+0 (Ωpx

,Ωpy
,Ωpz

)T ×0 Pci (22)

where i stands for any one of the 3 wheels 1, 2 or 3, 0Pci is the point of attachment
of the wheel to the platform from the center of the platform expressed in frame {0},
Vwi

is the velocity of the center of the wheel.
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5. Form holonomic constraint equations:

In addition to the contact equations, for the 3 wheels to form a vehicle they must
satisfy 3 holonomic constraint equations (refer to figure 7), namely

(
−−→
OC1 −

−−→
OC2)

2 = l12
2; (

−−→
OC1 −

−−→
OC3)

2 = l13
2; (23)

(
−−→
OC3 −

−−→
OC2)

2 = l32
2;

where
−−→
OC1,

−−→
OC2,

−−→
OC3 are the position vectors of the center of the three wheels,

C1, C2, C3, respectively from the origin O of the fixed frame and lij is the distance
between center of wheels i and j respectively.

The above steps leads to a system of 24 equations in 27 variables which can be written
as

[Ψ]q̇ = 0 (24)

where Ψ is a 24 × 27 matrix. The 27 variables (generalized coordinates) are as follows: 15
contact variables ui, vi, ugi

, vgi
, ψi, i = 1, 2, 3; 3 passive variables δ1, δ2, θ3; 3 actuated

variables θ1, θ2, φ3; and 6 variables, α, β, γ, xc, yc, zc denoting the orientation of the plat-
form and the position of its center. These system of equations can be obtained symbolically
using Mathematica and can then solved with appropriate initial conditions ( the reader is
referred to [Chakraborty and Ghosal, 2003, Chakraborty, 2003] for simulation results and
details). In the next section, we formulate the dynamic equations of motion, in terms of
the 27 generalized coordinates, as a set of 27 ordinary differential equations subjected to
the 24 constraints given in equations (24).

4 Dynamic Analysis of the Three-wheeled WMR

To obtain the dynamic equations of motion a Lagrangian formulation was used. We con-
sidered the use of a commercially available dynamics simulation software such as ADAMS.
However, we faced several difficulties for this particular problem. Firstly, we want no-slip
non-holonomic constraint be satisfied between the uneven ground and the wheel, and sec-
ondly we want contact between a torus and an arbitrary uneven surface. Although it is
possible to ensure point-curve and curve-curve contact in ADAMS [ADAMS V12], to en-
sure point contact between two arbitrary surfaces and 3D relative motion between the two
surfaces can only be done by very complicated models using several joints and links. In addi-
tion, to the best of our knowledge, it is not very easy to impose non-holonomic constraints
between two arbitrary surfaces in point contact. The ADAMS CAR module assumes a
certain tire profile which is used to obtain a contact patch and subsequent contact force
calculations. Our model on the other hand assumes single point contact and our endeavor
is to demonstrate no-slip motion for our WMR design. Therefore, we decided to derive the
equations of motion using the symbolic algebra package Mathematica, and this is described
in this section.
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4.1 Formulation of the Equations of Motion

Let KE and PE denote the total kinetic energy and the total potential energy of the vehicle
respectively. The KE (PE) of the vehicle is the sum of the kinetic energy (potential energy)
of the 3 wheels, the platform, the actuators and the links and can be written as given below:

KE = (KE)w1
+ (KE)w2

+ (KE)w3
+ (KE)platform + (KE)actuators + (KE)links (25)

PE = (PE)w1
+ (PE)w2

+ (PE)w3
+ (PE)platform + (PE)actuators + (PE)links

where wi, i = 1, 2, 3 are the three wheels, (.)actuators denote the contribution of motor inertia
at the two rear wheels and the front steering wheel, and (.)links denote the contribution from
the passive links. The kinetic energy and potential energy of each wheel can be obtained
as outlined in the previous section. The kinetic energy of each wheel is given by

KE =
1

2
ΩT [Iw]Ω +

1

2
mw

0Vw
2

where mw is the mass of the wheel and [Iw] is the moment of inertia matrix of the wheel in
{w} (refer to figure 1), Ω is the angular velocity of the wheel, Vw is the linear velocity of
the center of the wheel. The potential energy of each wheel is given by

PE = mwgzwc (26)

where zwc is the height of the center of the wheel in {0} which is given by the third
component of the position vector of the center of the wheel, pw.

The kinetic energy of the platform is given by

(KE)platform =
1

2
mp(ẋc

2 + ẏc
2 + żc

2) +
1

2
Ωp

T [Ip]Ωp (27)

where Ωp = [0pR]T [0pṘ] is the angular velocity of the platform in its body frame {p}, mp is
the mass of the platform, [Ip] is the mass moment of inertia of the platform in its body
frame and (xc, yc, zc)

T is the position vector of the center of the platform in the fixed frame
{0}. The potential energy of the platform is given by

(PE)platform = mpgzc (28)

The mass of the passive joints allowing lateral tilt is assumed to be lumped with the mass
of the platform and that of the actuators is assumed to be lumped with the wheel. Thus,
the contribution to the potential energy term and the kinetic energy term (due to linear
velocity) is included in the kinetic energies of wheel and platform. As shown in the equivalent
mechanism model in figure 7, the passive joint assembly and the actuators for each wheel
form a serial chain from the ground to the platform body (GiCi, i = 1, 2, 3). Along the
same lines as the analysis in serial manipulators, we can obtain the rotational kinetic energy
of the passive joint assemblies and actuators. For the two rear wheels, the angular velocity
of the passive joint assembly in a local coordinate system fixed to the joint is

Ωlinksi
= [R(e2, δi)]

T pΩp + (0, δ̇i, 0)
T for i=1,2
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where e1, e2, e3
3 are the unit vectors of the local coordinate frame attached to the passive

joint, with e2 being the local axis of rotation and pΩp is the angular velocity of the platform
in the frame attached to the center of the platform. The rotational kinetic energy of the
passive links for the two rear wheels (wheel 1 and 2) can then be easily obtained by

KElinksi
=

1

2
ΩT
linksi

[Ilinksi
]Ωlinksi

for i=1,2

where [Ilinksi
], i = 1, 2, is the mass moment of inertia of the passive links. The angular

velocity of the two actuators are given in a local frame fixed to the actuated joints (whose
unit vectors are e1, e2, e3 with e1 being the local axis of rotation) by

Ωactuatorsi
= [R(e1, θi)]

TΩlinksi
+ (θ̇i, 0, 0)

T for i=1,2

The rotational kinetic energy of the actuators are thus given by

KEactuatorsi
=

1

2
ΩT
actuatorsi

[Iactuatorsi
]Ωactuatorsi

for i=1,2

where [Iactuatorsi
], i = 1, 2, is the mass moment of inertia of the actuators. The angular

velocity of the actuator (in a local frame fixed to the actuated joint whose unit vectors are
e1, e2, e3 with e3 being the local axis of rotation) steering the front wheel is given by

Ωactuatorsi
= [R(e3, φi)]

T pΩp + (0, 0, φ̇i)
T for i=3

Therefore, the rotational kinetic energy of the steering actuator is given by

KEactuatorsi
=

1

2
ΩT
actuatorsi

[Iactuatorsi
]Ωactuatorsi

for i=3

The angular velocity of the passive joint and link in the front wheel (wheel 3) allowing
in-plane rotation of the wheel in a frame fixed to the unactuated joint (whose unit vectors
are e1, e2, e3 with e1 being the local axis of rotation) is given by

Ωlinksi
= [R(e1, θi)]

TΩactuatorsi
+ (θ̇i, 0, 0)

T for i=3

The rotational kinetic energy is given by

KElinksi
=

1

2
ΩT
linksi

[Ilinksi
]Ωlinksi

for i=3

The above steps gives us the total kinetic energy of the passive joint assemblies and the
actuators.

Once we have the total kinetic energy, the components of the mass matrix can be
obtained from

KE =
1

2

27
∑

i,j=1

Mij q̇iq̇j

3Note that in this discussion we have used the same symbols e1, e2, e3, for representing the unit vectors
at the coordinate frames fixed to each of the joints. This is just for notational simplicity, and e1, e2, e3, are
not the same for all the joints.
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The components of the matrix of centrifugal and Coriolis terms, Cij, can be obtained from
the mass matrix by

Cij =
1

2

27
∑

k=1

(

∂Mij

∂qk
+
∂Mik

∂qj
−
∂Mkj

∂qi

)

The components of the vector of gravity terms [V (q)] can be obtained from the potential
energy term and is given by

Vi =
∂(PE)

∂qi
The three-wheeled WMR for no-slip motion is subjected to both non-holonomic and holo-
nomic constraints. The non-holonomic constraints arise out of the no-slip conditions at the
wheel ground contact points. The holonomic constraints arise out of the fact that the three
wheels are attached to a rigid platform and also that the coordinates of the position and
orientation of the platform can be expressed in terms of the other variables. The constraint
equations are 24 in number and are the same as the set of inverse kinematics equations (24).

The equations of motion were generated by extensive symbolic computation using the
software package Mathematica [Wolfram, 1999]. They can be expressed in the form

[M(q)]q̈ + C(q, q̇)q̇ + V(q) = τ + [Ψ]Tλ (29)

where [M(q)] is a 27 × 27 symmetric positive definite mass matrix, C(q, q̇)q̇, V(q) are
27 × 1 vectors representing the Coriolis/centrifugal terms and gravity terms respectively,
and τ is a 27 × 1 vector of external forces/torques. It may be noted that only 3 elements
of τ corresponding to the actuated variables θ1, θ2, φ3 are non-zero and all others are zero.
The 24 × 1 vector of the Lagrange multipliers λ can be obtained from the 24 constraint
equations as outlined in section 2.

On solving the equations of motion on a flat plane with the actuators locked and the rear
wheels tilted, we observed that the wheels fell under the action of gravity. This is apparently
contrary to the fact that any parallel manipulator (or hybrid series-parallel manipulator)
with its actuators locked, behave as a structure under any external loading (for example, at
a non-singular configuration, a Stewart platform with all its actuators locked can resist any
external forces and moments). It is to be noted that in our equivalent mechanism model the
3-DOF joints at the wheel ground contact points are not spherical joints. They are 3-DOF
non-holonomic joints which arise from no-slip constraints and they allow motion as long
as the no-slip constraints are not violated, i.e., they only restrict the space of achievable
velocities and not the space of position and orientation variables. This is the reason for
which the wheels fall under gravity. To prevent falling of the wheels, we propose the use of
a flexible coupling between the actuator and the platform body (similar to a suspension)
which limits the lateral tilt of the wheels. For our modeling purposes, we have assumed the
system to be a simple spring-mass-damper system4. The spring and damping force has been
added to the right hand side of the equations of motion. Hence, in the vector τ , there are
two additional terms of the form kiδi+ciδ̇i, i = 1, 2 (ki is the stiffness of the flexible coupling
and ci is the damping), in the equations corresponding to δ1 and δ2. In our simulation, we
have estimated the numerical values of ki and ci, i = 1, 2 as outlined in section 5.

4The ADAMS CAR module has several advanced features of modeling suspensions and other vehicle
components, and we will attempt to use these features for detail design of a prototype WMR planned for
future.
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4.2 Algorithm for Solving the Dynamic Equations of Motion

The key steps in solving the dynamics of the three-wheeled WMR are summarized below:

• Generate the surface:
As before, we assume the terrain DEM to be known and we generate a spline repre-
sentation of the surface. For dynamics, we need C3 continuity of the surface, hence
we use a fourth degree B-spline to generate the surface. The surface representation
and its derivatives are computed using in-built MATLAB [Matlab, 1992] functions.

• Form equations of motion:
The equations of motion are formed in the manner outlined above. We have a set of
27 second order ODE’s in 27 variables which can be solved with any ODE solver using
appropriate initial conditions. The ODE’s are formed symbolically using Mathematica
[Wolfram, 1999].

• Obtain initial conditions:
The initial conditions for the configuration variables are determined in the same man-
ner as those for the inverse kinematics problem. For the first derivatives of these
variables, the initial conditions are to be chosen such that they satisfy the no-slip
non-holonomic constraints at the initial instant. We choose 3 of them arbitrarily and
determine the other 24 by solving the 24 constraint equations which are linear in the
first derivatives of the configuration variables. Essentially, this involves the solution
of 24 linearly independent linear equations for 24 variables.

• Solve equations of motion:
The 27 second order equations of motion are solved with a ODE solver using initial
conditions as obtained above. This gives the evolution of ui, vi, ugi

, vgi
, ψi, i = 1, 2, 3

and its first derivatives u̇i, v̇i, u̇gi
, v̇gi

, ψ̇i in time. We also obtain the variation of the
passive lateral tilts and their rates, the actuator rates and the position of the center
of the platform and its orientation as a function of time. It may be mentioned that
such a large set of DAE’s usually needs sophisticated stiff solvers. However, in our
numerical simulations, the ODE45 routine in MATLAB [Matlab, 1992] was observed to
be adequate.

5 Results and Discussion

We have tested our dynamics formulation on a variety of B-spline surfaces (for details, see
[Chakraborty, 2003]). In this section, we present a simulation result of the vehicle moving
on the surface shown in the figure 2. The mass and inertia of the various components used
in our simulations are as given below:

Mass of the platform (and passive joint assemblies) = mp = 10 kg.
Mass of each wheel (and actuators) = mw = 1 kg.
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Mass Moment of inertia of each actuator (in SI units)

[Iactuatorsi
] =







0.1 0 0
0 0.1 0
0 0 0.1






for i=1,2,3

Mass Moment of inertia of passive joint assembly (in SI units)

[Ilinksi
] =







0.1 0 0
0 0.1 0
0 0 0.1






for i=1,2,3

The stiffness (ki) of the flexible coupling is obtained by modeling it as a simple linear
torsional spring. We have assumed that the spring has a maximum allowable deflection of
δmax = π/4, under static loading, with a load of W/3(r1 + r2) Nm where, W = (mp+3mw)g
N, is the total weight of the vehicle. The damping coefficient (ci) is assumed to be 5% of
the stiffness. Although, the procedure of choosing the values of stiffness and damping is
quite elementary, it serves the main purpose of demonstrating the fact that the wheels of
the three-wheeled WMR do not fall due to self-weight and the WMR can negotiate un-
even terrain without slip. The actual values of ki and ci would depend upon the detailed
design of the flexible joint assembly and this issue is not addressed here. The numerical
values of ki and ci used in our simulation are ki = 16.2376 Nm/rad and ci = 0.574 Nms/rad.

The initial conditions used for the simulation are: u1 = 1.57 rad, v1 = 3π
2 rad, ug1 = 5.008

m, vg1 = 1.5067 m, ψ1 = −3.142 rad, u2 = 1.5648 rad, v2 = 3π
2 rad, ug2 = 4 m, vg2 = 1.5

m, ψ2 = −3.1418 rad, u3 = 1.5818 rad, v3 = 3π
2 rad, ug3 = 4.4897 m, vg3 = 2.483 m,

ψ3 = −3.1419 rad, θ1 = 0 rad, θ2 = 0 rad, θ3 = 0 rad, δ1 = 0 rad, δ2 = 0 rad, φ3 = 0
rad, zc = 2.3088 m, α = −0.0127 rad, β = 0.0133 rad. All the initial values of the first
derivatives are assumed to be 0. The procedure to obtain these consistent initial conditions
are described in [Chakraborty, 2003].

The inputs used are the two driving actuator torques and one steering torque are τ1 = −0.35
Nm, τ2 = −0.5 Nm, and τ3 = −0.001t Nm.

The variation of lateral tilts of the rear wheels is shown in figure 8. The satisfaction of
holonomic constraints is depicted in figure 9, and the locus of the wheel center’s, wheel-
ground contact points and the center of the platform is shown in figure 10. Figure 11 shows
that there is no-slip at the wheel ground contact points of the three wheels.

6 Conclusion

In this paper, we have obtained and solved the equations of motion for a proposed three-
wheeled WMR designed for motion without slip on uneven terrain. We have used a La-
grangian approach for deriving the equations of motion and provided simulation results
showing that the proposed vehicle can negotiate uneven terrain without slip. We are cur-
rently in the process of building a prototype along the lines of our proposed architecture
and future work involves field testing of the prototype.
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Figure 9: Constraint satisfaction for the 3-wheeled WMR moving on uneven terrain.
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Figure 11: Verification of no-slip constraints at wheel-ground contact point.
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Appendix A:

The transformation matrices for going from frame {0} to frame {w} are as follows:

0

1[T] =











l1 m1 n1 ug
l2 m2 n2 vg
l3 m3 n3 f(ug, vg)
0 0 0 1











where li,mi, ni, i = 1, 2, 3 are the components of the orthogonal vectors { fu

|fu|
, fv

|fv|
,n} ,n as

defined in Section 2.

1

2[T] =











cosψ − sinψ 0 0
− sinψ − cosψ 0 0

0 0 −1 0
0 0 0 1











2

3[T] =











sinu 0 cos u 0
0 1 0 0

− cos u 0 sinu −r1
0 0 0 1











3

4[T] =











1 0 0 0
0 − sin v cos v 0
0 − cos v − sin v −r2
0 0 0 1










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4

w[T] =











−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1










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