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Abstract

This paper deals with the kinematic analysis of a wheeled mobile robot (WMR) moving on uneven ter-

rain. It is known in literature that a wheeled mobile robot, with a fixed length axle and wheels modeled as

thin disk, will undergo slip when it negotiates an uneven terrain. To overcome slip, variable length axle

(VLA) has been proposed in literature. In this paper, we model the wheels as a torus and propose the

use of a passive joint allowing a lateral degree of freedom. Furthermore, we model the mobile robot, instan-

taneously, as a hybrid-parallel mechanism with the wheel–ground contact described by differential equa-

tions which take into account the geometry of the wheel, the ground and the non-holonomic constraints
of no slip. We present an algorithm to solve the direct and inverse kinematics problem of the hybrid-parallel

mechanism involving numerical solution of a system of differential-algebraic equations. Simulation results

show that the three-wheeled WMR with torus shaped wheels and passive joints can negotiate uneven ter-

rain without slipping. Our proposed approach presents an alternative to variable length axle approach.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

In this paper we address the problem of motion of wheeled mobile robots on uneven terrain
without kinematic slip. The motion of wheeled mobile robots (WMR) on flat terrain has been well
studied in [1,2]. Waldron [3] has argued that two wheels independently joined to a common axle
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cannot roll on uneven terrain without slip. The use of Ackerman steering and differential wheel
actuation which works for conventional vehicles on flat terrain does not work because there is
no instantaneous center compatible with both wheels. The lateral slip in WMR�s is undesirable
because it leads to localization errors thus increasing the burden on sensor based navigation algo-
rithms. In addition, for planetary explorations, power is at a premium and such slipping leads to
large wastage of power.
The problem of two wheels joined independently to an axle, moving on uneven terrain without

slip, has been studied by Sreenivasan et al. [4–8]. They have modeled the vehicles as hybrid series–
parallel chains and using instantaneous rate kinematics showed that for prevention of slip, (a) the
line joining the wheel terrain contact points must be coplanar with the axle axis, or (b) the wheels
must be driven at identical speeds relative to the axle. For prevention of slip they have suggested
the use of a variable length axle (VLA), wherein an unactuated prismatic joint is used in the axle
to vary axle length.
There are a few limitations of using a VLA—(a) at high inclinations there is slipping due to

gravity loading, and (b) the dynamic slip due to inertial loading becomes large at higher speeds.
To overcome the limitations in VLA, the use of an actuated VLA has been proposed. An actu-
ated VLA, however, requires accurate measurement of slip to obtain the desired actuator
output.
It may be noted that all the above mentioned work model the wheel as a thin disk. On a flat

ground this is reasonable since the contact point always lies in a vertical plane passing through
the center of the wheel. However on uneven terrain this is not the case in general and the
contact point will vary along the lateral surface of a general wheel due to terrain geometry
variations.
In this paper we have proposed an alternative to VLA for slip-free motion capability in wheeled

mobile robots. Our alternative design is based on the following concepts:

• Each wheel is assumed to be a torus. The wheels and the ground are considered as rigid bodies
and single point contact is assumed between the wheel and the ground. The equations describ-
ing the geometry of the wheel and the ground are assumed to be sufficiently smooth and con-
tinuous such that derivatives up to second-order exists and geometric properties such as
curvature and torsion can be computed.

• The equations of contact between two arbitrary surfaces in single point contact, derived by
Montana [9], are used to model the contact of a torus shaped wheel on an uneven terrain.
The ordinary differential equations (ODE�s) describing the no-slip motion of the torus shaped
wheel on the uneven ground are derived from the equations of contact.

• The lateral rotational motion of the wheel is accommodated by a passive rotary joint. This
allows the distance between the wheel–ground contact points to change without changing
the axle length. Since this joint is passive, sensing or control is not required.

• Instantaneously, the wheeled mobile robot is modeled as hybrid-parallel mechanism with a
three-degree-of-freedom joint at the wheel–ground contact. Unlike a typical kinematic joint,
the no-slip non-holonomic constraint leads to non-linear ordinary differential equations.

• The direct and inverse kinematics problem for the mobile robot is formulated as a set of ODE�s
and numerically solved by integrating the ODE�s and the holonomic constraints arising out of
the hybrid-parallel mechanism.
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We demonstrate our approach with a 3-wheeled vehicle and show by simulation that slip free
motion can be achieved without a passive or actuated VLA. In our approach, no-slip motion is
achieved by using torus shaped wheels and passive rotary joints without any additional sensors
or control. This is the main contribution of this paper.
The paper is organized as follows: in the next section, we obtain the contact equations for a

single torus shaped wheel moving on an uneven terrain. In Section 3, we present our approach
of modeling of the three-wheeled WMR as a hybrid-parallel manipulator instantaneously and de-
rive the direct and inverse kinematic equations. In Section 4, we present simulation results, illus-
trating the capability of the WMR to negotiate uneven terrain without slip. In the last section we
present the conclusions.
2. Kinematic modeling of a single wheel

For a smooth surface given in the parametric form, (x,y,z)T = X(u,v), the metric, curvature and
torsion for the surface is defined by
½M � ¼
jXuj 0

0 jXvj

� �
½K� ¼

�Xuu � n=jXuj �Xuv � n=jXvj
�Xuv � n=jXuj �Xvv � n=jXvj

� �

½T � ¼ ½Xv � Xuu=jXuj Xv � Xuv=jXvj� where n ¼
Xu � Xv

jXu � Xvj

where X(.) and X(.)(.) denote first and second partial derivatives. We assume that we have a digital
elevation model (DEM) of the ground i.e. n available measured data points given in the form
(x,y,z)i, i = 1,2, . . . , n. For our analysis, we require a surface representation which is at least C

2

continuous. Without loss of generality we represent the uneven surface using a bi-cubic patch
given by
Xðu; vÞ ¼
X3
i¼0

X3
j¼0

aijuivj ðu; vÞ � ½0; 1�
The coefficients aij are determined if 16 data points are known (for details, see [10]). For our
simulation purposes we have assumed synthetic ground data and have used in-built functions
in Matlab [11] (Spline Tool Box) to generate a bi-cubic patch from the n given data points.
Fig. 1 shows a torus wheel on an uneven ground. The frames {0} and {w} are fixed to the ground

and wheel respectively. The frames {1} and {2} are the Gaussian frames at the point of contact on
the ground and wheel, respectively, fixed with respect to the body frames. The four parameters
(u1,v1), (ug,vg) (point of contact on surfaces 1 and 2 in {w} and {0} respectively) and the angle
w between the X-axis of {1} and {2} are the five degrees of freedom between the two contacting
surfaces. The angle w is chosen such that a rotation by angle �w aligns the two X-axes.
The equation of the torus shaped wheel in {w} in terms of parameters (u1,v1) can be written as
ðx; y; zÞ ¼ ðr1 cos u1; cos v1ðr2 þ r1 sin u1Þ; sin v1ðr2 þ r1 sin u1ÞÞ ð1Þ

and the equation of the uneven ground is given by (x,y,z) = (ug,vg, f (ug,vg)).
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Fig. 1. Torus wheel on uneven ground.
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The 4 · 4 homogeneous transformation matrix, 0w½T �, describing the position and orientation of
the co-ordinate system {w} with respect to the fixed co-ordinate system {0} is given by the product
0
1½T � 12½T � 23½T � 34½T � 4w½T � (see Fig. 1). The matrix 01½T � describes the uneven ground at wheel–ground
contact point, and denoting the equation of the uneven ground by (ug,vg, f(ug,vg))

T, the matrix
0
1½T � is given by
0
1½T� ¼

l1 m1 n1 ug

l2 m2 n2 vg

l3 m3 n3 f ðug; vgÞ
0 0 0 1

0
BBBB@

1
CCCCA
where li, mi, ni, i = 1,2,3 are the components of the orthogonal vectors f fgujfguj
;
n�fgu
jn�fgu j

; ng respec-
tively. The transformation 12½T � describes the w rotation of the wheel. The transformation matrices
2
3½T � and 34½T � describe the tilt and rotation of the torus shaped wheel respectively. The final 4w½T �
constant matrix ensures that Z-axis (of the torus–wheel) is pointed vertically up wards. The trans-
formation matrices are given as
1
2½T� ¼

cosw � sinw 0 0

� sinw � cosw 0 0

0 0 �1 0

0 0 0 1

0
BBBB@

1
CCCCA; 2

3½T� ¼

sin u 0 cos u 0

0 1 0 0

� cos u 0 sin u �r1

0 0 0 1

0
BBBB@

1
CCCCA;

3
4½T� ¼

1 0 0 0

0 � sin v cos v 0

0 � cos v � sin v �r2
0 0 0 1

0
BBB@

1
CCCA; 4

w½T� ¼

�1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 1

0
BBB@

1
CCCA



N. Chakraborty, A. Ghosal / Mechanism and Machine Theory 39 (2004) 1273–1287 1277
The contact between two smooth surfaces have been obtained by Montana [9]. For our case of the
torus shaped wheel and the smooth uneven ground, we have
ð _u1; _v1ÞT ¼ ½M1��1ð½K1� þ ½K
�Þ�1½ð�xy ;xxÞT � ½K
�ðvx; vyÞT�

ð _ug; _vgÞT ¼ ½Mg��1½Rw�ð½K1� þ ½K
�Þ�1½ð�xy ;xxÞT þ ½K1�ðvx; vyÞT�
_w ¼ xz þ ½T 1�½M1�ð _u1; _v1ÞT þ ½T g�½Mg�ð _ug; _vgÞT

0 ¼ vz

ð2Þ
where
½K
� ¼ ½Rw�½Kg�½Rw�T; ½Rw� ¼
cosw � sinw

� sinw � cosw


 �
;

xx, xy and xz are the angular velocity and vx, vy and vz are the linear velocity components of {2}
relative to {1}, expressed in {2}. For rolling without slip vx, vy should be zero.
In Eq. (2), [M1], [K1], [T1] are the metric, curvature and the torsion of the wheel respectively.

They can be computed from the equation of the torus, Eq. (1), and are given as
½M1� ¼
r1 0

0 r2 þ r1 sin u1

� �

½K1� ¼

1

r1
0

0
sin u1

r2 þ r1 sin u1

2
664

3
775 ð3Þ

½T 1� ¼ 0
cos u1

r2 þ r1 sin u1

� �
In Eq. (2), [Mg], [Kg], [Tg] are the metric, curvature and the torsion of the uneven ground. Depend-
ing on the cubic surface chosen to represent the uneven ground, the expression for these quantities
were computed in closed form using Mathematica [12].
3. Kinematic modeling of 3-wheeled WMR

We now consider the modeling of a 3-wheeled vehicle moving on uneven terrain without slip.
For this, we assume that the rear wheels have a degree-of-freedom at the wheel axle joint allowing
lateral tilt. The axis of lateral tilt is perpendicular to the axle joining the two rear wheels along the
plane of the platform. The front wheel can be steered and it has no lateral tilt capability. In this
configuration, we can model the vehicle instantaneously as an equivalent hybrid-parallel mecha-
nism as shown in Fig. 2. As mentioned in Eq. (2), at the wheel–ground contact point, we have one
holonomic constraint, vz = 0, which ensures wheel–ground contact is always maintained. More-
over, at each instant, we have 2 non-holonomic constraints which prevents instantaneous sliding,
and these are vx = 0 and vy = 0. Intuitively, this suggests us to model the wheel ground contact
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point, instantaneously, as a three-degree-of-freedom (DOF) joint. It may be noted that this joint is
different from a three-DOF spherical joint since the two non-holonomic constraints restrict the
motion at any instant only in terms of achievable velocities. 1 In addition, the wheel–axle joints
allowing rotation of the wheel, lateral tilt and steering respectively are modeled as 1 DOF rotary
(R) joints. Using Gruebler�s formula
1 A

positi

the on
DOF ¼ 6ðn� j� 1Þ þ
X

fi
we obtain the degrees of freedom of the top platform as 3, with the total number of links n as 8,
number of joints j as 9, and the total number of degrees of freedom (3 for each wheel–ground con-
tact and 1 for each of the 6 rotary joints),

P
fi ¼ 15. Therefore, three of the joint variables should

be actuated and we choose rotation at the two rear wheels, h1 and h2, and the steering at the front
wheel, /3, as the actuated variables. The two lateral tilts at the rear wheels, d1 and d2, and the
rotation of the front wheel h3 are passive variables which need to be computed from kinematics.
As the vehicle is subjected to non-holonomic (and thereby non-integrable) no-slip constraints,

the kinematics problem can at best be formulated in terms of the first derivatives of the joint var-
iables and the joint variables are obtained by integration. The direct and inverse kinematics prob-
lem for the 3-DOF vehicle can be stated as follows:

• Direct kinematics problem: Given the actuated variables as a function of time, t, _h1ðtÞ, _h2ðtÞ,
_/3ðtÞ, and the geometrical properties of the uneven ground and wheel, obtain the resulting
orientation of the top platform in terms of a rotation matrix 0p½R� (or a suitable parametrization
of it) and the position of the center of the platform (or any other point of interest).

• Inverse kinematics problem: Given any three of the components of the linear and angular veloc-
ity (as a function of time) of the top platform Vx, Vy, Vz, Xx, Xy, Xz (Vx, Vy, Vz are the com-
ponents of the linear velocity vector of the center of the platform or any other point of interest
and Xx, Xy, Xz are the components of the angular velocity vector of the platform) and the
s known in literature, non-holonomic constraints restrict only the space of achievable velocities and not the

ons. A wheel or a thin disk undergoing rolling without slip, with vx = vy = 0, can reach any position in a plane and

ly constraint is that of not leaving the plane and loosing contact.
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geometric properties of the ground and wheel, obtain the two drive inputs to the rear wheels,
_h1ðtÞ, _h2ðtÞ, and the steering input to the front wheel, _/3ðtÞ, which yield the three given velocity
components of the top platform. 2

To solve the above two problems we proceed as follows:

1. Generate surface

As described in Section 2, we use 2-D cubic splines to reconstruct the surface from given ele-
vation data. From the interpolated surface we obtain expressions for the metric, curvature and
torsion form for the ground using Mathematica [12].
2. Form contact equations
For each wheel we write the 5 differential equations (see Eq. (2)) in the 15 contact variables ui,

vi, ugi
, vgi
, and wi, where i = 1,2,3. Since the wheels undergo no-slip motion, we set vx = vy = 0 for

each of the wheels. It may be noted that xx, xy and xz in the contact equations for each wheel are
the three components of angular velocities of frame {2} with respect to frame {1} and are un-
known. These are related to the angular velocity of the platform Xx, Xy, Xz and the input and
passive joint rates. In the fixed coordinate system, {0}, we can write
2 In

angle
0ðxx;xy;xzÞT ¼ 0ðXx;Xy;XzÞT þ 0xinput ð4Þ
where 0xinput ¼ 0½ _R�in0½R�
T

in with
0[R]in given by

0
p½R�½Rðe2; diÞ�½Rðe1; hiÞ� for i = 1,2 and by

0
p½R�½Rðe3;/iÞ�½Rðe1; hiÞ� for i = 3, and e1 = (1,0,0)

T, e2 = (0,1,0)
T, e3 = (0,0,1)

T. The above
Eq. (4) couples all 5 sets of ODE�s and we get a set of 15 coupled ODE�s in 21 variables. These
are the 15 contact variables ui, vi, ugi

, vgi
, wi (i = 1,2,3), the 3 wheel rotations h1, h2, h3, the 2 lateral

tilts d1, d2, and the front wheel steering /3.
3. Obtain velocity of platform

The angular velocity and the linear velocity of the center of the platform are expressed in terms
of the 15 wheel variables ui, vi, ugi

, vgi
, wi (i = 1,2,3). If c, b, a be a 3–2–1 Euler angle parametri-

zation representing the orientation of the platform we have
0Xx ¼ _a cosðbÞ cosðcÞ � _b sinðcÞ ¼ f1ðui; vi; ugi ; vgi ;wiÞ
0Xy ¼ _a cosðbÞ sinðcÞ þ _b cosðcÞ ¼ f2ðui; vi; ugi ; vgi ;wiÞ
0Xz ¼ _c � _a sinðbÞ ¼ f3ðui; vi; ugi ; vgi ;wiÞ

ð5Þ
If xc, yc, zc denotes the coordinates of the center of the platform in {0}. The linear velocity of the
center of the platform is given by
0ðV x; V y; V zÞT ¼ ð _xc; _yc; _zcÞ
T ¼ V wi þ 0ðXx;Xy ;XzÞT � 0Rci ð6Þ
where i stands for any one of the 3 wheels 1,2 or 3 and 0Rci
is the point of attachment of the wheel

to the platform from the center of the platform expressed in frame {0}.
stead of the angular velocities Xx, Xy, Xz, we may use the Euler angle rates _a; _b; _c, where c, b, a is a 3–2–1 Euler
parametrization of orientation.
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4. Form holonomic constraint equations

In addition to the contact equations, for the 3 wheels to form a vehicle the distance between the
3 points C1, C2, C3 (refer to Fig. 2) must remain constant. These holonomic constraint equations
can be written as
ðOC1
��!� OC2

��!Þ2 ¼ l212; ðOC1
��!� OC3

��!Þ2 ¼ l213; ðOC3
��!� OC2

��!Þ2 ¼ l232; ð7Þ
where OC1
��!
, OC2
��!
, OC3
��!

are the position vectors of the center of the three wheels, C1, C2, C3, respec-
tively from the origin O of the fixed frame and lij is the distance between center of wheels i and j

respectively.

3.1. Solution of the direct kinematics problem

From steps 1, 2, 4 we have 15 first order ODE�s and 3 algebraic constraint equations for the 18
unknown variables ( _h1; _h2; _/3 are given). This system of differential algebraic equations (DAE�s)
can be converted to 18 ODE�s in 18 variables by differentiating the constraint equations. It is
to be noted that the 18 ODE�s have been derived symbolically using the symbolic manipulation
package Mathematica [12]. Using an ODE solver, we solve the set of 18 ODE�s numerically, with
the initial conditions obtained as outlined below. Once we have obtained ui, vi, ugi

, vgi
, wi, i = 1,2,3

and d1, d2, h3 we can obtain the rotation matrix of the platform 0
p½R�. The position vector of the

center of the platform OP
�!
with respect to the fixed frame, {0}, denoted by (xc,yc,zc) is given by

(see Fig. 2)
ðxc; yc; zcÞ
T ¼ OCi

��!þ 0
p½R�CiP

��!
for any i ¼ 1; 2 or 3: ð8Þ
3.2. Solution of the inverse kinematics problem

From steps 1,2,3,4 we have 21 first order ODE�s and 3 algebraic constraints for 24 unknowns
(in this case we assume _xc; _yc; _c are given). This set of DAE�s is also converted to ODE�s and inte-
grated using initial conditions determined as discussed below. Numerical solution gives the 15
contact variables ui, vi, ugi

, vgi
, wi, i = 1,2,3, the 3 actuated variables h1, h2, /3 and the 3 passive

variables d1, d2, h3. The other 3 platform variables zc, a, b are also obtained.
3.3. Initial conditions

To solve the set of ODE�s in direct or inverse kinematics problem, we have to choose the initial
conditions such that it satisfies the holonomic constraint equations. For the direct kinematics
among the 18 variables we can choose d1 = 0, d2 = 0, h3 = 0, initially. Moreover we can also
choose v1, v2, v3 to be 3p/2 and the position of point of contact of any one wheel in {0} (in
our simulations, we have chosen the point of contact of wheel 2, given by ug2, vg2). The other
two wheels must also be in contact with the uneven ground. Hence, for each wheel, we have
OCi
��!þ 0

w½R� � CiGi
��! ¼ OGi

��!
; i ¼ 1; 2; 3 ð9Þ
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Converting them to unit vectors we have two independent equations for each wheel. In addition,
for each of the three wheels, we have,
cosðwiÞ ¼ ê1i � ê01i i ¼ 1; 2; 3 ð10Þ
where fê1; ê2; ê3g and fê01; ê
0
2; ê

0
3g are the coordinate axes of reference frames {2} and {1} respec-

tively in {0} (refer to Fig. 1). Finally there are 3 holonomic constraint equations given by Eq. (7).
This gives us a set of 10 nonlinear equations in 10 variables and this set is solved numerically to
yield consistent initial conditions for the direct kinematics problem.
For inverse kinematics problem involving 24 ODE�s, in addition to the initial values of the var-

iables in the direct kinematics problem, we have to obtain the initial values of h1, h2, /3, a, b, zc.
We can choose h1 = 0, h2 = 0, /3 = 0 (or any other initial desired heading). As we know ui, vi, ugi

,

vgi
, wi, i = 1,2,3, we can obtain the position vector of the center of the 3 wheels OC

�!
1, OC
�!

2, OC
�!

3.
From three points, we can obtain the rotation matrix 0p½R� of the platform. Once the rotation ma-
trix is known, the 3–2–1 Euler angle sequence, c, b, a can be found. The position of the center of
the platform is given by Eq. (8) and we have xc, yc and zc at the initial instant.
4. Numerical simulation and results

We have tested our algorithm on various synthetically generated surfaces and for various types
of inputs. We present one representative result (several more simulation results are available in
[13]). The uneven ground (surface) used in the simulations is shown in Fig. 3 and the geometrical
parameters of the WMR are as chosen follows:
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Fig. 3. Uneven terrain used for simulation.
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Length of the rear axle = 2la = 2m.
Distance of center of front wheel from middle of axle = ls = 1.5m.
Two radii of the torus shaped wheel are r1 = 0.05m, r2 = 0.25m.
The center of the vehicle is assumed to be at (1/3)ls from the center of the axle along the line join-
ing the center of the axle to the center of front wheel.
The absolute tolerance used for the solution in Matlab is 10�8 and the relative tolerance used is
10�6.

The initial conditions for direct kinematics are computed as d1 = d2 = 0rad, h3 = 0rad, u1 =
1.586967m, v1 = 3p/2 rad, ug1 = 0.983772m, vg1 = �0.037978m, w1 = �3.140963rad, u2 =
1.547598rad, v2 = 3p/2 rad, ug2=�la, vg2 = 0m, w2 = �3.144127rad, u3 = 1.578296rad, v3 = 3p/
2rad, ug3 = 0.001578m, vg3 = 1.549151m, and w3 = �3.143452rad. For inverse kinematics, in
addition, we have h1 = h2 = /3 = a = 0rad, b = 0.009rad, and zc = 2.3131m.
For the direct kinematics problem the inputs are chosen as _h1 ¼ 0:5rad/s, _h2 ¼ 0:4rad/s,

_/3 ¼ 0rad/s. The inputs represent constant velocity in rear wheels and constant heading (steering)
angle in the front wheel. The variation of lateral tilts of the rear wheels when the 3-wheeled WMR
is moving on the uneven terrain is shown in Fig. 4. The satisfaction of holonomic constraints (see
Eq. 7) during motion on uneven terrain is depicted in Fig. 5, and the locus of the wheel center�s,
wheel–ground contact points and the center of the platform is shown in Fig. 6.
For the inverse kinematics problem, the inputs chosen are _xc ¼ 0:01255m/s, _yc ¼ 0:12865m/s,

_c ¼ 0:0159rad/s. Figs. 7–9 show variation of lateral tilt, constraint satisfaction and locus of the
wheel–ground contact points and the center of the platform respectively, when the 3-wheeled
WMR moves on the same uneven terrain shown in Fig. 3. It may be noted that due to the lateral
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tilt and the uneven terrain the locus of the wheel ground contact point and the centre of the wheel
is different. For conventional WMR�s, moving on flat terrain, the locus of the wheel–ground con-
tact point and the wheel centre are same.



0 0.5 1 1.5 2 2.5 3
–8

–7

–6

–5

–4

–3

–2

–1

0

1
x 10-6

time (sec)

C
on

st
ra

in
t

Constraint 12
Constraint 13
Constraint 23

Fig. 8. Constraint satisfaction—inverse kinematics.
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During the motion of the three-wheeled WMR, the slip velocities vx and vy are computed for
each wheel. Fig. 10 shows that the no-slip conditions at the wheel ground contacts are satisfied
for the direct kinematics simulation. Likewise Fig. 11 show that the no-slip condition between
the wheels and the uneven ground is also satisfied for the inverse kinematics simulation.
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Fig. 10. Plot of vx and vy for each wheel—direct kinematics.

–1.5 –1 –0.5 0 0.5 1 1.5
–0.5

0

0.5

1

1.5

2

ug (m)

vg
 (

m
)

Wheel ground Contact point
Center of Platform
Wheel Center

Fig. 9. Plot of wheel centers, wheel–ground contact point and platform CG—inverse kinematics.

N. Chakraborty, A. Ghosal / Mechanism and Machine Theory 39 (2004) 1273–1287 1285



0 0.5 1 1.5 2 2.5 3
–2

0

2

4
x 10

-16

time (sec)

S
lip

 v
el

oc
ity

 a
t

w
he

el
–g

ro
un

d
co

nt
ac

t p
oi

nt
 (

m
/s

)

0 0.5 1 1.5 2 2.5 3

0

10
x 10

-16

time (sec)

S
lip

 v
el

oc
ity

 a
t

w
he

el
–g

ro
un

d
co

nt
ac

t p
oi

nt
 (

m
/s

)

0 0.5 1 1.5 2 2.5 3

0

10
x 10

-16

time (sec)

S
lip

 v
el

oc
ity

 a
t

w
he

el
–g

ro
un

d
co

nt
ac

t p
oi

nt
 (

m
/s

)

Fig. 11. Plot of vx and vy for each wheel—inverse kinematics.
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5. Conclusion

In this paper we have studied the problem of kinematic slip for mobile robots moving on
uneven terrain. We have departed from the conventional thin disk model and considered a torus
shaped wheel for motion with single point contact. This enables us to take into account the lateral
variation of the contact point on the wheel when moving on uneven terrain. For eliminating kin-
ematic slip we have proposed the use of a passive joint which allows lateral tilt of the wheels. We
have demonstrated our approach using a three wheeled vehicle, modeling the wheel–ground con-
tact points as a 3-DOF joint with constraints described by ordinary differential equations. The
direct and inverse kinematics problems for a three-wheeled WMR are stated and algorithms to
solve the problems are presented. Numerical simulation results clearly show that the WMRmode-
led with torus shaped wheels and non-holonomic constraints at the wheel–ground contact, can
negotiate uneven terrain without kinematic slip.
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