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Coverage of a Planar Point Set with Multiple
Robots subject to Geometric Constraints
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Abstract—This paper focuses on the assignment of discrete the time taken to visit the points by parallelizing the robot

points among K robots and determination of the order in which

operations while avoiding robot collisions. Similar tasksarise in

the points should be processed by the robots, in the presencemany applications including drilling, electronics manufacturing,

of geometric and kinematic constraints between the robotsThis

is a path planning problem that arises as a subproblem in the
decoupled approach to solving the motion planning problem b
covering a point set by a multiple robot system in minimum
time. More concretely, our work is motivated by an industrial

microelectronics manufacturing system with two robots, wih

square footprints, that are constrained to translate alonga line

while satisfying proximity and collision avoidance constaints.

The N points lie on a planar base plate that can translate along
the plane normal to the direction of motion of the robots. The
geometric constraints on the motions of the two robots leada
constraints on points that can be processed simultaneously

We use a two step approach to solve the path planning

problem: (1) Splitting Problem: Assign the points to the K

robots, subject to geometric constraints, to maximize the arallel

processing of the points. (2)Ordering Problem: Find an order of

processing the split points by formulating and solving a mui-

dimensional Traveling Salesman Problem (TSP) in theK-tuple

space with an appropriately defined metric to minimize the tdal

travel cost. We show that for K = 2, the splitting problem can

be converted to a maximum cardinality matching problem on a
graph and solved optimally in polynomial time. The matching
algorithm takes O(N?®) time in general and is too slow for
large datasets. Therefore, we also provide a greedy algohin for

the splitting problem that takes O(N log N) time. We provide

computational results comparing the two approaches and sho
that the greedy algorithm is very close to the optimal solutbn

for large datasets. We also provide computational resultsdr the

ordering problem and present local search based heuristicso

improve the TSP tour. Further, we give computational resuls

showing the overall performance gain obtained (over a singl
robot system) by using our algorithm. Finally, we extend our
approach to a K-robot system and give computational results
for K = 4.

Note to Practitioners-This paper presents techniques to plan
the motions of multiple robots to visit and process a given ge
of points, subject to geometric constraints on the robot mabns.
This point set coverage task is motivated by a laser drilling
application for electronics manufacturing. The goal is to ninimize

Nilanjan Chakraborty and Srinivas Akella are with the Déma@nt of Com-
puter Science at Rensselaer Polytechnic Institute (Ercteélkrn2@cs.rpi.edu;
s.akella@ieee.org). John Wen is with the Department oftitet;, Com-
puter, and Systems Engineering at Rensselaer Polytechsiitute (Email:
wenj@rpi.edu). All authors are also with the Center for Amgdion Tech-
nologies and Systems (CATS) at RPI. This work is supportegbart by
CATS under a block grant from the New York State Office of Scéen
Technology, and Academic Research (NYSTAR). John Wen ipatgd in
part by the Outstanding Overseas Chinese Scholars Fundimé€ghAcademy
of Sciences (No. 2005-1-11). Nilanjan Chakraborty andi@mAkella were
supported in part by NSF under CAREER Award No. 11S-0093233.

The corresponding author is Srinivas Akella, DepartmentCoimputer
Science, Rensselaer Polytechnic Institute, 110 Eightbe§tiTroy, New York
12180, USA. Tel: (518) 421-0800, Email: s.akella@ieee.org

circuit testing, spot welding, and sensor network data co#iction.
We model the assignment of points in the plane to robots as a
matching problem and the point traversal order generation &
a Traveling Salesmen Problem. We present effective algohims
to plan the motions of the robots for large data sets (involvig
hundreds of thousands of points), and demonstrate the fedslity

of our approach for 2 and 4 robots.

Index Terms—Multiple-robot systems, point set coverage,
matching, K-TSP.

I. INTRODUCTION

Robotic point set coverage tasks occur in a variety
of application domains like electronic manufacturing €las
drilling [4], inspection [3], circuit board testing [22],.11]),
automobile spot welding [15], and data collection in sensor
networks [18]. The goal of using multiple robots in point set
coverage tasks is to reduce the overall task completion time
by parallelizing the operations at the points. The pathmitao
problem in such multi-robot point set coverage tasks can be
stated as followsGiven a point setS = {p,}, i=1,..., N,
and K robots, find an assignment of the points to individual
robots and determine the order in which the robots must visit
the points so that the overall task completion time is mini-
mized In this paper we look at such path planning problems
for multiple robot point set coverage where the robots have t
(a) spend some time at each point to complete a task (we call
this time theprocessing timeof each point) and (b) satisfy
given geometric constraints (like collision avoidance)ilesh
covering the point set. Our work is motivated by a system (see
Figure 1) used by a microelectronics manufacturer for laser
drilling. Here we need to process (drill) a set of points with
identical processing times by a system/of= 2) robots. The
architecture of the machine imposes the following georoetri
constraints: (a) at any instant of time, each robot can p®ce
exactly one point within a square region in the plane (called
processing footprint although there may be several points
within the region, (b) the robots are constrained to mova@lo
a line while avoiding collisions, and (c) the points lie onasb
plate that can translate along theaxis.

In the absence of the geometric constraints and assuming
the processing times to be zero, the path planning problem
for multi-robot point set coverage tasks can be treated as a
K-Traveling Salesman Problenik¢TSP). However the path
planning problem with inter-robot geometric constraings h
not received much attention in the literature. In this paper
provide solution algorithms to the path planning problem fo
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S
point set coverage with multiple robots, where the robo¢s ar | | I
subject to geometric constraints, and the processing tifne o Robot 1 Robot 2

each point is identical. We divide the problem into that of ﬂ
(-
7

finding the assignment of points to each robot, and the order
in which they will be processed while satisfying the geoiaetr 1
constraints as follows: R
Splitting Problem: Let P be a set of subsets ¢ of size AR ETIEY
less than or equal td< such that each point ir¥ can occur Processing Footpriftt, 2.
in exactly one element d@?. The splitting problem is to find RO ST
a set P of minimum cardinality that respects the geometric
constraints such that each point isi occurs in exactly one
element of P. Intuitively, such a set allows the maximum
possible parallelization of the processing operation. Fig. 1. Schematic sketch of a 2-robot system used to proasisssyin the

. . . . plane. The heads can translate alongthaxis and the base plate translates
Orderlng Problem: Given a set ofK-tupIes, P, find a along they-axis. The square region of lengfh\ is the processing footprint
processing order of the points by the robots such thatcthe  for each robot.
of visiting all the points is minimized.

The splitting problem can be reduced to a clique partitignin o )
problem [9] on a graph for arbitrary¢ and the ordering provide local search based heuristics to improve the taour. |

problem can be reduced to a traveling salesman pr0b|§ﬁction VI, we extend the algqrithms_for the two robot system

(TSP) [1]. Both these problems are NP-hard. However, f& &K -robot system. Finally, in Section VII, we present our

two robots (i.e.,K = 2) we show that the splitting problem cqnclusmns and out!lne future work. A preliminary versioh

is equivalent to a maximum cardinality matching (MCMm)his work appeared in [4].

problem on a suitably constructed graph and can thus be

solved optimally in polynomial time. The maximum car- Il. RELATED LITERATURE

dinality matching algorithm take®(N?) time in general  The general motion planning problem for the minimum-

([12], [14]) and is not suitable for large data sets (in ouime multiple robot point set coverage problem can be stated

application, approximately0® points). Therefore, we provide as follows:

a greedy algorithm that exploits the geometric nature of theput: A set of pointsS = {p;} with processing times,

constraints and take®(N log N) running time. We provide = 1,2,... N, that must be processed Wy robots where

results comparing the greedy algorithm with the matchirgach robot has a limited footprint and the robots must satisf

algorithm for small datasets. Our computational experisiergiven geometric, kinematic, and dynamic constraints

show that for typical industrial datasets the greedy atbors Output: A trajectory for each robot satisfying the constraints

give solutions that are very close to the optimal solution. such that the total time (process time plus travel time) ieql
We model the ordering problem as a multi-dimension&b cover the point set is minimized

TSP ([11], [22]) in the set of point pairs (pair space) ob¢ain This is a hybrid discrete-continuous optimization problem

from the splitting problem. The solution of this TSP givesr® because we have to simultaneously optimize over (a) the

for the individual robots. We identify necessary condiian feasible discrete choices involved in the assignment afitpoi

the tours of the individual robots that improves the tour ito the robots and the order in which the points are visited

the pair space. We provide results showing an improvemedsyt the robots, (b) the feasible continuous choices invoived

of 5% to 8% in the TSP tour using the tour improvemenspecifying the position and velocity of the robots as a fiorct

heuristic. To include points in the tour that were not pairedf time. The problem is hard to solve even fir = 1, even

in the splitting stage we give a cheapest insertion hearistivithout the geometric constraints.

We also give computational results showing the improvementThere are two distinct approaches to solving hybrid digeret

of performance obtained by using a two robot system and tbentinuous optimization problems like the one above: (IpFo

path planning algorithms described above over a singletrolzomixed integer nonlinear optimal control problem [20] oy (2

system. Finally, we extend our algorithms for the two robajse a two stage approach: (a) Solve the discrete optimizatio

system to aK robot system and provide some computationgiroblem of finding the path and (b) Solve the continuous opti-

results for a four robot system. mization problem of converting the path into a trajectoryheT
This paper is organized as follows: In Section Il, wéirst approach is very general although the resultant proble

briefly summarize the relevant literature. In Section Il wés very hard to solve in practice. von Stryk and Glocker [20]

formulate the path planning problem for tifé-robot system used this approach to find the trajectories of two coopegatin

and outline division of the problem into two subproblemsobots (cars), with given kinematic motion model, visitiag

In Section IV, we provide solution algorithms and resultset of points. They used a two level iterative scheme to fied th

for the two robot point splitting problem. In Section V, weoptimal trajectories. The outer level iteration used a bhaand

formulate the ordering problem as a TSP in the pair space amslnd framework to search the space of discrete varialies (i
L _ _ __ this case, the variables corresponding to assignment aledt or
We will refer to each element aP as aK-tuple with the understanding

that if there are less thaR™ points present in an element we add virtual point§)f t_he pomts). The inner level iteration SOIV?d a nonl!near
to make its cardinality equal t& . optimal control problem over the space of continuous véemb

Basd Platé " - - X
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(in this case, the position and velocity of the robots). This 2) What is a measure of the travel cost in the presence of
approach can require the solution of an exponential (in the the inter-robot geometric constraints?

number of points to be visited) number of inner level nordine Before we proceed to answer the above two questions we
optimal control problems, each of which is nontrivial tove®l  first look at the minimum cost path planning problem fer
Hence, this approach is limited to a small number of pointsobots, without geometric constraints, where the roboteha
The literature for the second approach usually focusgsme processing time at each point. If the processing times a
on either the discrete optimization problem of covering &ll zero then the problem is equivalent toF& TSP problem
point set or the continuous optimization problem of trajegt defined below:
generation. The problem of covering a point set by a singsiven a weighted complete grapti = (V, E), where the
robot with collision avoidance constraints has been stlidiget of vertices/ consists of the set of all the points and the
for industrial robots [15], [21], [17], [2]. Sahel al. [15], and weight on an edge is the travel cost between the two points,
Wurll and Henrich [21] address motion planning of a fixe@ind & subtours on this graph such that the cost of the most
base manipulator to process a set of points avoiding stadigpensive subtour (i.e., sum of weights of the edges in the
obstacles in the workspace. The points are assumed tosh®tour) among thé< subtours is minimized
partitioned into groups and the motion is assumed to be point |f the processing times are non-zero the problem can still be
to-point. In [17], Spitz and Requicha consider the point sekt up as a-TSP with suitable weights. Le§ = {pi},i =
processing problem for a coordinate measuring machineeSin ... N, be the point set that is to be processed in minimum
there is only one robot, the processing time is constantla@d time by K robots where each robot has to spend timet
main focus of these papers is to find a minimum cost collisigibint p;. Let d;; be the travel cost on the edge), 7;, 7;, be
free path covering all the points. The collision avoidanage processing times of points, p, respectively andv > 0
problem is nontrivial in these cases and all of the aboversapge an arbitrary positive numtferDefine the new cost on the
use a discrete search of the configuration space ([15] arjd [£dges as
use different versions of probabilistic roadmaps wher@a$ [ w(t; +t;) (1)
usesA* search) for computing a collision free path. On the 2
other hand, we have multiple robots and algebraic equationge solution of aix-TSP with the edge weights defined above
that give collision avoidance constraints. Thus we focus %es the tours for each robot such that the maximum sum
assigning the points to the robots (to reduce processing)tingf processing cost and travel cost is minimized. Moreover,
as well as obtaining an order of processing them (to reduge,; satisfies the triangle inequality theh; also satisfies

traveling time) while avoiding collisions among the robots the triangle inequality. Consider three verticeg, k. From
Dubowsky and Blubaugh (see [6], Section IV) consideregquation 1 we have:
the problem of multiple manipulators processing a set of

dij = dij +

points. However, they assumed that the manipulators wikne Jij + ij =di; + w +dji + M

be in collision with each other and formulated the problem as (s + t)

a K-TSP. Their solution approach was to find a tour for one = dij + djr + wt; + wz#k 2)
manipulator and then divide it inth” tours for X’ manipulators (s + te)

such that the maximum of th€ tour costs is minimized. Here, > dik + WA T B) > di

we need to satisfy collision avoidance constraints, ant suc ) 2 ] ) o
approach is not suitable. Thus the new cost metric defined by Equation 1 satisfies the

triangle inequality. Therefore, we can use the algorithuegi
in [8] to obtain a constant factor approximation algorithon f
the problem. The constant factorfig2 if we use Christofides
The motion planning problem for minimum time multiplealgorithm to solve the-TSP problem.
robot point set coverage can be formulated as a mixed integefn the presence of inter-robot geometric constraints, the
optimal control problem (see Appendix A). The solution oolution obtained above by ignoring the constraints may be
this formulation, when it can be solved, gives the trajeetor arbitrarily bad, i.e., thé<-TSP solution may result in no par-
of the K robots such that the overall time taken in coveringllelization of the operations. We illustrate this with anpie
the point set is minimized. However, as observed in [20gxample. Figure 2 shows a simple input point distribution
it is difficult to solve problems of this type directly andwhere no two points lie simultaneously in the processingezon
this is especially true for the large datasets that we hawea single robot. Assume the geometric constraints on the
to deal with. Therefore, we follow the usual approach irobot is the same as that in Figure 1. The bold line shows
the robotic motion planning literature and divide the motiothe optimal paths of the two robots obtained ignoring the
planning problem into a path planning problem and trajgctogeometric constraints. However, because of the consdtaint
optimization problem. In this paper we are concerned with tiho two points assigned to the two robots in this solution can
formulation and solution of only the path planning problermbe processed simultaneously and the time taken is the same
There are two main questions that arise in the formulation a§ that would be achieved by a single robot. Thus, solving a

the path planning problem:
1) D d . he i b . 2w is a problem domain dependent scale factor that accountsifferent
) 0 we need to Incorporate the inter-robot geometrlﬁ]its that the travel cost and processing cost may have,teagel cost may

constraints in the path planning problem? have units of length whereas processing cost may have unitsie.

I1l. PROBLEM FORMULATION
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standardk - TSP ignoring the geometric constraints can give ahe travel time this approach will give a good solution to the
arbitrarily bad solution. Thus the answer to our first questi overall problem.

is that we indeed do need to take the inter-robot geometric

constraints into consideration at the path planning stage. IV. SPLITTING PROBLEM

answer the second question, we first note that in the presence | . . -

of geometric constraints the maximum cost subtour among th In this section we look at the splitting problem for the two

K subtours is not the right measure of the overall cost. Thisrﬁ% ot system shown in Figure 1. The splitting problem cdasis

because the inter-robot constraints imply that the robaty mP assigning the s_et of points to the robots so as to maximize
not be able to simultaneously traverse parts of their ownstouthe number of points that can be processed together. We call

The total travel cost incurred for task completion in thisea a pair of points acompg‘uble pa|r.(of points)f they can be
Elocessed together while respecting the geometric camistra

is the sum of the simultaneous travel costs of the robot aﬁ X ) L ; .
the individual travel cost of the robots.{., costs of parts of ’ ny two _compatlble_ pairs are calledok_isjomt co_m_patlble hair
the tour where they cannot move simultaneously). i the_ points belonglng FO the two pairs are distinct. Thie t
splitting problem is equivalent to minimizing the total noer
I ) ) ) ® I of disjoint compatible pairs and singletons while assignin

them to the robots. A solution to this problem ensures the
maximum parallelization of the processing operation. The
formal statement for this problem is given below:
I I Problem Statement: Let S = {p;} = {(@i,%)}Y,, be
a set of points inR2. Let P be a set ofordered sub-
i d i d sets of S of size less than or equal t@ that partitions
Fig. 2. An example input distribution of points where thecbtihes show e, P = {(pi,p;)} U{(Prx) }U{(x,p)}, 4,4k, 1 €
an optimal2-TSP tour on this set obtained ignoring the geometric caimts.  {1,2,..., N},i # j # k # [, wherex denotes avirtual point

Clearly, the two robots for the system in Figure 1 cannot @sscany pair of [TV ; ;
points simultaneously while satisfying the geometric ¢xaists. and any pa|r(p1, pj) € P respects the foIIowmg constraints

|l‘i — $j| Z Smin — 2A

3
lyi —y;] <2A ®)

Although we need to take care of the inter-robot collision
avoidance constraints, it is not clear how to do that at thik pa
planning stage because these constraints should be shtisfiberes,,;, is the minimum distance between the two robots.
at all times whereas there is no time information in thEind such aP of minimum cardinality.
path planning problem. Therefore, we pose the path planning
problem in the space of(-tuples of points and define theln the above statement the ordered gpir, p;) denotes thap;
feasible pattfor this problem in thek -tuple space as follows: is assigned to robat andp; is assigned to roba. Moreover
A feasible path is defined as an ordered set of tuples of poifits. *) denotes thap,. is a singleton assigned to robot
of size less than or equal t& such that the robots satisfy thewhile (x, p;) denotes thap; is a singleton assigned to robot
inter-robot geometric constraints if they are present aing® 2. The constraint between thecoordinates of the points in
in the same tupleThe path in the-tuple space induces a pathEquation 3 ensures collision avoidance between the robots.
in the Euclidean space for each robot. This definition erssuréhe constraint on the-coordinates indicate that the robots
that when the robots move along their respective paths, th@g constrained to move along theaxis but have a square
would satisfy the geometric constraints if they are at thiaggo footprint for processing.
belonging to the same tuple at the same time. Thus, once we
have an ordered s_et _of tuples, we can ensure that the geor_ngri Optimal Algorithm
constraints are satisfied when moving along the path bynariti
the constraints as simple velocity constraints of the relot
the point-to-point motion trajectory optimization profsie To

solve the above path planning problem, we take the followinefinition Let G = (V, E) be a graph wher#& is the set of
two step approach: vertices andF is the set of edges. A sétf C E is called a
1) Divide the set of points intd<-tuples of points that matchingif no two edges inM have a vertex in commori/
satisfy the geometric constraints and assign the poiri¢scalled amaximal matchingf there is no matching\/’ such

in each tuple to a robot. that M C M’. M is called amaximum cardinality matching

2) Find the order in which the tuples should be process@CM) if it is a maximal matching of maximum cardinality.

ggttg? ;g?n?tss ;;f;lisgrp]);%d;czi; a tour for each robot on trﬁ)eefinition A vertex inV is called amatched vertexf there

. . .is one edge incident upon it in/, otherwise it is called an
We can also view the two step approach as follows: we firSt
! . . ; anmatchedr exposed vertex
find a collection of points that can be processed simultane-
ously, thus obtaining an optimal solution for the procegsin From the given set ofV input points, S, we construct a
time and then we find a travel path for the robots tharaphG = (V, E), whereV is the set of all points and’ is
minimizes the travel cost without changing the processirbe set of all edges with an edge existing between two points

cost. Therefore, in cases where the processing time doesinaff they form a compatible pair, i.e., they satisfy Equatidn

The problem above can be solved optimally by converting
it to a maximum cardinality matching problem on a graph.
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We call this graph theompatibility graphof the point set. Algorithm 1 Greedy algorithm for 2 robots

A maximum cardinality matching on the compatibility graph 1: Input: Vector of x and y coordinates of points, v;
gives the maximum number of disjoint compatible pairs, i.e. Parameterssyi,, A. [, y] denotes the concatenated
the maximum number of points that can be processed together. vectorsx andy.

The unmatched vertices form the singletons that are to bz Output: Set P of subsets of S of cardinality 2 that

processed individually. The sdt consisting of the matched partitions S.

pairs and unmatched vertices will be of minimum cardinality3: [X, y] = ysort, y);

/I Sort according to y-coordinates

since the number of singletons are minimum. After we obtair: Ymin = MiNIMUME); ymax = Maximumg);

the matching solution, we can use the geometry of our problers numbands = [ #max-dmin ]
6: for « = 0 to numbands — 1 do

to assign the points to the robots. In our problem, robdg
always constrained to be on the left of rol2otfTherefore, we 7:
order the pairs in the matching so that the point with lower
z-coordinate is on the left and thus gets assigned to robot 8:
For the singletons, we assign points on the left of the media#:
of the point distribution to robot and points on the right to 10:
robot 2. 11:
The MCM problem on a graph is a well studied combinai2:
torial optimization problem and can be solvediN?3) time — 13:
(Edmonds [7]). However, slightly faster algorithms do éxis14:
(e.g., Micali and Vazirani'sO(,/|V||E|) algorithm [13]). In
our application)NV can be of the order df0® and the matching 15:
algorithm is not practical for such large values §f Hence
we provide a greedy algorithm that gives a suboptimal swfuti 16:

/I Number of bands

[u, v] < Points withy—coordinates in the rang@,{;,+
[u, v] = xsort(u, V)
ugiyy = Xmedian() // Median ofx—coordinates
Umin = MINIMUMQ); umax = Maximum);
if |udiv — umin| < Smin then
Udiv “— Umin + Smin
end if
[u;, vi] <« Points with x—coordinates in the range
(umini Udiv)
[u., v.] < Paints with z—coordinates in the range
(udiV1 umax)
for j =1 to length();) do

k «— Index of point on right hand side that has
minimumx—coordinate among all points that respect
the constraints. If there is more than one such point
we take the one with the minimum—coordinate.

if such ak existsthen

P — P U {((wlj) welj]), (ur[k], vr[k]))}

and runs inO(N log N) time. We note that although there arel?:
greedy algorithms in the matching literature that havedine
running time in the number of edges (see [19], and references
therein), such algorithms assume the input to be available i
the form of a graph. In our problem, the input is a set of pgint4s:
S, and the parameterd and s,,;, specifying the geometric 19:

constraints. Hence, we need to construct the input graph frc20: else
this information and this may tak@(N?) time in the worst 21: P —PU {((wlj],vuli]), )}
case. 22 end if

23 end for

24: end for

B. Greedy Algorithm 25: L «— Set of indices of unassigned points on right side

Given the set of input points$, and the parameters) 26: P — P J {(x, (u,[k], v [k]))},Vk € L
and sy, We use the geometric structure of our constraintar: return P
and the distribution of the input points to design a greedy
algorithm. We first divide the points along theaxis into
bands of width2A and then divide the points within each
band into two almost equal halves using the median ofithe may seem to be troublesome and one can devise inputs where
coordinates of the points in the band. Then starting from tlieis scheme will perform badly. However, for the practical
left most point of the left half, we pair each point in the lefinputs this scheme works very well as shown in Table I. More-
half with a compatible point in the right half with minimumover, one can also deal with this by repeating the algorithm
z-coordinate, breaking ties by choosing points with minimumwith different startingy-coordinates for the bands between
y-coordinate. This is the best possible local choice for atoiy,,;, and yu,i, + 2A and taking the best result among them.
in the sense that this choice leaves the maximum number/other alternative is that instead of dividing the pointsse
compatible points on the right half for the remaining poiots we consider for each point all the possible unassigned piint
the left half. Algorithm 1 gives a detailed description ofroucan be paired with and use the same criterion as in Algorithm 1
greedy heuristic. The main computational cost in the algori for choosing a partner for this point. This algorithm is a
is the sorting of the points according to thgicoordinates at special case of the greedy algorithm for matching where we
line 3 of Algorithm 1. Hence, the algorithm has a theoreticglick one edge at random from the graph, remove all edges
worst case running time ad(N log N). corresponding to the picked vertices and then pick another

We have divided the points into horizontal bands and thenlge from the graph. The ratio of the number of edges in
divided each horizontal band into two halves. These twhe optimal matching to the number of edges returned by this
choices imply that for every point we are restricting ouricko algorithm is upper bounded . Thus the ratio of the total
of the points it can be paired with (or we are restricting therocessing time of the points paired with this algorithmhe t
set of neighbors in the compatibility graph). Theoretigahis optimal processing time i3/2 assuming a constant processing
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TABLE | .
PERFORMANCECOMPARISON OFSPLITTING BETWEEN GREEDY AND g X0
MATCHING ALGORITHM O left
A right
O singletons
Greedy Algorithm Matching Algorithm 251
Number [ Number | Number | Time | Number | Number | Time
of of of (sec) of of (sec) 5l
points pairs singletons pairs singletons
1396 695 6 0.45 696 4 5
11109 3029 5051 0.97 4137 2835 94 > 1.5
27810 13840 130 5.17 13905 0 1528
135300 | 67649 2 107
167536 83739 58 172 i
181758 90866 26 217
198570 | 99279 12 246 .l
211856 | 105845 166 288 '
@ ® @ @
0l 15 2 25 3 35 4
time for each point. However, in experiments on the prattica X x 10°

datasets this algorithm performs worse than Algorithm 1 and

takes more time. A working scheme that can be used is to rbig: 3. Spliting and assignment of points by greedy alganifor the dataset
both the algorithms and take the best of the two. This ensufLd3% points.

that we always have a splitting result that is practicallpdo

and also has a worst case theoretical bound. o x10°

C. Results ar

The results of using both the greedy algorithm and optimal
(matching) algorithm for the splitting problem, along witie
corresponding running times, are shown in Table I. The value

of the parameters used for obtaining the results Are- 8 > or

mm, spmin = 96 mm. We have used an implementation of

Edmond’s algorithm available in the Boost Graph Library][16 2

to solve the MCM problem. The datasets used represent typice

datasets that are used in the industry. Table | shows tha -

for smaller datasets (say less tha®00 points), although ‘

the matching algorithm performs better, the running time is L e e e
much higher and hence it is not practical to use it for large x x10°

datasets. In fact, the Boost Graph implementation fails for

large datasets (resulting in the blanks in Table | for |arg§}g. 4. Splitting and assignment of points by greedy albanifor the dataset
datasets). Moreover, our computational experiments fheest of 11109 points.

rows of Table 1) show that the ratio of the number of singlston

to the number of points is very small, hence for practic : . : . .
purposes the greedy algorithm performs quite well. Figmesﬂj we find the optimal tour in the pair space the optimality is

a4 show o cxampedatasets an e sssignmentof e S5 1 e QTP of e poris a1y be
points to the two robots. The units of length on the two ax ] b g Y
are microns. In Figure 4, the spread of the dataset along H}e
o . g : 0
x-axis is approximatelj 20 mm. As the minimum distance
to be maintained between the two robets, = 96 mm, we
cannot process most of the points in parallel and conselyue

there are a large number of singletons in the middle.

es a better touri2) Use a local search heuristic in the tour
each robot to find a better tour in the pair space while
respecting the constraint$3) Incorporate the singletons to
r?[e processed by each robot in this tour by usingheapest
insertion heuristic

V. ORDERING PROBLEM A. TSP in Pair Space (PTSP)

In this section we present algorithms to find an order of For formulating the TSP in the pair space or pair TSP
processing the points that minimizes the travel cost white e pTSP) we have to first define a metric in the pair space
suring that the compatible points are processed simult&igo petween two pairs that is meaningful to our problem. Since
We formulate the problem as a multi-dimensional TSP (sugRe relative motion of the robot and the points are conségin
TSP's also arise in the circuit testing literature [11],]R2Ve  to be only along ther-axis andy-axis, a natural measure of
use a three step approach to solve this problém:Find a distance,d;;, between two point§(z1,yi1), (zi2, yi2)] and

path through the compatible pairs by solving a TSP on tw&ﬂ,yy‘l), (z;2,y;2)] in the pair space is given by:
set of point pairs (pair space). The solution of this TSP & th ‘ '

pair space induces a tour for each roboRih Note that even max(|zi — x|, [Ti2 — zjel, lva — vl lvie — yje|)  (4)
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This distance gives the cost incurred for roldotto reach 1 2
(xj1,y;1) from (z;1,y:1) and robot to reach(z;2, y;2) from ,z""\,.
(42, y:2) Simultaneously. This distance measure is symmetric \\'
and satisfies the triangle inequality. The formal probleatest .
ment for PTSP can thus be written as: °/.3
Problem Statement: Given a set of pairs of pointsP = 4

{[(21, yl)’_(I27y2)]i i1 and a distance defined on the_ PaIlgig 5. The left figure shows the TSP tour of robbtwhereas the right
by Equation 4, find a minimum cost tour on the weightefijure shows the self crossings observed in the TSP tour aft @bThe initial
complete graphG = (V, E), where V = {1’ 2,.. .,m} pairings were (1,a), (2,b), (3,c), (4,d) whereas the newingaiin the lower
indexes the elements dP and weights on the edges in Se{;ost tour is (1,a), (2,c), (3,b), (4,d), provided the newrpare compatible.
E are distances between the pairs.
We note that this problem formulation has the implicit as- ) ) _
sumption that the two robots start traveling from one paifittnded to remove such crossings, in our problem it does
at the same time toward the next pair and they leave tR@ in the pair space. Therefore, we can further improve the
next pair only when both of them have finished processin TSP tour by removing the self-crossings in the individual
i.e., one robot cannot travel while the other is processin SP tours of the robots provided the constraints are satisfie
This ensures that the two robots travel while satisfying theis removal of self-crossings is equivalent to changing th
geometric constraints if they travel between the pointatie  Pairing among the points. Figure 5 shows a simple example
same velocity. The cost obtained is thus an upper bound 8h2 crossing in the TSP tour of robet The initial pairings
the travel cost (as defined in Section IIl) and can be improvéfe given by(1,a), (2,b), (3,¢), (4,d). If the pairings(2,c)
using more sophisticated trajectory optimization scherfine and (3,b) are feasible then we obtain a new tour in the pair
TSP is an NP-hard problem and, in general, it is not evéRace givenby..., (1,a),(2,c),...,(3,b),(4,d),...}. Thus
possible to get a solution within a constant factor of th&e removal of self-crossings i correspond to changing the
optimal solution [9]. However, in our case the distance ietrPairings among the points.
is symmetric and satisfies the triangle inequality. For this Note that for a TSP inR?, when using the max metric,
case, there are polynomial time heuristics some of whi¢gmoval of a self-crossing is a neccessary but not sufficient
guarantee a solution within a constant factor of the optimg@ndition for improving the tour cost (whereas for Euclidea
solution. A few popular heuristics for solving the TSP [10[netric it is both a neccessary and sufficient condition).- Fur
are (a) Nearest Neighbour heuristih) Insertion heuristics thermore, in our PTSP formulation, the cost between two
(¢) Minimum Spanning Tree (MST) heuristid) Christofides’ consecutive points is determined by one of the two robots.
heuristic(e) Lin-Kerninghan heuristic. The heuristi¢s), (b), Thus, if the crossing occurs in the tour of the other robot
(¢) and(d) are usually used to construct a tour from scratohe will not improve the overall tour cost by removing it,
whereas(e) is used to improve a given tour. An alternativedithough the tour cost of the individual robot may improver F
approach is to solve an integer program formulation of tfexample, if the cost between the pafis a) and(2,b) given
TSP with a cutting plane method [5]. However, these metholly Equation 4, is determined by the distance between points
tend to be more computationally expensive. The practichland2 then removing the self-crossing doesn’'t improve the
algorithms for TSP with triangle inequality use a combioati overall tour cost although it may improve the individual tou
of these methods to solve the problem. In this paper, west of robot2.
use the TSP solver Concorde [1] to solve the PTSP, whichWe implemented this order improvement heuristic in C++
has implementations of the above heuristics as well as twbere we consider two sets of two consecutive pairs. The
cutting plane method. For the results in this paper, we used number of pairs between the two seis;., between(2,b)
Quick-Boruvka heuristic to compute a tour from scratch arahd (3,¢) in Figure 5 is a parameter (sdy.) that we can
the chained Lin-Kerninghan heuristic to improve the toue Wset. We first use the heuristic on the tour of roloand
have observed from our computational experiments that whitven use it on the tour of robat; reversing the order did
using a different heuristic (say nearest neighbor hegjisti not give any significant difference in results. Table Il sksow
compute the initial tour even though the initial tour lergyththe results of solving the TSP in the pair space. We computed
may be different the improved tour lengths did not have arlge initial tour using the Quick-Boruvka method and thenduse
significant differences. chained Lin-Kerninghan heuristic to improve the tour. Fotth
of these we used the implementations available in the TSP
solver Concorde [1]. However, the distance function fos thi
multi-dimensional TSP is not available within Concorde and
As discussed before, even if we get an optimal tour of thvee had to implement our own distance function. The running
PTSP, the optimality of the solution is with respect to thBmes were less that)0 seconds for all the cases. For the tour
chosen compatible pairs and it may be possible to improve tingprovement heuristic, we chose the paraméter= 5000.
tour length by changing the point pairings. We have observétie running time is dependent on the valuekgfand we did
that the individual TSP tours induced by the PTSP tour cantaiot see any substantial improvements in the tour cost with
self-crossings (i.e., the tour intersects itself). We ntitat higher k.. We observe an improvement 6% to 8% in the
although the Lin-Kerninghan tour improvement heuristic i®ur cost using our tour improvement heuristic on the tested

B. Order Improvement Heuristic



SUBMITTED AS A REGULAR PAPER TO THE IEEE TRANSACTIONS ON AUTI@ATION SCIENCE AND ENGINEERING, DECEMBER 2007 8

datasets and the running times are less #itahseconds. All the number of points, assuming constant processing time).
the run times are obtained on a IBM T43p laptop (2.0 GHdowever, the measurement unit of the travel cost is that of
processor, 1GB RAM). The final improved tour cost is givetength and the unit of processing cost is time in our problem
in the last column of Table II. formulation. So we need a weight factor between the two costs
that depends on the relative importance of the two costs. We

TABLE 1l ¥ . . . .
TSPTOUR OBTAINED IN PAIR SPACE WITH IMPROVED cosT aiven sy Te  Cal define the performance gain obtained in using-eobot
ORDER IMPROVEMENT HEURISTIC system over a single robot system as:
Number of | Quick Boruvka | Lin Kerninghan | Improved Tour zgl) Tt(l)
pairs Tour Cost (m) | Tour Cost(m) Cost (m) Performance Gain = wT(K) + (1 o w) T(K) (5)
67649 124.428 110.343 103.289 p t
83739 140.898 124.091 115.462 wherew is the weight factor{ > w > 0) and the superscript
90866 121.523 106.434 100.253 denotes the number of robots used.
99729 165.527 148.353 140.162 Table 1l sh h f . hi db .
105845 150.255 132.048 121.911 aple shows the pertformance gain acnieve Yy using

a two robot system over a single robot system using the
algorithm described in this paper. We have assumed that
w = 0.5 or the total travel time and total processing time
C. Singleton Insertion Heuristic are equally weighted. The processing cost for the singletrob

We incorporate the singleton points for each robot in i#§ Proportional to the number of points whereas the prongssi
individual tour induced by the PTSP tour using a cheapei@st of the two robot system (given in the second column of
insertion heuristic, i.e., we insert a point in the tour satth Table Ill) is proportional to the sum of the number of pairs
the total increase in the tour cost is minimum. ket (iy,i,) PIUS si(rll)gletons (given in Table I). The ratio of these twotsps
andj = (j1, j2) be two consecutive pairs where the subscripte., % is nearly2. The third column in Table Il gives the

1 denotes that the point is to be processed by raband {rayel ‘cost of the two robot system whereas the fourth column
subscript2 is for robot2. Let k; be a point to be inserted in gjyes the travel cost of the single robot system (obtained
the tour of robotl. Suppose that we want to insést between py ysing the Concorde implementation of the Lin-Kernighan
i1 andjy. If (k1,i2) do not form a compatible pair, we findheuristic on a Quick-Boruvka initial tour [1]). The travebst
the minimum distance move to be made by robed a point of the two robot system is slightly higher than the traveltcos
compatible withk;. Otherwise, the second robot may stay ajf the single robot system. We believe that this is due to a
the same place. Let; be the point at which we have thecompination of the following facts: (a) we have designed the
robot2 when robotl is atk;. The increase in the cost of theyhole algorithm on first minimizing the total processing tcos
tour due to the insertion of poirt; betweeni; andj is then while satisfying the constraints and then minimizing thevéd
Cirky + max(Cr,jy, Ch, j,) — max(Ciyjy, Ciyjp) Where Cpy  cost while keeping the processing cost fixed, (b) we have an
denotes the distance given by max metric between pgint§mplicit assumption that one robot cannot travel while tteeo
andg. We want to inserk; such that this tour cost increase isg processing, which can make one robot wait even when it can
minimum. For each singleton, this is a linear time algorithmnove. However, as the last column demonstrates, we stié hav
a significant gain in the overall performance. In light of the
D. Evaluation of the Algorithm point (b) above, we can also view this gain as a lower bound on
me performance gain. Note that the performance gain is also
ependent on the value of If w = 1, i.e., the processing cost
ominates the travel cost, our algorithm performs very well
n the other hand, ifv = 0, i.e., the travel cost dominates
the processing cost, the algorithm performs poorly.

In Section 1l we presented the path planning proble
formulation wherein we proposed to divide the proble
into two subproblems, namely, the splitting problem and t
ordering problem. Thereafter, in the next two sections
provided algorithms for solving the two problems and prewd
simulation results showing the performance of the indiaidu TABLE Il
a|gorithms on examp|e datasets. In this subsection we atten@VERALL PERFORMANCE GAIN ACHIEVED BY USING A2-ROBOT SYSTEM
to answer the following question: How good is the overall OVER A SINGLE ROBOT SYSTEM SEE TEXT FOR DETAILS
algorithm? The ideal answer to this question is a theoretig

- . . FNum. of Processing| 2-Robot Travel | 1-Robot Travel | Performance

bound on the ratio of the cost of optimal solution to the cost points Cost Cost (m) Cost (m) Gain
of the solution of this algorithm. However, we currently datn | 135300 67651 103.289 93.535 1.453

; 167536 83797 115.462 97.329 1.42

a

have any such .g_uarante.es. An alternative approach, elipec a-Tg1758 50892 150953 56575 173
useful to practitioners, is to compute the performance gdiniogs7g 99701 140.162 105365 1447
achieved in using & -robot system over a single robot systen). 211856 | 106011 121.911 98.219 1.40

Here we provide simulation results that show the perforraanc
gain achieved in using a two-robot system over a single robot
system. VI. EXTENSION TO K-ROBOT SYSTEMS

The cost of the path for any robot is the sum of the travel In this section we extend our splitting and ordering algo-
cost ([;) to visit the points and the processing co$})(of rithms for the two robot system to/d-robot system. For & -
processing the points on the path (which is proportional tobot system the splitting problem can be set up as patrititgpn
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. L - TABLE IV
the (_:0mpat|b||_lty graph of the points into the minimum nu_mbeGREEDYALGORITHM RESULTS FOR FOURHEAD MACHINE ON EXAMPLE
of cliques of size less than or equalia This is a modification DATA FILES
of the NP-hard clique partitioning problem [9], the diffaoe
being the presence of a bound on the maximum size of fhdWum- of [ Num. Num. [ Num. | Num. | Total num.
. . . . . points of quads | of triples | of pairs | of singles | of tuples
clique in our case. Qonsequel_’\tly, it |s_unI|ker that thexyei 7536 T 421872 5 10 5 21894
polynomial time optimal solution to this problem. Therefor[ 198570 | 49632 6 9 6 49653
we present here the extension of the greedy algorithm to the?11856 | 52954 ’ 5 9 52975
135300 | 33792 29 8 29 33858

K-robot case. 181758 | 45398 5 57 37 45497

A. Splitting Algorithm B. Ordering Algorithm

We first define theX-robot splitting problem formally. For 11,4 setQ obtained as a result of the splitting problem

concreteness, we use our motivating problem in Figure . \cicts of point tuples of size less than or equaktoWe

to re_present.the geometric constraints. We assume that '?up the ordering problem as a multi-dimensional TSP in
architecture is such that th& robots are mounted on they,o x_yple space, similar to the two robot case. Thereafter,
gantry in Figure 1 and each robot has independent actuaigg s the tour improvement heuristic to improve the tour by
along th(_a z-axis. The problem statement for the Sp“tt'nQnterchanging the points in th&-tuple space. The tuples of
problem is thus: ) size less than or equal t& are then inserted into the tours
Problem Statement: Let _S - {I;J'} = 15,9)},J = of the robots using the cheapest insertion heuristic desdri
1...N, be a set of points inR". Let @ = {Qi} = previously. The distance between two K-tuples, $and j,

{[(z1,91), (22,92), (w3, 43), - (@, yn)lid i = 1.0 Ny g g generalization of the definition fd¢ = 2 and is defined
be aorderedset of L—tuples,L < K such that®; N Q; = ¢, as
each point inS is present in a tuple i), and the points in K

- - ik = Tjkls [Yik = Yjk|f 7
each element of) respect the following constraints max{[zi = ziel, ik = Yinlbo )
where (zx, yix), (z;k,yj%) are the the coordinates of the

i = Tmi > Smin = 28, Lm e {l,..., L}, 1>m points in thekth positions of thei( -tuplesi and;j respectively.

1 & (6) The tour improvement heuristic and the heuristic for iriagrt
maxg—1...L.{|Yri - i3 >kl <A tuples of size less thal are direct extensions of the heuristics
k=1 for the two robot system. For improving the tour cost while
Find such aQ of minimum cardinality. not changing the processing cost, we first identify the self-

crossings in the tours of an individual robot and then try
The constraints on the-coordinates ensure collision avoid-to interchange the order of the points assigned to that robot
ance and the constraints on thyecoordinates indicate thatto achieve reduction in travel cost. For incorporating adup
the robots are constrained to move along thaxis but have with [ elements { < K), we compute the insertion costs in
a square footprint for processing. The greedy algorithm ftine [-tuple space. The same concept and formula as used in
the 2-robot case can be extended to therobot case in a Section V-C is used for determining the order of the tuples in
straightforward fashion. The main steps of the algorithm athe tour.
as follows: Table V shows the processing cost, the travel cost, and
the overall performance gain achieved by using a four robot
system over a single robot system. The second and third
columns give the processing and travel cost respectivaly fo

using K medians of the band. Number the zorie® K the four robot system. The definition of performance gain is
from left to right. the same as given in Section V-D. Similar to the two robot case

« Then starting with the leftmost available point in zon¥/€ S€e here_ that there is a substantial gain in_ the procesging
1 at the first position in each tuple, assign a point tgost (the_ ratio of the second column to the first column in
the kth position in the tuple if there is a point in zoneTable V is almost4 for each case_). However, the t.ravel cost
k that satisfies the constraints, where< k < K. If IS Worse in some cases (the ratio of travel cost in the third
there is more than one such point, choose the one whRlumn and second, fourth and fifth rows of Table V to the

minimum z-coordinate breaking ties with the minimumtravel cost in forth column and same rows is greater than

y-coordinate. If there are no such points, then add although we have an overall performance gain in all cases.
virtual point at thekth position. Note that this performance gain is a conservative estimade a

« Repeat until all points are assigned. can be thought of as a lower bound on the performance gain

) ) that can be achieved.
The performance of this algorithm on the example datasets,

shown in Table 1V, shows that we obtain a very good splitting

of the points among the robots. The datasets used are the same
as that for the two robot case, agg;, andA are96 mm and In this paper we presented algorithms for path planning
8 mm respectively. of a constrainedk -robot system to cover a set of points in

« Sort the points according to thejrcoordinates and divide
the points into bands of heightA.
« For each band divide the points into almost eiiatones

VIl. CONCLUSION
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TABLE V o _ _
OVERALL PERFORMANCE GAIN ACHIEVED BY USING A4-ROBOT sysTEm  [6] S. Dubowsky and T. D. Blubaugh. Planning time-optimabatic
OVER A SINGLE ROBOT SYSTEM manipulator motions and work places for point-to-pointkas IEEE

Transactions on Robotics and Automati&t3):377-381, March 1989.
[7] J. Edmonds. Maximum matching and a polyhedron with Gftiges.

Nur_n. of | Processing| 4-Robot Travel | 1-Robot Travel Perforr_nance Journal of Research of the National Bureau of Standaé®8:125-130,
points Cost Cost (m) Cost (m) Gain 1965
ig?ggg iiggi 13316468921 g?ggg ggg [8] G. N. Frederickson, M. S. Hecht, and C. E. Kim. Approxiioat
. : . algorithms for some routing problemsSIAM Journal on Computing
181758 45497 54.079 86.828 2.8 7(2):178-193, May 1978
;iig;g ggg§§ 1451312; 19285.231695 ggg [9] M. R. Garey and D. S. Johnso@omputers and Intractability; A Guide
: : : to the Theory of NP-Completenes#/. H. Freeman & Co., New York,

NY, USA, 1990.
[10] G. Gutin and A. Punneriraveling Salesman Problem and Its Variations

. Kluwer Academic Publishers, 2002.
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point at a time within its processing footprint. The proeess  Systemspages 1113-1116, San Diego, CA, May 1992.
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APPENDIXA

We present here the mixed integer optimal control formu-
lation of the minimum time multiple robot point set cover-
REFERENCES age problem. Although we do not use this general problem

_ . formulation in our paper, we include it here for complete-
[1] D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Codihe Traveling Let th ba bots that h t isit int t
Salesman Problem: A Computational Stu@yinceton University Press, ness. Le ere robots that have to visit a point se

2006. S = {p:}, where they have to perform some task that takes
[2] M. Bonert, L. H. Shu, and B. Benhabib. Motion planning faultirobot ~ time 7;,7 = 1,..., N. Let q (t) be the state of théth robot

assembly systems. IRroceedings of the ASME Design engineerin . . .
technical ConferengeLas Vegas, NV, September 1999. ‘t time ¢ and ar = fr(ar, ux) be the state update equation,

[3] B.Cao, G.I. Dodds, and G. W. Irwin. A practical approaomear time- Whereuy, is the time dependent control input. Let
optimal inspection-task-sequence planning for two coafper industrial
robot arms.International Journal of Robotics Researdv(8):858—-867, 1
August 1998. Wik =

[4] N. Chakraborty, S. Akella, and J. T. Wen. Coverage of aatgoint set J
with multiple constrained robots. IEEE International Conference on
Automation Science and Engineerjrigcottsdale, AZ, September 2007. . .

[5] G.B. Dantzig, R. Fulkerson, and S. M. Johnson. Solutiba large-scale where tjJ = L,...,N, are the (unknown) times when the
traveling salesman problenDperations Researgi2:393-410, 1954.  robots reach a point it. The mixed integer optimal control

if robot & visits point: at timet;,
0 otherwise

(8)
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problem is given by

Minimize t;
st q = fulag,ur), k=1,.... K 9)

N K

j=1k=1

N K

Zzwijk%(tj + ar;) = pi, (11)
j=1k=1

Va, 0<a<l1l, i=1,...,N

N K

Zzwijk::l, iZl,...,N (12)
j=1k=1

N N

S>> wip=1, k=1,....K (13)
i=1 j=1

N N K

>3 wip=N (14)
i=1 j=1 k=1

N K

i=1 k=1
h(q17q27aqK) SO (16)
g(ulau27"'7uK) <0 (17)
t; <ty, 7=1,...,N (18)

whereh(.) andg(.) are vector-valued vector functions rep-
resenting constraints on the statesy(, geometric constraints
like inter-robot collision avoidance) and control inpuespec-
tively. In addition, we can also include any constraints lo@ t
initial and final states of each robot. Equation 9 states that
the state evolution of the robots should obey the dynamics
constraints. Equation 10 states that for each ppjrthere is
exactly one robok that visits the point at some time, say

and Equation 11 states that the robot has to stay at the point
for time 7; to complete the task. Equation 12 states that each
point should be visited only once and Equation 13 implies
that a robot can only be at one particular point at a time.
Equation 14 states that the total number of points that have t
covered by all the robots i whereas Equation 15 implies
that at a given time;, at mostK points can be processed.
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