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Proximity Queries between Convex Objects:
An Interior Point Approach for Implicit Surfaces
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Abstract— This paper presents an interior point approach to
exact distance computation between convex objects repreged
as intersections of implicit surfaces. Exact distance comjtation
algorithms are particularly important for applications in volving
objects that make intermittent contact, such as in dynamic
simulations and in haptic interactions. They can also be ugkin
the narrow phase of hierarchical collision detection. In catrast
to geometric approaches developed for polyhedral objects,
we formulate the distance computation problem as a convex
optimization problem; this optimization formulation has been
previously described for polyhedral objects. We demonstree
that for general convex objects represented as implicit sdaces,
interior point approaches are globally convergent, and fasin
practice. Further, they provide polynomial-time guarantees for
implicit surface objects when the implicit surfaces have dé&
concordant barrier functions. We use a primal-dual interior
point algorithm that solves the KKT conditions obtained from
the convex programming formulation. For the case of polyheca
and quadrics, we establish a theoretical time complexity of
O(n*®), where n is the number of constraints. We present
implementation results for example implicit surface objeds,
including polyhedra, quadrics, and generalizations of qudrics
such as superquadrics and hyperquadrics, as well as inter-
sections of these surfaces. We demonstrate that in practice
the algorithm takes time linear in the number of constraints
and that distance computation rates of about 1 kHz can be
achieved. We also extend the approach to proximity queries
between deforming convex objects. Finally, we show that cen
tinuous collision detection for linearly translating objects can be
performed by solving two related convex optimization probems.
For polyhedra and quadrics, we establish that the computabnal
complexity of this problem is alsoO(n'-?).

Index Terms— Proximity query, closest points, implicit sur-
faces, interior point algorithms, collision detection.

I. INTRODUCTION

detection algorithm in applications where knowledge of the
closest points is required rather than just a yes/no answer f
collision. Such applications are characterized by excstayf
intermittent contact, i.e., phases of contact and no contac
between the objects, with a concomitant need to predict
potential contact points. Example applications includétimu
body dynamic simulation [1], [32], [44], computer anima-
tion [10], dextrous manipulation [6], and haptics [30], [14
Applications where collision avoidance is the primary goal
such as robot path planning [37] and spacecraft safe volume
computations [15], can also make use of the knowledge of
the closest distance information.

The general problem of distance computation between two
objects X andY can be written as

Minimize  ||x; — yqll2
subjectto:x, € X, y, € YV

(1)

where the two objectX andY are represented as compact
(closed and bounded) sets B? or R® and the pointsx,

and y, are points in the two objects. This problem has
been extensively studied [24], [29], mainly for polyhedral
object representations [17], [20], [28], [31]. In this papee
focus on representing the se¥ andY as intersections of
implicit surfaces, including planes, quadrics, superagigad
and hyperquadrics. We assume we are given an implicit
surface model of each object. Our choice of object repre-
sentation is motivated by the goal of simulating systems
with smooth objects, where polygonal discretizations may
not be desirable. The literature on distance computation
between general implicit surfaces is relatively sparsebse,
with a few notable exceptions [19], [46], methods for poly-

This paper studies the problem of computing the closedtédral representations do not easily generalize to intplici
points on two convex objects, when each object is describedirfaces. Having a smooth representation of objects and an

as an intersection of implicit surfaces. Exact distancemom

algorithm to perform distance computation between such

tation algorithms are used in the narrow phase of a collisiofiePresentations will enable the study of the effects of ehap
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and polygonalization on dynamic simulation of systems with
intermittent contact.

Contributions of the paperThis paper presents the first
general method for computing the minimum distance be-
tween two convex objects, where each object is described
as an intersection of implicit surfaces. This class of canve
objects includes for example, convex polyhedra, quadrics,
superquadrics, and hyperquadrics. While the distance com-
putation problem for convex objects represented by convex
inequalities has been known to be a convex optimization
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problem [4], [5], interior point algorithms have not been Popular algorithms for convex polyhedra include GJK [20],
previously applied to this problem. Interior point meth@de  Lin-Canny [28], and V-Clip [31]. GJK [20] is an iterative
well suited for this class of optimization problems sinceyth algorithm for distance computation between two convex
are guaranteed to converge to the global optimum for convegolyhedra. Without any preprocessing, it takes time liriear
problems. Further, they exhibit polynomial convergenae fothe number of vertices and uses a support function desmmipti
special classes of functions called self-concordant fanst  of the polyhedra. Lin-Canny [28] efficiently computes the
We apply a recently developed interior point algorithm [7], distance between two convex polyhedra and tracks the ¢tloses
[51] to compute the distance between convex implicit s@fac points using adjacency of features. Its running time isdine
objects and demonstrate that it is particularly effective f in the number of features (faces, edges, and vertices). Both
this class of problems. For polyhedral and quadric surfaceslgorithms can track the closest points in (almost) corstan
we exploit the problem structure to show the algorithm takesime when there is temporal coherence [9]. Bobrow [4]
O(n'-%) time, wheren is the number of constraints. We also proposed an optimization based approach for computing the
illustrate the approach on surfaces such as superquaddcs adistance between two convex polyhedra. He formulated the
hyperquadrics; this is the first approach with this demonproblem as a quadratic programming problem and used a
strated capability (without discretization). Another ionant  gradient projection algorithm to solve the problem. Sirtde t
advantage of this method is that it provides a uniform frameapproach can suffer from convergence issues, Zeghloul et.
work for proximity queries between objects described asl. [53] propose a method to improve its convergence.
intersections of convex polyhedra, quadrics, or any ajtr Proximity queries for implicit surfacesthe literature on
convexC? implicit surface. Further, these proximity queries distance computation between general implicit surfaces is
can be used in the narrow phase of hierarchical collisiomelatively sparse because, with the exception of GJK [19],
detection for implicit surfaces. We present implementatio methods for polyhedral representations do not easily gener
results for example implicit surface objects that show thaslize to implicit surfaces. van den Bergen [46] discusses in
the algorithm exhibits linear time performance in practice detail a GJK implementation for convex quadric objectssThi
and demonstrate that distance computation rates of aboalgorithm is globally convergent for convex objects and nu-
1 kHz can be achieved. We also extend the approach tmerical experiments for two quadric surfaces indicate fiiat
proximity queries between deforming convex objects. fynal a given tolerance, the algorithm converges i®(—log(¢))
we show that continuous collision detection for linearly steps. Most other algorithms [1], [27], [26], [15], [43],14
translating objects can be performed by solving two relatedise the collinearity properties of the surface normals at th
convex optimization problems. For polyhedra and quadrics;losest points to form a set of nonlinear algebraic equation
we establish that the time complexity of this continuouswhose solution gives the closest points. The differences
collision detection problem is als@(n!-?). between the different algorithms lie in the approaches they
The paper is organized as follows. After a discussioruse to solve the system of nonlinear equations. All these
of related work in Section II, we review the mathematicalmethods require a good initial guess to converge to the corre
background for our work in Section Ill. We present thesolution. A different approach based on interval arithmeti
formulation of the closest distance problem in Section IVtechniques was used in [18], [42]. Snyder et. al. [42] used th
and describe how it can be solved using interior pointangency constraints at the touching points to form theesyst
algorithms in Section V. Section VI provides theoretical of equations and solve it using an interval Newton method.
and practical results on the complexity of the closest poinAlthough superquadrics are a generalization of quadies, t
algorithm. Section VII extends the approach to continuougroblem in generalizing the methods in [1], [20], [15], [43]
proximity queries for linearly translating objects. We ggat  to superquadrics is that they all lead to polynomial equmstio
our implementation results in Section VIII and concludehwit with fractional exponents, which are very difficult to salve
a discussion of future work in Section IX. A preliminary In general, we do not know the total number of roots, and
version of this work appeared in [12]. even when it is possible to simplify the polynomials, they
may have large integer exponents.

Il. RELATED WORK

Proximity queries for polyhedraProximity queries and
collision detection algorithms have an extensive litematu  We now review the mathematical terminology that will be
in computational geometry [17], [27], robotics [20], [28], used in the rest of the paper.
and computer graphics [1], [46]. We provide a samplingConvex SetA setU C R" is called a convex set iku; +
of the related work in these areas; see [29] and [24] fo1l — A)uy € U for any two pointsuy, us € U and any\
an overview of collision detection and proximity queries.with 0 < A < 1.

When collision detection algorithms estimate the distanc&€onvex FunctionA function f : R™ — R is convex if the
between two objects, they typically use a geometric apgiroacdomain of f (dom f) is a convex set and'(Au; + (1 —

IIl. M ATHEMATICAL PRELIMINARIES
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Mug) < Af(ur) + (1 — A)f(ug). for all u;, up € domf  obtain the closest points by solving the following system of

and any\ with 0 < X < 1. nonlinear equations
tioiuperquadrch superquadric [23] is defined by the equa- Xy — Vg = “AxVfx(xg) = My Vv (vy) @
ni no ns fX(Xq):O7 fY(yQ)ZO
f0 =2 +2] +12| —1=0 where A\x and \y are scalars. The conditions given by
a“ a2 3 (2) Equation 4 are precisely the Karush-Kuhn-Tucker (KKT)
ni:li/mi, li,miEZ"', i€{1,2,3}

conditions for solving the following optimization problem

f(x) convexif 1<n; <oo Minimize  [x, — y, 2

Although the definition here differs slightly from that in][2 subject to: fx(x,) =0, fy(y,) =0. ©)

the two definitions are equivalent [23]. Convex SuDerqm”q}gowever note that whegix and fy are nonlinear, the above

are a broad class of shapes that include rounded cuboi . :
s foblem is nonconvex even when the objects are convex and
ellipsoids, spheres, and (rounded) octahedra. The planés

. . . _ e solution can therefore get stuck in a local minimum.
ﬁ’ < 1, ¢ = 1,2,3 define a bounding cube for the

a; ) , ) We now formulate the problem of minimum distance
superquadriay; controls the length along théh axis, and the  computation between two convex objects as a convex opti-

indices control the roundedness of the shape. Differemiea mjzation problem. Without loss of generality, we can assume
can be obtained by varying. The shape is a rhomboid when that the implicit surface describing the objects is destit
n; =1, and the shape becomes a cubeatends to infinity. 5 glopal reference frame. The distance computation problem

Hyperquadric: A hyperquadric [23] is defined by the of Equation 1 is then given by
equation

Minimize  ||x, — y,l/3

N . o .
f(x):Z|Hi(x)|7”—1:0WhereN23and subject to: f;(x4) <0 z'— 1,...,m (6)
=1 f](yq)goj:m+1aan
H;(x) = (aiz1 + bize + cizs + d;) () where f; (k = 4, j) are twice continuously differentiable
ni = li/mi, li,m; € ZF functions representing the implicit surfaces in the global
F(x) convex if 1< n; < oo reference frame. If the description of the surfaces areeir th

local frame we can transform them to a global frame by
Hyperquadrics are a more general class of shapes thay = Rx; + p, where (R, p) is the transformation from
superquadrics. In particular, they include asymmetripeka local to global frame. Note that this transformation canie a
In this case also, the intersection of the halfspaégs) <1  affine transformation (not necessarily a rigid body transfo
form a bounding polytope for the hyperquadric and themation). In particular, we can handle global deformatidkes |

indices control the roundedness of the shape. nonuniform scaling by post multiplying the rotation matrix
Self-concordant functiongs convex functionf : R — Ris  with a scaling matrix. The objective function in Equation 6
self-concordant if £ (z)| < 2f"(x)3/? for all z € domf. is convex, and if the inequalities represent a convex set (i.

A convex functionf : R® — R is self-concordant if it is the objects are convex), the minimum distance computation
self-concordant along every line in its domain (see [5] forproblem is a convex programming problem.
details). The solution to the minimum distance problem of Equa-
tion 6 gives two closest points that lie on the surfaces of
the two objects (i.e., boundaries of the two sets). We use
an interior point algorithm [7] for solving this problem.
We now present the formulation of the minimum distanceSee Figure 1 for an example solution generated using an
computation problem. We first outline a geometric approacinterior point algorithm. Interior point methods [5] are a
to the minimum distance problem that has been popular iglass of optimization algorithms for nonlinear programgnin
prior work on non-polyhedral objects [1], [27], [43] andatd  problems. In contrast to algorithms for finding the closest
it to an optimization formulation. Lefx andfy be two twice  points that generate iterates that lie on the surface of the
continuously differentiable functions representing abjeX  objects (gradient projection [4], for example), feasiloierior
andY respectively, and let,, y, be the global coordinates of point methods generate iterates that are guaranteed to lie
points in X andY. To compute the closest distance betweerinside the objects and converge towards the closest points
X andY, the approach uses the geometric condition that then the boundaries of the objects. This is the main conceptual
normals on the two surfaces at the closest points are alignetifference between interior point methods and other method
with each other. Using this and the condition that the clbosesSequential quadratic programming (SQP) is another method
points should lie on the surfaces of the two objects, we cafor solving general nonlinear programming problems [2d]. |

IV. PROBLEM FORMULATION
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converge. The main difficulty in using Newton’s method is
ensurings > 0, which may lead to very small step lengths
that result in convergence problems.

Interior point methods, in essence, approximately solve a
sequence of systems of nonlinear equations that are formed
by perturbing the complementarity equatiodsSe¢ = 0) in
the KKT conditions. Following [5], we present the interior
point method by reformulating Equation 7 as barrier

) problem.
n
; Minimize  fo(x) — 1 Y _ In(s;)
i ©)
Fig. 1. Three example objects. The closest points of eachgbaibjects subject to: f(x) +s =0

are shown connected by a line segment.
where p is called the barrier parameter, with > 0.
Equation 9 differs from Equation 7 in that the nonnegativity
contrast to SQP, interior point methods have polynomiagtim constraints o are not present explicitly, but are implicit in
convergence guarantees for certain convex problems, as wiee objective. The KKT conditions can be written as
describe in Section VI. Moreover, an informal comparison

of SQP implementations with interior point algorithm imple Vfo(x) + (VE(x))"A=0
mentations on the NEOS server [16] shows the interior point f(x)+s=0 (20)
methods to be slightly faster. Therefore, we choose to solve LSe — ye =0

the optimization problem with an interior point algorithm.
This is a system oRn + 6 nonlinear equations i2n + 6
V. INTERIORPOINT ALGORITHM variables and can be approximately solved for a giveNote
that Equation 8 and Equation 10 differ in the complementarit

In _th|s section, e prese_nt_ trm|mgl-dual Interior point conditions. As the barrier paramegeapproaches, the KKT
algorithm for solving the minimum distance problem as an

optimization problem. The Karush-Kuhn-Tucker (KKT) con- conditions for the barrier problem (Equation 10) approdeh t

e . - e . KKT conditions of the original problem (Equation 8).
ditions give necessary and sufficient conditions for s@vin The general structure of interior point methods is indidate
the minimum distance problem (Equation 6), since it is a 9 P

R e . In Algorithm 1. For our problem, the immediate choice
convex o_pt|m|zat|on problem and sat|§f|es Slater gonsrtralr%or the initial guess is the center of the involved objects
qualification [3]. For ease of presentation, we rewrite EquaThe termination criterionl is the ending condition for the
tion 6 in a general nonlinear program format as X o9 . .

whole problem (Equation 8) and termination criteribis the
Minimize  fo(x) 7 ending condition for approximately solving Equation 10 for
subject to: f(x) +s =0, s>0 (™) the current value of:. The outer while loop determines the
) o number of timeg: has to be updated, i.e., the number of times
Wherefo(_x) = [lxg—ygll3, x = [x4,¥,]" isabx 1 column  Equation 10 has to be approximately solved for the sequence
vector,s is ann x 1 column vector of slack variables, and of w values. The inner while loop is a variant of Newton’s
f: R® — R" is the vector of inequality constraints. The method used for approximately solving Equation 10 for a
KKT conditions for Equation 7 are the system of nonlinearfixed value ofi.. The different interior point implementations

equations below: (KNITRO [7], [51], LOQO [49], IPOPT [50]) vary in the
V fo(x) + (VEx))TA = 0 way they calculate the step lengths for a particular value of
1, the termination criteria they use, and the way in which
f(x)+s=0 (8)

they updateu.
LSe=0

Here L. is an n x n diagonal matrix of the Lagrange
multipliers A, S is ann x n diagonal matrix of the slack
variabless, ande is ann-vector of ones. Equation 8 can be  The total cost of solving a problem using Algorithm 1 is
solved by Newton’s method for solving systems of nonlineathe product of the total number of iterations (consideriathb
equations, if the initial guess isear enough33]. However, loops) and the computational effort in solving the system of
in general, it is very difficult to supply a good initial guess linear equations to determine the Newton direction in each
and there is then no guarantee that Newton’s method wiliteration. The system of linear equations to be solved to

VI. COMPUTATIONAL COMPLEXITY
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Algorithm 1 Interior point algorithm
Input: initial strictly feasiblexy, initial barrier parameter
110, specified tolerance, and KKT equations
Output: Closest points solutiog

k<0
while termination criterion 1 not satisfiedio
while termination criterion 2 not satisfiedo

Solve system of linear equations for Newton direction

Determine step lengthy, by line search
Xg4+1 — X + arAXy,
Sk+1 < Sk + apAsy
Akt1 — Ak + arAXg
k—k+1
end while
Ho— cp
end while
return xj

Il ¢ < 1, may be constant or adaptive

determine the Newton direction is

Ay A" Opxn Ax -F
A2 Onxn Inxn AXN| = —F3 (11)
06><n S L As —F3

where A, = V2 fo(x) + > i A V2 fi(x) is a6 x 6 matrix,
A, = Vf(x) is an x 6 matrix, the definitions oS and L
are the same as before, aly = Vfy(x) + (VF(x))T),
F; = f(x) +s, F3 = LSe — pe.

We now show Equation 11 can be solved(tn) time,

although the computational cost of solving a systemnof

linear equations im unknowns isO(n?). By simple algebraic

manipulation of the above equations, we obtain the follgwin

formulas forAx, A\, and As:
Ax = G7H—F; — AT(STIL)(Fy + L'F3))
AN = (ST'L)(A2Ax — Fy + L7'F3)
As = L7} (F3 + SAN)

where G = A; + AT(S7'L)A,. SinceG is a6 x 6

(12)

matrix, G~! can be computed in constant time. Moreover,

S andL aren x n diagonal matrices, s8~! andL~! can

be computed in linear time. Thus we can compute all th

inverses inO(n). Moreover, noting the dimensions df;

and Ao, we can see by inspection that the matrix multipli-

if the log barrier function of the implicit surface constres
is a self-concordant function (refer to Section Ill), themmu
ber of Newton iterations (which is the number of times
Equation 11 must be solved) is polynomial in a parameter
depending on the structure of the function. For polyhedral
constraints and quadric constraints the number of Newton
iterations required for converging to the optimal solution
is O(n%log(c/e€)) [5], where ¢ is a problem dependent
constant and is the prescribed error. This implies that the
theoretical complexity of our approach for polyhedra and
quadrics isO(n!), for a givene. Alternatively, if n is
constant (for example, if we consider one quadric surface
describing each object, i.en, = 2) then the solution is
obtained inO(—log(e)) time. For the case of quadrics, this
O(n'-%) complexity is the best known bound. Moreover,
our experiments indicate the algorithm exhibits linearetim
behavior in practice, as shown in Figure 2(a) and Figure.2(b)
For superquadrics and hyperquadrics, the log barrier func-
tion might not be self-concordant in the general case. How-
ever, note that superquadric and hyperquadric functions ha
self-concordant barriers because they define convex rggion
and every convex region has a self-concordant barrier (its
universal barrier). If this barrier is too hard to find to be
useful computationally, an alternative is to decompose the
function into simpler functions (for example, as seconceord
cones [35]) such that the sum of the barriers for the simpler
functions gives a barrier for the original superquadric or
hyperquadric. However these representations may lead to
computationally slower solutions due to the increased rarmb
of variables and constraints. Glineur and Terlaky [22] pro-
vide self-concordant formulations fdy-norm minimization
that apply to superquadrics and hyperquadrics. However the
computational performance of these formulations has nbt ye
been explored in the literature. Moreover, the observeé tim
complexity of the interior point algorithm inear for this
class of shapes (Figure 2(c)), which implies that in practic
the number of iterations is constant, i.e., independenhef t
size of the problem. The observed linear time behavior of the
interior point algorithm even without self-concordant mep
sentations further justifies the use of an interior poirgeuh

esolver for this generic nonlinear programming formulation

VIlI. CONTINUOUS PROXIMITY QUERIES FOR
TRANSLATING OBJECTS

cation also require®(n) operations. So Equation 12 can be
evaluated inO(n) time, or in other words, the computation We now address the problem of continuous proximity
of the Newton step take®(n) time. Note that we have not queries for two linearly translating objects. Such queries
made any assumptions regarding the primitive surface typean be useful in identifying feasible object motions during
describing the object. Thus this analysis is valid for @%/  assembly planning. The goal is to determine the exact time
implicit surface (including planes, quadrics, supergier at which the two moving objects are closest, without discret
hyperquadrics, etc.) and for intersections of these iriplic sampling of their configurations. This computation of the
surfaces. closest distance between two swept objects is closelyegklat
For general functions, there is no known bound on the totatio the problem of continuous collision detection [11], [8],
number of iterations (including both while loops). However [52], [38], [39], [48] where the time of first contact between
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two colliding objects is to be determined; however most
prior work has been restricted to polyhedral objects. The
advantage of such continuous collision detection metheds i
the ability to detect collisions even for fast moving obgect
in the presence of thin obstacles.

N

We address the continuous collision detection problem for
linearly translating objects by solving two related convex
optimization problems. Assume the objects are moving along
piecewise linear paths. Léf andY” be two objects described
by fx(x;) < 0 and fy(y;) < 0. Let the two objects be
linearly translating along the directions specified by the ) y
unit vectorsg, and g, with constant velocitiesy, and
vy respectively. The following optimization problem finds rig 3. computing the instant of closest distance using tticuous
the minimum distance between the two objects in the timeroximity query. The bold blue line connects the closesnfsobn the two
interval[0, T}...], where each object is moving along a SingleObjeCts' as they translate along the indicated line segment
line segment. If the minimum distance is greater than zero,
the solution provides the closest points and the timat
which the objects are closest. See Figure 3.

an initial feasible guess that is the solution of Equation 13

Minimize ¢
subject to: q = R.X; + ps + V1€
L ) q=R,y +py +v,18, (14)
Minimize  ||xy — yqll5 Fx(x) <0, fy(y1) <0
subject to: x, = R.x; + pe + v t€ 7 -
g x x rlex 0 S ¢ S Tp

Yo = Ryt Py +v,t8 (13) where T, is the time obtained from the solution of Equa-
fx(x) <0, fr(y) <0 tion 13. See the example in Figure 4.
0<t< T We now establish that the computational complexity of
solving the Newton step in the continuous collision detatti
problem along a single linear segmenid$n), which is the
same as for the static query problem. We can elimingte
When the objects intersect, the problem above has multipland y; from Equation 13 and can write it in the form of
solutions corresponding to zero distance. The time of firsEquation 7 wherex is a7 x 1 column vector that includes
contact can be obtained by solving another convex optimiza: Thus in Equation 11A; is a7 x 7 matrix andA; is an
tion problem using the solution of Equation 13. L@tbe nx7 matrix. This implies that is still a constant size@dx 7
the set of intersecting points anfl€ Q C R® be a point matrix and the complexity argument for solving Equation 12
specified in the global coordinate system. To obtain the timén Section VI applies directly. Similarly in Equation 14,is
of first contact, we solve the problem below, starting froma4 x 1 vector consisting o§ and¢. ThusA; is a4 x4 matrix
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the computation of the Newton step in both problems takes
O(n) time irrespective of the implicit primitive. Moreover,
as the constraints have a self-concordant log barrier ilmmct
for the case of planes and quadrics, the overall complesity i
O(n'-%) in these cases.

VIIl. RESULTS

We now present results illustrating our approach. To solve
the distance computation problem, we used KNITRO 5.0, a
commercially available interior point based solver [7]1]5
We use the primal-dual feasible interior point method in

R = |
Fig. 4. Computing the time of first contact using the contimiproximity
query gives the solution to the continuous collision dédecproblem.
and A is ann x 4 matrix andG is a4 x 4 matrix. Hence
1]

KNITRO, where all the iterates are feasible. We have an Vv VI
initial feasible solution trivially from points at the cems of
the objects. The barrier parameteris initially set to 0.1 ~ Fig- 5.~ Example objects. Objects I-lll are superquadrics, is an

; . . intersection of dri d half , and V-Vh drics.
and reduced by an adaptive factor at each iteration based ghroecton of stperquadrics and hallspaces, an wperquadrics

the complementarity gap. For each value ;otthe system
of nonlinear equations is approximately solved by Newton's  the rn time performance of the algorithm on the example

method with the step size determined by a trust regionypiects js shown in Table I, with some test cases depicted in
method [33]. The absolute and relative error tolerance “Seﬁigure 1. All data was obtained on a 2.2 GHz Athlon 64

. . : g i .
In our S|m_ulat|_ons <10 a”‘?' 10~ res_pecuvely. . X2 4400+ machine with 2 GB of RAM and averaged over
We depict S|x_example _obj_ects in Figure _5' three of Wh'ChIOO,OOO random configurations. The running times demon-
are superquadrics. The indices and semiaxes of the trgg,ie that the distance computation rate is about 1 kHzwhi
superquadrics arés, 5, 13) and (1,0.7,1.5) for Object | g g fficiently fast for real-time dynamic simulations amd |
(a dlamond),(ﬁ?é 5 1_1372, and (1,1,1.7) for Ob,JeCt (@ teractive haptic simulations. We also generated triangpuia
soda can), anf(i?’ ?’_1_3) and(L, 1, 1.5) for Object IIl (a of these objects with about 19,000 triangles and found that
_rounded cuboid). ObJ?Ct v m_odels a computer mouse ang,q gistance computation time (not collision detectionefim
is represented as an intersection of a superquadric and fofé[ken by PQP [25], a popular collision detection software,

halfspaces. The indices and semiaxes of the superquadric Nas comparable for our examples. Note that our randomly

23 11 17 —1
(315 7) and (2,1,1.7). The halfspaces are: > 5,  generated object configurations do not provide the benefits

71 < 3, @ > —0.75, andzs > 0.4 wherexy, 23, z3 are the ¢ coharence. We also compared our algorithm on quadric
local coordinates of the object. Object V is (the convex hl_Jllsurf(,ches against SOLID [46], [47], which supports proxjmit
of) a rounded hexagonal nut modeled as the hyperquadric e ries for quadrics without discretization. SOLID runsib
|22 + |21 + 0.522]'6 + |21 — 0.522]'6 + |2.523]* < 1. 80 times faster than our approach for the case of ellipsoids.
However, our algorithm has a theoretical guarantee of nqni
time in terms of the number of intersecting surfaces and
|21+ 23| 4| wo+w3| O+ |23 | 04|21 —23) O+ |z —23]'® < 1. error tolerance. Moreover, SOLID cannot deal with general

Object VI is a pyramid modeled as the hyperquadric
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TABLE |
SAMPLE RUN TIMES, IN MILLISECONDS, FOR PROXIMITY QUERIES
BETWEEN PAIRS OF OBJECTS

implicit surfaces like superquadrics or hyperquadricéouiit
discretization.
The timing data for translational continuous collision de-

tection is shown in Table Il. In cases where there is no Objects | Number of | Proximity query
collision, the query time is the time to solve Equation 13. constraints | time (millisecs)
In cases with collision, we compute the exact time of first 1] L 2 0.84
contact by solving the two optimization problems described ; I'I' I||||| g 8-%
in Equation 13 and Equation 14. 2TV 5 085
Deforming ObjectsAs stated in Section IV, we can easily 51 1, IV 6 0.76
handle global deformations such as nonuniform scaling in ou 61 1V 2 0.78
framework. Figure 6 shows nonuniform scaling of Object | ; |\|f, \\//'I g g:gg

and Obiject Il in10 steps. The final scaling matrices for
the two objects are diagonal matrices whose diagonal entrie TABLE Il

are (1,0.5,2) and (0.5,3,0.67) respectively. The approach  saypLe conTINUOUS PROXIMITY QUERY RUN TIMES BETWEEN PAIRS
can also handle any global deformation where the convexity,: og;ects For THE TIME OF FIRST CONTACT QUERIESONLY THOSE
of the object is preserved. For example, consider the globaloyricurarion PAIRS THAT RESULTED IN COLLISIONS WERE USEDND

shape deformation for superquadrics (or hyperquadricg) du 1,¢ reporTen QUERY TIME IS THE TOTAL QUERY TIME FOR SOLVING

to changes in the indices. Note that if a polygonal repre- BOTH PROBLEMS
sentation of the object had instead been used for this kind
of shape change, the polygonal representation would have to[ Objects Query Number of [ Query
be recomputed. Figure 7 shows three snapshots of Object | type constraints | time (millisecs)
being deformed to Object IIl in0 steps. Table Il shows bl ] Closest distance 2 132
. . . . ime of first contact 2 2.03
the gverage_d|stance co_mputatlon tlmes fqr poth_ nonuniform Closest distance > 0.07
scaling and index changing deformations, indicating thay c Time of first contact 2 1.51

be performed with similar running times to the rigid object
proximity query.

Numerical Robustness Issuasdfe have observed a small proximity query algorithms since they (with the exceptidn o
number of cases where KNITRO failed to converge to theGJK [20]) focus on polyhedra while we focus on smooth
optimal solution (with absolute toleranck)—8 and relative implicit surfaces. We demonstrated our algorithm on ex-
tolerance 10~6. For most objects, the failure rates wereample implicit surface objects including convex polyhedra
typically less than 0.01%. The largest failure rate obs#rvequadrics, superquadrics, hyperquadrics, and their iters
was 0.4% when Object | was one of the objects. This may b#ons. The global convergence properties of interior point
because (as is evident from our formulation) the algorithrilgorithms make them robust even in the absence of any
needs the second derivatives of the functions represetiting initial information about the closest points. For the clags
objects, but the second derivative does not exist everyavhefconvex polyhedra and) convex quadric surfaces, we establi
for Object |. Despite this, the solver converges to the oatim a theoretical complexity o (n'-%) for this approach, where
solution in most cases. However, the number of failuren is the number of implicit function constraints. This is
cases decreases with increase in error tolerance. Foveelatthe first bound on the running time of proximity queries
and absolute tolerance values ti—2, we have observed for intersections of convex quadrics. Moreover, the pcadti
no failures. When using a lower value of the tolerance’sunning time behavior is linear in the number of constraints
we found that switching to a variant of the interior point for all the classes of implicit surfaces that we have studied
method that uses a conjugate gradient method, availablEhe speed at which distance computations can be performed
within KNITRO, enabled the solver to converge for some ofenables real-time dynamic simulations and haptic intevast
the failure cases. Therefore adaptively using the two agsia
of the method could improve robustness even further. TABLE Il

SAMPLE PROXIMITY QUERY RUN TIMES BETWEEN DEFORMING PAIRS OF
IX. CONCLUSION OBJECTS

This paper develops a general approach for computing th _ —
distance between two or more convex objects, where each O™ Type of Number of | Proximity query

: ’ . . . ) J_ v Deformation constraints | time (millisecs)
object is dgscnbed as an intersection of implicit _surfaces Wl Nonunfform Scaling > 104
and establishes the theoretical and practical effectseé I, 1 Nonuniform Scaling 2 0.75
recently developed interior point algorithms for this peoh. [ — 10T, 1 Index Change 2 0.87
This proximity query approach complements most existing ! — !ll. Il Index Change 2 0.84
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(@) (b) (©)

Fig. 6. Proximity queries on deforming (superquadric) otgewith the deformation described by monotonic scalinige @eformation is performed in 10
steps. (a) The original objects. (b) The objects midwayufgtothe scaling. (c) The scaled objects.

(@) (b) (©)

Fig. 7. Proximity queries on deforming superquadric olgjeetith the deformation governed by a linear change of expisnéObject | is transformed to

Object Il in 10 steps. (a) The original objects. (b) Midwdydugh the deformation, deformed Object | has indi¢gs, ?, %). (c) The final objects.

at 1 KHz rates. Furthermore, within this framework we ACKNOWLEDGMENTS
can handle global affine deformations of implicit surface
objects, and index change deformations of superquadrics (
hyperquadrics) without significant computational overhea
Finally, we show that continuous collision detection for
linearly translating implicit surface objects can be perfed

by solving two related convex optimization problems. For
polyhedra and quadrics, we establish that the computdtiona

complexity of this continuous collision detection problésn REFERENCES
alsoO(n'?).
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