
CONDITIONALLY ACCEPTED TO THE IEEE TRANSACTIONS ON ROBOTICS, NOVEMBER 2006 1

Proximity Queries between Convex Objects:
An Interior Point Approach for Implicit Surfaces

Nilanjan Chakraborty,Student Member, IEEE,Jufeng Peng, Srinivas Akella,Member, IEEE,and John E. Mitchell

Abstract— This paper presents an interior point approach to
exact distance computation between convex objects represented
as intersections of implicit surfaces. Exact distance computation
algorithms are particularly important for applications in volving
objects that make intermittent contact, such as in dynamic
simulations and in haptic interactions. They can also be used in
the narrow phase of hierarchical collision detection. In contrast
to geometric approaches developed for polyhedral objects,
we formulate the distance computation problem as a convex
optimization problem; this optimization formulation has b een
previously described for polyhedral objects. We demonstrate
that for general convex objects represented as implicit surfaces,
interior point approaches are globally convergent, and fast in
practice. Further, they provide polynomial-time guarantees for
implicit surface objects when the implicit surfaces have self-
concordant barrier functions. We use a primal-dual interior
point algorithm that solves the KKT conditions obtained from
the convex programming formulation. For the case of polyhedra
and quadrics, we establish a theoretical time complexity of
O(n1.5), where n is the number of constraints. We present
implementation results for example implicit surface objects,
including polyhedra, quadrics, and generalizations of quadrics
such as superquadrics and hyperquadrics, as well as inter-
sections of these surfaces. We demonstrate that in practice,
the algorithm takes time linear in the number of constraints,
and that distance computation rates of about 1 kHz can be
achieved. We also extend the approach to proximity queries
between deforming convex objects. Finally, we show that con-
tinuous collision detection for linearly translating objects can be
performed by solving two related convex optimization problems.
For polyhedra and quadrics, we establish that the computational
complexity of this problem is alsoO(n1.5).

Index Terms— Proximity query, closest points, implicit sur-
faces, interior point algorithms, collision detection.

I. I NTRODUCTION

This paper studies the problem of computing the closest
points on two convex objects, when each object is described
as an intersection of implicit surfaces. Exact distance compu-
tation algorithms are used in the narrow phase of a collision

Nilanjan Chakraborty and Srinivas Akella are with the Depart-
ment of Computer Science at Rensselaer Polytechnic Institute (Email:
chakrn2@cs.rpi.edu; sakella@cs.rpi.edu). Jufeng Peng was with the De-
partment of Mathematical Sciences at Rensselaer Polytechnic Institute
and is currently with the Progressive Insurance Company (Email: jame-
spjf@gmail.com). John Mitchell is with the Department of Mathematical
Sciences at Rensselaer Polytechnic Institute (Email: mitchj@rpi.edu). This
work was supported in part by NSF under CAREER Award No. IIS-0093233.

The corresponding author is Srinivas Akella, Department ofComputer
Science, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New
York 12180, USA. Tel: (518) 276-8770, Fax: (518) 276-4033, Email:
sakella@cs.rpi.edu.

detection algorithm in applications where knowledge of the
closest points is required rather than just a yes/no answer for
collision. Such applications are characterized by existence of
intermittent contact, i.e., phases of contact and no contact
between the objects, with a concomitant need to predict
potential contact points. Example applications include multi-
body dynamic simulation [1], [32], [44], computer anima-
tion [10], dextrous manipulation [6], and haptics [30], [14].
Applications where collision avoidance is the primary goal,
such as robot path planning [37] and spacecraft safe volume
computations [15], can also make use of the knowledge of
the closest distance information.

The general problem of distance computation between two
objectsX andY can be written as

Minimize ‖xg − yg‖2

subject to: xg ∈ X, yg ∈ Y
(1)

where the two objectsX andY are represented as compact
(closed and bounded) sets inR2 or R

3 and the pointsxg

and yg are points in the two objects. This problem has
been extensively studied [24], [29], mainly for polyhedral
object representations [17], [20], [28], [31]. In this paper, we
focus on representing the setsX and Y as intersections of
implicit surfaces, including planes, quadrics, superquadrics,
and hyperquadrics. We assume we are given an implicit
surface model of each object. Our choice of object repre-
sentation is motivated by the goal of simulating systems
with smooth objects, where polygonal discretizations may
not be desirable. The literature on distance computation
between general implicit surfaces is relatively sparse because,
with a few notable exceptions [19], [46], methods for poly-
hedral representations do not easily generalize to implicit
surfaces. Having a smooth representation of objects and an
algorithm to perform distance computation between such
representations will enable the study of the effects of shape
and polygonalization on dynamic simulation of systems with
intermittent contact.

Contributions of the paper:This paper presents the first
general method for computing the minimum distance be-
tween two convex objects, where each object is described
as an intersection of implicit surfaces. This class of convex
objects includes for example, convex polyhedra, quadrics,
superquadrics, and hyperquadrics. While the distance com-
putation problem for convex objects represented by convex
inequalities has been known to be a convex optimization

CONDITIONALLY ACCEPTED TO THE IEEE TRANSACTIONS ON ROBOTICS, NOVEMBER 2006 2

problem [4], [5], interior point algorithms have not been
previously applied to this problem. Interior point methodsare
well suited for this class of optimization problems since they
are guaranteed to converge to the global optimum for convex
problems. Further, they exhibit polynomial convergence for
special classes of functions called self-concordant functions.
We apply a recently developed interior point algorithm [7],
[51] to compute the distance between convex implicit surface
objects and demonstrate that it is particularly effective for
this class of problems. For polyhedral and quadric surfaces,
we exploit the problem structure to show the algorithm takes
O(n1.5) time, wheren is the number of constraints. We also
illustrate the approach on surfaces such as superquadrics and
hyperquadrics; this is the first approach with this demon-
strated capability (without discretization). Another important
advantage of this method is that it provides a uniform frame-
work for proximity queries between objects described as
intersections of convex polyhedra, quadrics, or any arbitrary
convexC2 implicit surface. Further, these proximity queries
can be used in the narrow phase of hierarchical collision
detection for implicit surfaces. We present implementation
results for example implicit surface objects that show that
the algorithm exhibits linear time performance in practice,
and demonstrate that distance computation rates of about
1 kHz can be achieved. We also extend the approach to
proximity queries between deforming convex objects. Finally,
we show that continuous collision detection for linearly
translating objects can be performed by solving two related
convex optimization problems. For polyhedra and quadrics,
we establish that the time complexity of this continuous
collision detection problem is alsoO(n1.5).

The paper is organized as follows. After a discussion
of related work in Section II, we review the mathematical
background for our work in Section III. We present the
formulation of the closest distance problem in Section IV
and describe how it can be solved using interior point
algorithms in Section V. Section VI provides theoretical
and practical results on the complexity of the closest point
algorithm. Section VII extends the approach to continuous
proximity queries for linearly translating objects. We present
our implementation results in Section VIII and conclude with
a discussion of future work in Section IX. A preliminary
version of this work appeared in [12].

II. RELATED WORK

Proximity queries for polyhedra:Proximity queries and
collision detection algorithms have an extensive literature
in computational geometry [17], [27], robotics [20], [28],
and computer graphics [1], [46]. We provide a sampling
of the related work in these areas; see [29] and [24] for
an overview of collision detection and proximity queries.
When collision detection algorithms estimate the distance
between two objects, they typically use a geometric approach.

Popular algorithms for convex polyhedra include GJK [20],
Lin-Canny [28], and V-Clip [31]. GJK [20] is an iterative
algorithm for distance computation between two convex
polyhedra. Without any preprocessing, it takes time linearin
the number of vertices and uses a support function description
of the polyhedra. Lin-Canny [28] efficiently computes the
distance between two convex polyhedra and tracks the closest
points using adjacency of features. Its running time is linear
in the number of features (faces, edges, and vertices). Both
algorithms can track the closest points in (almost) constant
time when there is temporal coherence [9]. Bobrow [4]
proposed an optimization based approach for computing the
distance between two convex polyhedra. He formulated the
problem as a quadratic programming problem and used a
gradient projection algorithm to solve the problem. Since this
approach can suffer from convergence issues, Zeghloul et.
al. [53] propose a method to improve its convergence.

Proximity queries for implicit surfaces:The literature on
distance computation between general implicit surfaces is
relatively sparse because, with the exception of GJK [19],
methods for polyhedral representations do not easily gener-
alize to implicit surfaces. van den Bergen [46] discusses in
detail a GJK implementation for convex quadric objects. This
algorithm is globally convergent for convex objects and nu-
merical experiments for two quadric surfaces indicate thatfor
a given toleranceǫ, the algorithm converges inO(−log(ǫ))
steps. Most other algorithms [1], [27], [26], [15], [43], [41]
use the collinearity properties of the surface normals at the
closest points to form a set of nonlinear algebraic equations
whose solution gives the closest points. The differences
between the different algorithms lie in the approaches they
use to solve the system of nonlinear equations. All these
methods require a good initial guess to converge to the correct
solution. A different approach based on interval arithmetic
techniques was used in [18], [42]. Snyder et. al. [42] used the
tangency constraints at the touching points to form the system
of equations and solve it using an interval Newton method.
Although superquadrics are a generalization of quadrics, the
problem in generalizing the methods in [1], [20], [15], [43]
to superquadrics is that they all lead to polynomial equations
with fractional exponents, which are very difficult to solve.
In general, we do not know the total number of roots, and
even when it is possible to simplify the polynomials, they
may have large integer exponents.

III. M ATHEMATICAL PRELIMINARIES

We now review the mathematical terminology that will be
used in the rest of the paper.
Convex Set:A set U ⊆ R

n is called a convex set ifλu1 +
(1 − λ)u2 ∈ U for any two pointsu1, u2 ∈ U and anyλ
with 0 ≤ λ ≤ 1.
Convex Function:A function f : R

n → R is convex if the
domain of f (dom f) is a convex set andf(λu1 + (1 −

CONDITIONALLY ACCEPTED TO THE IEEE TRANSACTIONS ON ROBOTICS, NOVEMBER 2006 3

λ)u2) ≤ λf(u1) + (1 − λ)f(u2). for all u1, u2 ∈ dom f
and anyλ with 0 ≤ λ ≤ 1.

Superquadric:A superquadric [23] is defined by the equa-
tion

f(x) =

∣

∣

∣

∣

x1

a1

∣

∣

∣

∣

n1

+

∣

∣

∣

∣

x2

a2

∣

∣

∣

∣

n2

+

∣

∣

∣

∣

x3

a3

∣

∣

∣

∣

n3

− 1 = 0

ni = li/mi, li, mi ∈ Z
+, i ∈ {1, 2, 3}

f(x) convex if 1 ≤ ni <∞

(2)

Although the definition here differs slightly from that in [2],
the two definitions are equivalent [23]. Convex superquadrics
are a broad class of shapes that include rounded cuboids,
ellipsoids, spheres, and (rounded) octahedra. The planes
∣

∣

∣

xi

ai

∣

∣

∣ ≤ 1, i = 1, 2, 3 define a bounding cube for the
superquadric,ai controls the length along theith axis, and the
indices control the roundedness of the shape. Different shapes
can be obtained by varyingni. The shape is a rhomboid when
ni = 1, and the shape becomes a cube asni tends to infinity.

Hyperquadric: A hyperquadric [23] is defined by the
equation

f(x) =

N
∑

i=1

|Hi(x)|ni − 1 = 0 whereN ≥ 3 and

Hi(x) = (aix1 + bix2 + cix3 + di)

ni = li/mi, li, mi ∈ Z
+

f(x) convex if 1 ≤ ni <∞

(3)

Hyperquadrics are a more general class of shapes than
superquadrics. In particular, they include asymmetric shapes.
In this case also, the intersection of the halfspacesHi(x) ≤ 1
form a bounding polytope for the hyperquadric and the
indices control the roundedness of the shape.

Self-concordant functions:A convex functionf : R→ R is
self-concordant if|f ′′′(x)| ≤ 2f ′′(x)3/2 for all x ∈ domf .
A convex functionf : R

n → R is self-concordant if it is
self-concordant along every line in its domain (see [5] for
details).

IV. PROBLEM FORMULATION

We now present the formulation of the minimum distance
computation problem. We first outline a geometric approach
to the minimum distance problem that has been popular in
prior work on non-polyhedral objects [1], [27], [43] and relate
it to an optimization formulation. LetfX andfY be two twice
continuously differentiable functions representing objects X
andY respectively, and letxg, yg be the global coordinates of
points inX andY . To compute the closest distance between
X andY , the approach uses the geometric condition that the
normals on the two surfaces at the closest points are aligned
with each other. Using this and the condition that the closest
points should lie on the surfaces of the two objects, we can

obtain the closest points by solving the following system of
nonlinear equations

xg − yg = −λX∇fX(xg) = λY∇fY (yg)

fX(xg) = 0, fY (yg) = 0
(4)

where λX and λY are scalars. The conditions given by
Equation 4 are precisely the Karush-Kuhn-Tucker (KKT)
conditions for solving the following optimization problem:

Minimize ‖xg − yg‖2

subject to: fX(xg) = 0, fY (yg) = 0.
(5)

However note that whenfX andfY are nonlinear, the above
problem is nonconvex even when the objects are convex and
the solution can therefore get stuck in a local minimum.

We now formulate the problem of minimum distance
computation between two convex objects as a convex opti-
mization problem. Without loss of generality, we can assume
that the implicit surface describing the objects is described in
a global reference frame. The distance computation problem
of Equation 1 is then given by

Minimize ‖xg − yg‖
2
2

subject to: fi(xg) ≤ 0 i = 1, . . . , m

fj(yg) ≤ 0 j = m + 1, . . . , n

(6)

where fk (k = i, j) are twice continuously differentiable
functions representing the implicit surfaces in the global
reference frame. If the description of the surfaces are in their
local frame we can transform them to a global frame by
xg = Rxl + p, where (R,p) is the transformation from
local to global frame. Note that this transformation can be any
affine transformation (not necessarily a rigid body transfor-
mation). In particular, we can handle global deformations like
nonuniform scaling by post multiplying the rotation matrix
with a scaling matrix. The objective function in Equation 6
is convex, and if the inequalities represent a convex set (i.e.,
the objects are convex), the minimum distance computation
problem is a convex programming problem.

The solution to the minimum distance problem of Equa-
tion 6 gives two closest points that lie on the surfaces of
the two objects (i.e., boundaries of the two sets). We use
an interior point algorithm [7] for solving this problem.
See Figure 1 for an example solution generated using an
interior point algorithm. Interior point methods [5] are a
class of optimization algorithms for nonlinear programming
problems. In contrast to algorithms for finding the closest
points that generate iterates that lie on the surface of the
objects (gradient projection [4], for example), feasible interior
point methods generate iterates that are guaranteed to lie
inside the objects and converge towards the closest points
on the boundaries of the objects. This is the main conceptual
difference between interior point methods and other methods.
Sequential quadratic programming (SQP) is another method
for solving general nonlinear programming problems [21]. In

CONDITIONALLY ACCEPTED TO THE IEEE TRANSACTIONS ON ROBOTICS, NOVEMBER 2006 4

0
2

4 0 1 2 3 4

−1

0

1

2

3

4

5

6

y
x

z
III

II

I

Fig. 1. Three example objects. The closest points of each pair of objects
are shown connected by a line segment.

contrast to SQP, interior point methods have polynomial time
convergence guarantees for certain convex problems, as we
describe in Section VI. Moreover, an informal comparison
of SQP implementations with interior point algorithm imple-
mentations on the NEOS server [16] shows the interior point
methods to be slightly faster. Therefore, we choose to solve
the optimization problem with an interior point algorithm.

V. I NTERIOR POINT ALGORITHM

In this section, we present theprimal-dual interior point
algorithm for solving the minimum distance problem as an
optimization problem. The Karush-Kuhn-Tucker (KKT) con-
ditions give necessary and sufficient conditions for solving
the minimum distance problem (Equation 6), since it is a
convex optimization problem and satisfies Slater constraint
qualification [3]. For ease of presentation, we rewrite Equa-
tion 6 in a general nonlinear program format as

Minimize f0(x)

subject to: f(x) + s = 0, s ≥ 0
(7)

wheref0(x) = ‖xg−yg‖
2
2, x = [xT

g ,yT
g]T is a6×1 column

vector,s is an n × 1 column vector of slack variables, and
f : R

6 → R
n is the vector of inequality constraints. The

KKT conditions for Equation 7 are the system of nonlinear
equations below:

∇f0(x) + (∇f(x))T λ = 0

f(x) + s = 0

LSe = 0

(8)

Here L is an n × n diagonal matrix of the Lagrange
multipliers λ, S is an n × n diagonal matrix of the slack
variabless, ande is ann-vector of ones. Equation 8 can be
solved by Newton’s method for solving systems of nonlinear
equations, if the initial guess isnear enough[33]. However,
in general, it is very difficult to supply a good initial guess
and there is then no guarantee that Newton’s method will

converge. The main difficulty in using Newton’s method is
ensurings ≥ 0, which may lead to very small step lengths
that result in convergence problems.

Interior point methods, in essence, approximately solve a
sequence of systems of nonlinear equations that are formed
by perturbing the complementarity equations (LSe = 0) in
the KKT conditions. Following [5], we present the interior
point method by reformulating Equation 7 as abarrier
problem.

Minimize f0(x)− µ

n
∑

i=1

ln(si)

subject to: f(x) + s = 0

(9)

where µ is called the barrier parameter, withµ > 0.
Equation 9 differs from Equation 7 in that the nonnegativity
constraints ons are not present explicitly, but are implicit in
the objective. The KKT conditions can be written as

∇f0(x) + (∇f(x))T λ = 0

f(x) + s = 0

LSe− µe = 0

(10)

This is a system of2n + 6 nonlinear equations in2n + 6
variables and can be approximately solved for a givenµ. Note
that Equation 8 and Equation 10 differ in the complementarity
conditions. As the barrier parameterµ approaches0, the KKT
conditions for the barrier problem (Equation 10) approach the
KKT conditions of the original problem (Equation 8).

The general structure of interior point methods is indicated
in Algorithm 1. For our problem, the immediate choice
for the initial guess is the center of the involved objects.
The termination criterion1 is the ending condition for the
whole problem (Equation 8) and termination criterion2 is the
ending condition for approximately solving Equation 10 for
the current value ofµ. The outer while loop determines the
number of timesµ has to be updated, i.e., the number of times
Equation 10 has to be approximately solved for the sequence
of µ values. The inner while loop is a variant of Newton’s
method used for approximately solving Equation 10 for a
fixed value ofµ. The different interior point implementations
(KNITRO [7], [51], LOQO [49], IPOPT [50]) vary in the
way they calculate the step lengths for a particular value of
µ, the termination criteria they use, and the way in which
they updateµ.

VI. COMPUTATIONAL COMPLEXITY

The total cost of solving a problem using Algorithm 1 is
the product of the total number of iterations (considering both
loops) and the computational effort in solving the system of
linear equations to determine the Newton direction in each
iteration. The system of linear equations to be solved to

CONDITIONALLY ACCEPTED TO THE IEEE TRANSACTIONS ON ROBOTICS, NOVEMBER 2006 5

Algorithm 1 Interior point algorithm
Input: initial strictly feasiblex0, initial barrier parameter
µ0, specified toleranceǫ, and KKT equations
Output: Closest points solutionx

k ← 0
while termination criterion 1 not satisfieddo

while termination criterion 2 not satisfieddo
Solve system of linear equations for Newton direction
Determine step lengthαk by line search
xk+1 ← xk + αk∆xk

sk+1 ← sk + αk∆sk

λk+1 ← λk + αk∆λk

k ← k + 1
end while
µ ← cµ // c < 1, may be constant or adaptive

end while
return xk

determine the Newton direction is

A1 A2

T 06×n

A2 0n×n In×n

06×n S L

∆x

∆λ
∆s

 =

−F1

−F2

−F3

 (11)

whereA1 = ∇2f0(x) +
∑n

i=1
λi∇

2fi(x) is a 6× 6 matrix,
A2 = ∇f(x) is a n × 6 matrix, the definitions ofS andL

are the same as before, andF1 = ∇f0(x) + (∇f(x))T λ,
F2 = f(x) + s, F3 = LSe− µe.

We now show Equation 11 can be solved inO(n) time,
although the computational cost of solving a system ofn
linear equations inn unknowns isO(n3). By simple algebraic
manipulation of the above equations, we obtain the following
formulas for∆x, ∆λ, and∆s:

∆x = G−1(−F1 −AT
2 (S−1L)(F2 + L−1F3))

∆λ = (S−1L)(A2∆x− F2 + L−1F3)

∆s = −L−1(F3 + S∆λ)

(12)

where G = A1 + AT
2 (S−1L)A2. Since G is a 6 × 6

matrix, G−1 can be computed in constant time. Moreover,
S andL aren × n diagonal matrices, soS−1 andL−1 can
be computed in linear time. Thus we can compute all the
inverses inO(n). Moreover, noting the dimensions ofA1

and A2, we can see by inspection that the matrix multipli-
cation also requiresO(n) operations. So Equation 12 can be
evaluated inO(n) time, or in other words, the computation
of the Newton step takesO(n) time. Note that we have not
made any assumptions regarding the primitive surface type
describing the object. Thus this analysis is valid for anyC2

implicit surface (including planes, quadrics, superquadrics,
hyperquadrics, etc.) and for intersections of these implicit
surfaces.

For general functions, there is no known bound on the total
number of iterations (including both while loops). However,

if the log barrier function of the implicit surface constraints
is a self-concordant function (refer to Section III), the num-
ber of Newton iterations (which is the number of times
Equation 11 must be solved) is polynomial in a parameter
depending on the structure of the function. For polyhedral
constraints and quadric constraints the number of Newton
iterations required for converging to the optimal solution
is O(n0.5log(c/ǫ)) [5], where c is a problem dependent
constant andǫ is the prescribed error. This implies that the
theoretical complexity of our approach for polyhedra and
quadrics isO(n1.5), for a given ǫ. Alternatively, if n is
constant (for example, if we consider one quadric surface
describing each object, i.e.,n = 2) then the solution is
obtained inO(−log(ǫ)) time. For the case of quadrics, this
O(n1.5) complexity is the best known bound. Moreover,
our experiments indicate the algorithm exhibits linear time
behavior in practice, as shown in Figure 2(a) and Figure 2(b).

For superquadrics and hyperquadrics, the log barrier func-
tion might not be self-concordant in the general case. How-
ever, note that superquadric and hyperquadric functions have
self-concordant barriers because they define convex regions,
and every convex region has a self-concordant barrier (its
universal barrier). If this barrier is too hard to find to be
useful computationally, an alternative is to decompose the
function into simpler functions (for example, as second order
cones [35]) such that the sum of the barriers for the simpler
functions gives a barrier for the original superquadric or
hyperquadric. However these representations may lead to
computationally slower solutions due to the increased number
of variables and constraints. Glineur and Terlaky [22] pro-
vide self-concordant formulations forlp-norm minimization
that apply to superquadrics and hyperquadrics. However the
computational performance of these formulations has not yet
been explored in the literature. Moreover, the observed time
complexity of the interior point algorithm islinear for this
class of shapes (Figure 2(c)), which implies that in practice
the number of iterations is constant, i.e., independent of the
size of the problem. The observed linear time behavior of the
interior point algorithm even without self-concordant repre-
sentations further justifies the use of an interior point-based
solver for this generic nonlinear programming formulation.

VII. C ONTINUOUS PROXIMITY QUERIES FOR

TRANSLATING OBJECTS

We now address the problem of continuous proximity
queries for two linearly translating objects. Such queries
can be useful in identifying feasible object motions during
assembly planning. The goal is to determine the exact time
at which the two moving objects are closest, without discrete
sampling of their configurations. This computation of the
closest distance between two swept objects is closely related
to the problem of continuous collision detection [11], [8],
[52], [38], [39], [48] where the time of first contact between

CONDITIONALLY ACCEPTED TO THE IEEE TRANSACTIONS ON ROBOTICS, NOVEMBER 2006 6

0 2000 4000 6000 8000 10000
−500

0

500

1000

1500

2000

Number of Planes

R
un

ni
ng

 T
im

e
(m

ill
is

ec
on

ds
)

10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

Number of Quadric Constraints

R
un

ni
ng

 T
im

e
(m

ill
is

ec
on

ds
)

10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

Number of Superquadric Constraints

R
un

ni
ng

 T
im

e
(m

ill
is

ec
on

ds
)

(a) (b) (c)

Fig. 2. Plot showing observed linear time behavior of the interior point algorithm for different classes of surfaces. (a) Planes (b) Quadrics (c) Superquadrics.
Each data point was generated by averaging over 10,000 random configurations

two colliding objects is to be determined; however most
prior work has been restricted to polyhedral objects. The
advantage of such continuous collision detection methods is
the ability to detect collisions even for fast moving objects
in the presence of thin obstacles.

We address the continuous collision detection problem for
linearly translating objects by solving two related convex
optimization problems. Assume the objects are moving along
piecewise linear paths. LetX andY be two objects described
by fX(xl) ≤ 0 and fY (yl) ≤ 0. Let the two objects be
linearly translating along the directions specified by the
unit vectors ĝx and ĝy with constant velocitiesvx and
vy respectively. The following optimization problem finds
the minimum distance between the two objects in the time
interval[0, Tmax], where each object is moving along a single
line segment. If the minimum distance is greater than zero,
the solution provides the closest points and the timet at
which the objects are closest. See Figure 3.

Minimize ‖xg − yg‖
2
2

subject to: xg = Rxxl + px + vxtĝx

yg = Ryyl + py + vytĝy

fX(xl) ≤ 0, fY (yl) ≤ 0

0 ≤ t ≤ Tmax

(13)

When the objects intersect, the problem above has multiple
solutions corresponding to zero distance. The time of first
contact can be obtained by solving another convex optimiza-
tion problem using the solution of Equation 13. LetQ be
the set of intersecting points andq ∈ Q ⊂ R

3 be a point
specified in the global coordinate system. To obtain the time
of first contact, we solve the problem below, starting from

−4 −3 −2 −1 0 1 2 3 4 5 −2
0

2
−2

−1

0

1

2

3

4

5

6

y
x

z

Fig. 3. Computing the instant of closest distance using the continuous
proximity query. The bold blue line connects the closest points on the two
objects, as they translate along the indicated line segments.

an initial feasible guess that is the solution of Equation 13.

Minimize t

subject to: q = Rxxl + px + vxtĝx

q = Ryyl + py + vytĝy

fX(xl) ≤ 0, fY (yl) ≤ 0

0 ≤ t ≤ Tp

(14)

where Tp is the time obtained from the solution of Equa-
tion 13. See the example in Figure 4.

We now establish that the computational complexity of
solving the Newton step in the continuous collision detection
problem along a single linear segment isO(n), which is the
same as for the static query problem. We can eliminatexl

and yl from Equation 13 and can write it in the form of
Equation 7 wherex is a 7 × 1 column vector that includes
t. Thus in Equation 11,A1 is a 7 × 7 matrix andA2 is an
n×7 matrix. This implies thatG is still a constant sized7×7
matrix and the complexity argument for solving Equation 12
in Section VI applies directly. Similarly in Equation 14,x is
a 4×1 vector consisting ofq andt. ThusA1 is a4×4 matrix

CONDITIONALLY ACCEPTED TO THE IEEE TRANSACTIONS ON ROBOTICS, NOVEMBER 2006 7

−4 −3 −2 −1 0 1 2 3 4 5
−2

0

2

−2

−1

0

1

2

3

4

5

y

x

z

Fig. 4. Computing the time of first contact using the continuous proximity
query gives the solution to the continuous collision detection problem.

andA2 is ann× 4 matrix andG is a 4× 4 matrix. Hence
the computation of the Newton step in both problems takes
O(n) time irrespective of the implicit primitive. Moreover,
as the constraints have a self-concordant log barrier function
for the case of planes and quadrics, the overall complexity is
O(n1.5) in these cases.

VIII. R ESULTS

We now present results illustrating our approach. To solve
the distance computation problem, we used KNITRO 5.0, a
commercially available interior point based solver [7], [51].
We use the primal-dual feasible interior point method in
KNITRO, where all the iterates are feasible. We have an
initial feasible solution trivially from points at the centers of
the objects. The barrier parameterµ is initially set to 0.1
and reduced by an adaptive factor at each iteration based on
the complementarity gap. For each value ofµ the system
of nonlinear equations is approximately solved by Newton’s
method with the step size determined by a trust region
method [33]. The absolute and relative error tolerance used
in our simulations is10−8 and10−6 respectively.

We depict six example objects in Figure 5, three of which
are superquadrics. The indices and semiaxes of the three
superquadrics are(4

3
, 7

5
, 15

13
) and (1, 0.7, 1.5) for Object I

(a diamond),(23

11
, 11

5
, 179

13
) and (1, 1, 1.7) for Object II (a

soda can), and(76

9
, 71

5
, 179

13
) and (1, 1, 1.5) for Object III (a

rounded cuboid). Object IV models a computer mouse and
is represented as an intersection of a superquadric and four
halfspaces. The indices and semiaxes of the superquadric are
(23

11
, 11

5
, 17

7
) and (2, 1, 1.7). The halfspaces arex1 ≥

−1

2
,

x1 ≤
1

2
, x2 ≥ −0.75, andx3 ≥ 0.4 wherex1, x2, x3 are the

local coordinates of the object. Object V is (the convex hull
of) a rounded hexagonal nut modeled as the hyperquadric

|x2|
16 + |x1 + 0.5x2|

16 + |x1 − 0.5x2|
16 + |2.5x3|

2 ≤ 1.

Object VI is a pyramid modeled as the hyperquadric

|x1+x3|
16+|x2+x3|

16+|x3|
16+|x1−x3|

16+|x2−x3|
16 ≤ 1.

I II

III IV

V VI

Fig. 5. Example objects. Objects I–III are superquadrics, IV is an
intersection of superquadrics and halfspaces, and V–VI arehyperquadrics.

The run time performance of the algorithm on the example
objects is shown in Table I, with some test cases depicted in
Figure 1. All data was obtained on a 2.2 GHz Athlon 64
X2 4400+ machine with 2 GB of RAM and averaged over
100, 000 random configurations. The running times demon-
strate that the distance computation rate is about 1 kHz, which
is sufficiently fast for real-time dynamic simulations and in-
teractive haptic simulations. We also generated triangulations
of these objects with about 19,000 triangles and found that
the distance computation time (not collision detection time)
taken by PQP [25], a popular collision detection software,
was comparable for our examples. Note that our randomly
generated object configurations do not provide the benefits
of coherence. We also compared our algorithm on quadric
surfaces against SOLID [46], [47], which supports proximity
queries for quadrics without discretization. SOLID runs about
80 times faster than our approach for the case of ellipsoids.
However, our algorithm has a theoretical guarantee of running
time in terms of the number of intersecting surfaces and
error tolerance. Moreover, SOLID cannot deal with general

CONDITIONALLY ACCEPTED TO THE IEEE TRANSACTIONS ON ROBOTICS, NOVEMBER 2006 8

implicit surfaces like superquadrics or hyperquadrics without
discretization.

The timing data for translational continuous collision de-
tection is shown in Table II. In cases where there is no
collision, the query time is the time to solve Equation 13.
In cases with collision, we compute the exact time of first
contact by solving the two optimization problems described
in Equation 13 and Equation 14.

Deforming Objects:As stated in Section IV, we can easily
handle global deformations such as nonuniform scaling in our
framework. Figure 6 shows nonuniform scaling of Object I
and Object III in 10 steps. The final scaling matrices for
the two objects are diagonal matrices whose diagonal entries
are (1, 0.5, 2) and (0.5, 3, 0.67) respectively. The approach
can also handle any global deformation where the convexity
of the object is preserved. For example, consider the global
shape deformation for superquadrics (or hyperquadrics) due
to changes in the indices. Note that if a polygonal repre-
sentation of the object had instead been used for this kind
of shape change, the polygonal representation would have to
be recomputed. Figure 7 shows three snapshots of Object I
being deformed to Object III in10 steps. Table III shows
the average distance computation times for both nonuniform
scaling and index changing deformations, indicating they can
be performed with similar running times to the rigid object
proximity query.

Numerical Robustness Issues:We have observed a small
number of cases where KNITRO failed to converge to the
optimal solution (with absolute tolerance,10−8 and relative
tolerance10−6. For most objects, the failure rates were
typically less than 0.01%. The largest failure rate observed
was 0.4% when Object I was one of the objects. This may be
because (as is evident from our formulation) the algorithm
needs the second derivatives of the functions representingthe
objects, but the second derivative does not exist everywhere
for Object I. Despite this, the solver converges to the optimal
solution in most cases. However, the number of failure
cases decreases with increase in error tolerance. For relative
and absolute tolerance values of10−2, we have observed
no failures. When using a lower value of the tolerance’s
we found that switching to a variant of the interior point
method that uses a conjugate gradient method, available
within KNITRO, enabled the solver to converge for some of
the failure cases. Therefore adaptively using the two variants
of the method could improve robustness even further.

IX. CONCLUSION

This paper develops a general approach for computing the
distance between two or more convex objects, where each
object is described as an intersection of implicit surfaces,
and establishes the theoretical and practical effectiveness of
recently developed interior point algorithms for this problem.
This proximity query approach complements most existing

TABLE I

SAMPLE RUN TIMES, IN MILLISECONDS, FOR PROXIMITY QUERIES

BETWEEN PAIRS OF OBJECTS.

Objects Number of Proximity query
constraints time (millisecs)

1 I, II 2 0.84
2 I, III 2 0.91
3 II, III 2 0.70
4 III, IV 6 0.85
5 II, IV 6 0.76
6 III, V 2 0.78
7 V, VI 2 0.89
8 III, VI 2 0.89

TABLE II

SAMPLE CONTINUOUS PROXIMITY QUERY RUN TIMES BETWEEN PAIRS

OF OBJECTS. FOR THE TIME OF FIRST CONTACT QUERIES, ONLY THOSE

CONFIGURATION PAIRS THAT RESULTED IN COLLISIONS WERE USED AND

THE REPORTED QUERY TIME IS THE TOTAL QUERY TIME FOR SOLVING

BOTH PROBLEMS.

Objects Query Number of Query
type constraints time (millisecs)

I, III Closest distance 2 1.32
Time of first contact 2 2.03

II, III Closest distance 2 0.97
Time of first contact 2 1.51

proximity query algorithms since they (with the exception of
GJK [20]) focus on polyhedra while we focus on smooth
implicit surfaces. We demonstrated our algorithm on ex-
ample implicit surface objects including convex polyhedra,
quadrics, superquadrics, hyperquadrics, and their intersec-
tions. The global convergence properties of interior point
algorithms make them robust even in the absence of any
initial information about the closest points. For the classof
(convex polyhedra and) convex quadric surfaces, we establish
a theoretical complexity ofO(n1.5) for this approach, where
n is the number of implicit function constraints. This is
the first bound on the running time of proximity queries
for intersections of convex quadrics. Moreover, the practical
running time behavior is linear in the number of constraints
for all the classes of implicit surfaces that we have studied.
The speed at which distance computations can be performed
enables real-time dynamic simulations and haptic interactions

TABLE III

SAMPLE PROXIMITY QUERY RUN TIMES BETWEEN DEFORMING PAIRS OF

OBJECTS.

Objects Type of Number of Proximity query
Deformation constraints time (millisecs)

I, III Nonuniform Scaling 2 1.04
II, III Nonuniform Scaling 2 0.75

I → III, III Index Change 2 0.87
II → III, III Index Change 2 0.84

CONDITIONALLY ACCEPTED TO THE IEEE TRANSACTIONS ON ROBOTICS, NOVEMBER 2006 9

−2 0 2 4 6 8

−20246
−2

−1

0

1

2

3

4

5

6

xy

z

−2 0 2 4 6 8

−2
0

2
4

6
−2

−1

0

1

2

3

4

5

6

xy

z

−2 0 2 4 6 8

−202468
−3

−2

−1

0

1

2

3

4

5

6

xy

z

(a) (b) (c)

Fig. 6. Proximity queries on deforming (superquadric) objects, with the deformation described by monotonic scaling. The deformation is performed in 10
steps. (a) The original objects. (b) The objects midway through the scaling. (c) The scaled objects.

−2 0 2 4 6
0

2
4

6
0

1

2

3

4

5

6

7

xy

z

−2 0 2 4 6
0

2
4

6
0

1

2

3

4

5

6

7

xy

z

−2 0 2 4 6
0

2
4

6
0

1

2

3

4

5

6

7

xy

z

(a) (b) (c)

Fig. 7. Proximity queries on deforming superquadric objects, with the deformation governed by a linear change of exponents. Object I is transformed to
Object III in 10 steps. (a) The original objects. (b) Midway through the deformation, deformed Object I has indices(44

9
, 39

5
, 97

13
). (c) The final objects.

at 1 KHz rates. Furthermore, within this framework we
can handle global affine deformations of implicit surface
objects, and index change deformations of superquadrics (or
hyperquadrics) without significant computational overhead.
Finally, we show that continuous collision detection for
linearly translating implicit surface objects can be performed
by solving two related convex optimization problems. For
polyhedra and quadrics, we establish that the computational
complexity of this continuous collision detection problemis
alsoO(n1.5).

Future Work:There are several directions for future work.
We plan to explore alternative interior point algorithms
(LOQO [49] and IPOPT [50], for example) to test their
performance on the minimum distance problem. Performing
warm starts, where a good initial estimate for the solution
is available, can potentially improve the running time when
there is coherence. This may be best achieved by a com-
bination of interior point methods and sequential quadratic
programming approaches. We would like to extend this
approach to nonconvex objects, modeled as unions of convex
shapes and incorporate it in a hierarchical framework. Longer
term directions for future research include tracking closest
points continuously for haptics applications, and extending
this approach to performing continuous collision detection
with both rotational and translational motion.

ACKNOWLEDGMENTS

This work was supported in part by NSF under CAREER
Award No. IIS-0093233. Thanks to Richard Waltz for help
with KNITRO, Buck Clay for graphics software, and Jeff
Trinkle, Steve Berard, Binh Nguyen, and Frank Luk for
useful discussions.

REFERENCES

[1] D. Baraff. Curved surfaces and coherence for non-penetrating rigid
body simulation.Computer Graphics, 24(4):19–28, August 1990.

[2] A. H. Barr. Superquadrics and angle-preserving transformations.IEEE
Computer Graphics and Applications, 1(1):11–23, Jan. 1981.

[3] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty.Nonlinear Program-
ming: Theory and Algorithms. John Wiley, New York, second edition,
1993.

[4] J. E. Bobrow. A direct minimization approach for obtaining the
distance between convex polyhedra.International Journal of Robotics
Research, 8(3):65–76, June 1989.

[5] S. Boyd and L. Vandenberghe.Convex Optimization. Cambridge
University Press, Cambridge, UK, 2004.

[6] M. Buss and T. Schlegl. A discrete-continuous control approach to
dextrous manipulation. InIEEE International Conference on Robotics
and Automation, pages 276–281, 2000.

[7] R. Byrd, M. E. Hribar, and J. Nocedal. An interior point method for
large scale nonlinear programming.SIAM Journal on Optimization,
9(4):877–900, 1999.

[8] S. Cameron. Collision detection by four-dimensional intersection
testing. IEEE Transactions on Robotics and Automation, 6(3):291–
302, June 1990.

CONDITIONALLY ACCEPTED TO THE IEEE TRANSACTIONS ON ROBOTICS, NOVEMBER 2006 10

[9] S. Cameron. A comparison of two fast algorithms for computing the
distance between convex polyhedra.IEEE Transactions on Robotics
and Automation, 13(6):915–920, Dec. 1997.

[10] M.-P. Cani-Gascuel and M. Desbrun. Animation of deformable models
using implicit surfaces. IEEE Transactions on Visualization and
Computer Graphics, 3(1):39–50, 1997.

[11] J. Canny. Collision detection for moving polyhedra.IEEE Transactions
on Pattern Analysis and Machine Intelligence, 8(2):200–209, Mar.
1986.

[12] N. Chakraborty, J. Peng, S. Akella, and J. Mitchell. Proximity queries
between convex objects: An interior point approach for implicit sur-
faces. InIEEE International Conference on Robotics and Automation,
pages 1910–1916, Orlando, FL, May 2006.

[13] Y.-K. Choi, W. Wang, Y. Liu, and M.-S. Kim. Continuous collision
detection for two moving elliptic disks. IEEE Transactions on
Robotics, 22(2):213–224, Apr. 2006.

[14] D. Constantinescu, S. Salcudean, and E. Croft. Haptic rendering of
rigid contacts using impulsive and penalty forces.IEEE Transactions
on Robotics, 21(3):309–323, June 2005.

[15] V. Copolla and J. Woodburn. Determination of close approaches
based on ellipsoidal threat volumes. InAdvances in the Astronomical
Sciences: Spaceflight Mechanics, volume 102, pages 1013–1024, 1999.

[16] J. Czyzyk, M. Mesnier, and J. More. The NEOS server.IEEE
Journal on Computational Science and Engineering, 5:68–75, 1998.
http://www.mcs.anl.gov/neos/Server/.

[17] D. P. Dobkin and D. G. Kirkpatrick. A linear algorithm for determining
the separation of convex polyhedra.Journal of Algorithms, 6:381–392,
1985.

[18] T. Duff. Interval Arithmetic and Recursive Subdivision for Implicit
Functions and Constructive Solid Geometry.Computer Graphics,
26(2):131-138, July 1992.

[19] E. G. Gilbert and C.-P. Foo. Computing the distance between general
convex objects in three-dimensional space.IEEE Transactions on
Robotics and Automation, 6(1):53–61, Feb. 1990.

[20] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. A fast procedure for
computing the distance between complex objects in three-dimensional
space.IEEE Transactions on Robotics and Automation, 4(2):193–203,
Apr. 1988.

[21] P. E. Gill, W. Murray, and M. A. Saunders. SNOPT: An SQP
algorithm for large-scale constrained optimization.SIAM Journal on
Optimization, 12(4):979–1006, 2002.

[22] F. Glineur and T. Terlaky. Conic formulation forlp-norm optimization.
Journal of Optimization Theory and Applications, 122(2):285–307,
Aug. 2004.

[23] A. J. Hanson. Hyperquadrics: smoothly deformable shapes with convex
polyhedral bounds.Computer Vision, Graphics, and Image Processing,
44(2):191–210, Nov. 1988.

[24] P. Jimenez, F. Thomas, and C. Torras. 3D collision detection: A survey.
Computers and Graphics, 25(2):269–285, 2001.

[25] E. Larsen, S. Gottschalk, M. Lin, and D. Manocha. Fast distance
queries using rectangular swept sphere volumes. InIEEE Interna-
tional Conference on Robotics and Automation, pages 3719–3726, San
Francisco, CA, Apr. 2000.

[26] A. Lin and S.-P. Han. On the distance between two ellipsoids. SIAM
Journal of Optimization, 13(1):298–308, 2003.

[27] M. Lin and D. Manocha. Efficient contact determination in dynamic
environments.International Journal of Computational Geometry and
Applications, 7(1 and 2):123–151, 1997.

[28] M. C. Lin and J. F. Canny. A fast algorithm for incremental
distance calculation. InIEEE International Conference on Robotics
and Automation, volume 2, pages 1008–1014, Sacramento, CA, Apr.
1991.

[29] M. C. Lin and D. Manocha. Collision and proximity queries. In
J. E. Goodman and J. O’Rourke, editors,Handbook of Discrete and
Computational Geometry, pages 787–808. Chapman and Hall/CRC
Press, Boca Raton, FL, second edition, 2004.

[30] Q. Luo and J. Xiao. Physically accurate haptic rendering with dynamic
effects. IEEE Computer Graphics and Applications, 24(6):60–69,
Nov./Dec. 2004.

[31] B. Mirtich. V-Clip: Fast and robust polyhedral collision detection.
ACM Transactions on Graphics, 17(3):177–208, July 1998.

[32] B. Mirtich and J. Canny. Impulse-based dynamic simulation. In
K. Y. Goldberg, D. Halperin, J.-C. Latombe, and R. H. Wilson,
editors,Algorithmic Foundations of Robotics. A. K. Peters, Wellesley,
Massachusetts, 1995.

[33] J. Nocedal and S. J. Wright.Numerical Optimization. Springer-Verlag,
New York, 1999.

[34] V. Patoglu and R. B. Gillespie. Feedback stabilized minimum distance
maintenance for convex parametric surfaces.IEEE Transactions on
Robotics, 21(5):1009–1016, Oct. 2005.

[35] J. Peng.Multiple Robot Coordination: A Mathematical Programming
Approach. PhD thesis, Department of Mathematical Sciences, Rens-
selaer Polytechnic Institute, May 2005.

[36] J. Peng and S. Akella. Coordinating multiple robots with kinodynamic
constraints along specified paths.International Journal of Robotics
Research, 24(4):295–310, Apr. 2005.

[37] S. Quinlan. Efficient distance computation between non-convex ob-
jects. In IEEE International Conference on Robotics and Automation,
pages 3324–3329, San Diego, CA, May 1994.

[38] S. Redon, A. Kheddar, and S. Coquillart. Fast continuous collision de-
tection between rigid bodies.Computer Graphics Forum (Eurographics
2002 Proceedings), 21(3), 2002.

[39] S. Redon, Y. J. Kim, M. C. Lin, and D. Manocha. Fast continuous
collision detection for articulated models. InProceedings of ACM
Symposium on Solid Modeling and Applications, 2004.

[40] E. Rimon and S. Boyd. Obstacle collision detection using best ellipsoid
fit. Journal of Intelligent and Robotic Systems, 18(2):105–125, Feb.
1997.

[41] E. Schömer, J. Reichel, T. Warken, and C. Lennerz. Efficient collision
detection for curved solid objects. InProceedings of 7th ACM
Symposium on Solid Modeling and Applications (SM 02), pages 321–
328, Saarbrucken, Germany, June 2002.

[42] J. Snyder, A. Woodbury, K. Fleischer, B. Currin, and A. Barr. Interval
Methods for Multi-point Collisions between Time-Dependent Curved
Surfaces.Computer Graphics, 27(2):321-334, Aug. 1993.

[43] K.-A. Sohn, B. Juttler, M.-S. Kim, and W. Wang. Computing the
distance between two surfaces via line geometry. InProceedings of
the Tenth Pacific Conference on Computer Graphics and Applications,
pages 236–245, 2002.

[44] D. E. Stewart and J. C. Trinkle. An implicit time-stepping scheme for
rigid body dynamics with inelastic collisions and Coulomb friction.
International Journal of Numerical Methods in Engineering, 39:2673–
2691, 1996.

[45] C. Turnbull and S. Cameron. Computing distances between NURBS-
defined convex objects. InIEEE International Conference on Robotics
and Automation, pages 3685–3690, Leuven, Belgium, May 1998.

[46] G. van den Bergen. A fast and robust GJK implementation for collision
detection of convex objects.Journal of Graphics Tools, 4(2):7–25,
1999.

[47] G. van den Bergen.Collision Detection in Interactive 3D Environ-
ments. Morgan Kaufmann, 2004.

[48] G. van den Bergen. Ray casting against general convex objects with
application to continuous collision detection.www.dtecta.com,
2004.

[49] R. J. Vanderbei and D. Shanno. An interior-point algorithm for
nonconvex nonlinear programming.Computational Optimization and
Applications, 13:231–252, 1999.

[50] A. Wachter and L. T. Biegler. On the implementation of aninterior-
point filter line-search algorithm for large-scale nonlinear program-
ming. Mathematical Programming, 106(1):25–57, 2006.

[51] R. A. Waltz. KNITRO 4.0 User’s Manual. Ziena Optimization, Inc.,
Evanston, IL, Oct. 2004.

[52] P. G. Xavier. Fast swept-volume distance for robust collision detection.
In IEEE International Conference on Robotics and Automation, pages
1162–1169, Albuquerque, NM, Apr. 1997.

[53] S. Zeghloul, P. Rambeaud, and J. Lallemand. A fast distance cal-
culation between convex objects by optimization approach.In IEEE
International Conference on Robotics and Automation, pages 2520–
2525, Nice, France, May 1992.

