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Abstract:  
 

Language extensions introduce high-level programming constructs that protect programmers 
from low-level details and repetitive tasks. For such an abstraction barrier to be sustainable, it 
is important that no errors are reported in terms of generated code. A typical strategy is to 
check the original user code prior to translation into a low-level encoding, applying the 
assumption that the translation does not introduce new errors. Unfortunately, such assumption 
is untenable in general, but in particular in the context of extensible programming languages, 
such as Racket or SugarJ, that allow regular programmers to define language extensions 
 
We present a formalism for building and automatically verifying the type-soundness of syntactic 
language extensions. To build a type-sound language extension with our formalism, a 
developer declares an extended syntax, type rules for the extended syntax and translation 
rules into the (possibly further extended) base language. Our formalism then validates that the 
user-defined type rules are sufficient to guarantee that the code generated by the translation 
rules cannot contain any type errors. This effectively ensures that an initial type check prior to 
translation precludes type errors in generated code. We have implemented a core system in 
PLT Redex and we have developed a syntactically extensible variant of System Fomega that 
we extend with let notation, monadic do blocks, and algebraic data types. Our formalism 
verifies the soundness of each extension automatically. 
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