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ABSTRACT 
The present study investigates the effect of the number of 
controlled robots on performance of an urban search and rescue 
(USAR) task using a realistic simulation. Participants controlled 
either 4, 8, or 12 robots.  In the fulltask control condition 
participants both dictated the robots’ paths and controlled their 
cameras to search for victims.  In the exploration condition, 
participants directed the team of robots in order to explore as wide 
an area as possible.  In the perceptual search condition, 
participants searched for victims by controlling cameras mounted 
on robots following predetermined paths selected to match 
characteristics of paths generated under the other two conditions.  
By decomposing the search and rescue task into exploration and 
perceptual search subtasks the experiment allows the 
determination of their scaling characteristics in order to provide a 
basis for tentative task allocations among humans and automation 
for controlling larger robot teams.   In the fulltask control 
condition task performance increased in going from four to eight 
controlled robots but deteriorated in moving from eight to twelve.  
Workload increased monotonically with number of robots.  
Performance per robot decreased with increases in team size.  
Results are consistent with earlier studies suggesting a limit of 
between 8-12 robots for direct human control. 

Categories and Subject Descriptors 
I.2.9 [Artificial Intelligence]: Robotics—operator interfaces 

General Terms 
Human Factors, Measurement, Experimentation 
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1. INTRODUCTION 
Applications for multirobot systems (MrS) such as interplanetary 
construction or cooperating uninhabited aerial vehicles will 
require close coordination and control between human operator(s) 
and teams of robots in uncertain environments.  Human 

supervision will be needed because humans must supply the 
perhaps changing, goals that direct MrS activity. Robot autonomy 
will be needed because the aggregate demands of decision making 
and control of a MrS are likely to exceed the cognitive capabilities 
of a human operator.  Controlling robots that must act 
cooperatively, in particular, will likely be difficult because it is 
these activities [1] that theoretically impose the greatest decision 
making load.  Because some functions of a MrS such as 
identifying victims among rubble depend on human input, 
evaluating the operator’s span of control as the number of 
controlled entities scale is critical for designing feasible human-
automation control systems. 

Current estimates of human span of control limitations are severe.  
Miller [2], for example, showed that under expected target 
densities, a controller who is required to authorize weapon release 
for a target identified by a UCAV could control no more than 13 
UAVs even in the absence of other tasks. A similar breakpoint of 
12 was found by [3] for retargeting Tomahawk missiles.  Smaller 
numbers (3-9) [4] have been found for ground robots which 
typically require more frequent attention. 

Controlling multiple robots substantially increases the complexity 
of the operator’s task because attention must constantly be shifted 
among robots in order to maintain situation awareness (SA) and 
exert control. Because coordination demands can vary greatly 
across tasks [5], frequently dominate the demands on operator 
attention [6], and grow exponentially in the number of robots [1], 
a task involving independent operation of robots provides a 
clearer picture of the way performance scales with the number of 
robots.  In the simplest case an operator controls multiple 
independent robots, interacting with each as needed. The foraging 
task [7] used for this experiment, in which each robot searches its 
own region, is of this category although minimal coordination 
may be required to avoid overlaps or gaps in coverage.  
Multirobot foraging with waypoint control was chosen for this 
experiment because search tasks have been widely cited as a 
likely field application and subject of study for multirobot systems 
and waypoint control represents the lowest level of automation 
compatible with independent control of multiple robots.  

Control performance at such tasks can be characterized by the 
average demand of each robot on human attention [4].    
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Table 1.   Recent studies of the effects of robot team size on performance 

 
Under these conditions increasing robot autonomy should allow 
robots to be neglected for longer periods of time making it possible 
for a single operator to control more robots.  Established methods of 
estimating MrS control difficulty, the neglect tolerance model, NT, 
[4] and the Fan-out measure [8], are predicated on such 
independence of robots and tasks.  In the NT model, the period 
following the end of human intervention but preceding a decline in 
performance below a threshold is considered time during which the 
operator is free to perform other tasks.  If the operator services other 
robots over this period the measure can also provide an estimate of 
the number of robots that might be controlled.  Fan-out, a term 
borrowed from the number of gates a logic gate can drive, refers to 
this maximum number of robots that can be advantageously 
controlled under particular conditions.  Although Fan-out and the 
NT parameters should in theory be calculable from interaction with 
a single robot, data [8, 6] suggest that as the number of robots is 
increased operators relax the performance threshold to 
accommodate the control of additional robots.  Following [8] we 
will estimate the number of controlled robots by inspecting for a 
plateau without further improvement, counting the number of robots 
actually being operated [8, 9] as well as by estimating the maximum 
number of controlled robots using parameters from the NT model 
[4].   

 
Some variant of automation through waypoint control was used in 
each of the reported human-in-the-loop simulation studies 
investigating performance as a function of the size of robot team 
[10,9,8,11] (see Table 1) with differences arising primarily in 
behavior upon reaching a waypoint.  As Olsen and Wood [8] 
demonstrate, increased automation can drastically affect Fan-out 
extending it from two to nine in their study.  In this review we 
differentiate between naïve waypoint control in which the robot 
moves in a single direction stopping upon encountering an obstacle 
(Fan-out=2 [8]) and standard waypoint control in which the robot 
employs obstacle avoidance and path planning to reach its 
waypoint.  We also distinguish among three similar types of tasks: 
navigation, exploration, and foraging or search.  In navigation [10, 
8] the operator has a complete map or aerial view and only needs to 
direct robots to their goals.  In exploration [9] the operator begins 
without knowledge of the terrain which must be built up by a 
process of exploration usually in a form resembling a laser 
rangefinder generated map.  Foraging tasks [8, 11] are a variant of 

exploration in which the robot seeks targets in the region being 
explored.   Typically performance is reported as taking some action 
on these targets such as defusing a bomb or marking a victim on a 
map.  These three tasks place different demands on the operator 
with navigation requiring simple path planning, exploration 
requiring monitoring and reactive path planning, and foraging 
adding the requirement of searching for targets. 

 
Trouvain and Wolf [10] compared the navigation performance of 
two, four, and eight robots controlled by a single operator in a 2D 
simulated world.  The operator’s task was to navigate robots using 
naïve waypoint control to reach inspection points that appeared on 
the map at varying locations and intervals.  Upon reaching the 
inspection point the operator was required to execute an inspect 
command. The experiment found that system performance 
(ordering inspections after robots reached the inspection point) was 
higher for four robots than for two with only marginal further 
improvement in going from four to eight robots.  Workload ratings 
showed the opposite pattern with a marginal increase between two 
and four and a significant one between four and eight.  In a later 
experiment [9] using a substantially more realistic simulation the 
authors studied exploration for teams of 1, 2, and 4 robots.  The 
operators performed a supervisory control task involving 
substantially greater automation than waypoint control in which the 
robots autonomously navigated toward their goal points with the 
operator allowed to override by directing them through new 
waypoints.  Comparing individual robot performance they found 
significantly better performance in the one robot condition but no 
further decline in going from two to four robots.  Participants in the 
multirobot conditions, however, performed less well than hands-off 
automation alone making interpretation difficult.  The authors 
present a graph showing an increase in the mental demand scale of 
the NASA-TLX with increase in the number of robots.   

Olsen and Wood [8] conducted a set of experiments in navigation 
(light worlds) and foraging (dark worlds) with automation ranging 
from naïve to standard waypoint control.  In these experiments 
participants were supplied with up to 18 robots to navigate a maze 
to the location of targets.  The task continued until all targets were 
found.  Activity time, AT, was defined as the average time a robot 
was moving between interventions.  Fan-out was determined 
empirically as the average number of active robots with 

Study Task World Robots Interaction 
Trouvain & Wolf (2002): 
User study of the impact of 
robot group size 

Navigation 2D simulated 
office world 

2, 4, 8 UGVs 
(homogeneous) 

Waypoint 

Trouvain et al. (2003): user 
Study of map based and 
camera based user interface 

Exploration 3D simulated 
outdoor world 

1, 2, 4 UGVs 
(homogeneous) 

Supervisory + waypoint 
control 

Olsen & Wood (2004): Fan-out 
independent study 

Foraging 2D simulated 
office like world 

18 UGVs 
(homogeneous) 

Waypoint 

Humphrey et al. (2006): 
User study of robot team & halo 
interface 

Foraging 3D simulated 
outdoor world 
(USARSim) 

6, 9 UGVs 
(heterogeneous) 
 

Teleoperation and 
scripted behaviors 



Interaction Effort, a stand in for Interaction Time, defined as 
IE=AT/FO.  Because task completion times were not reported, 
aggregate team performance measures are not available as in the 
other studies.    In going from a less cluttered to more cluttered 
environment they found Fan-out for waypoint control at the 
foraging task varied from 5 to 9 with mean activity times going 
from 14.2 to 24.18.   The finding is easily understood.  As the 
maze grows more complex, operators must intervene more 
frequently to retask robots. AT, largely determined by the time 
between these interventions, is reduced, leaving less time for 
operators to control additional robots, and hence the reduction in 
Fan-out.   These results, however, illustrate how slippery the 
notion of Fan-out is, in that it is shown to depend not only on 
level of automation as mentioned earlier but on task 
characteristics as well.    

 
In the most recent study [11], researchers used the UGV 
simulator, USARSim (also used in the current study), to compare 
robot control behaviors for six and nine independently controlled 
heterogeneous robots. The participants controlled the robots via 
teleoperation, through limited waypoint control by which a robot 
could be directed to orient or move to another robot’s location,  or 
through an explore command that caused the robot to move ahead, 
pausing at intervals to provide 360° camera views.   This is a 
somewhat higher degree of automation than waypoint control 
alone so we would expect slightly higher values for Fan-out and 
neglect times.   Although operators controlling six robots defused 
at least one bomb on the same number of trials the larger nine 
robot teams defused two or more bombs on 56.3% more trials.  
Times also favored nine robot teams with time per diffusion and 
time to second diffusion significantly lower for the nine robot 
teams. The results show that a higher number of robots led to 
higher workload measured using the NASA-TLX.  The 
experimenters report improving SA with added robots, 
contradicting the common belief [4, 12, 10] that more robots lead 
to worse SA. However, because only the attentional demand scale 
of the 3D SART was significantly higher, more robots may have 
simply required greater effort to monitor without actually 
benefiting SA. 
 
These studies suggest that for foraging tasks using waypoint 
control the Fan-out plateau lies somewhere between 4 and 9+ 
robots depending on the level of robot autonomy and 
environmental demands.  Many of the tasks envisioned for robot 
teams, however, require larger numbers.   To increase Fan-out we 
must increase robot autonomy, preferably in ways most 
compatible with operator capabilities.   The foraging task can be 
decomposed into exploration and perceptual search subtasks 
corresponding to navigation of an unknown space and searching 
for targets by inspecting and controlling onboard cameras.  In the 
reviewed studies, two [9,11] extend automation of the exploration 
subtask while one [8] leaves this task to the operator. Fan-out 
values, however, fall in the same range across these experiments.  
The present study investigates the scaling of performance with 
number of robots for operators performing either the full task or 
only one of the subtasks to identify limiting factors.    
Treating this as a resource sharing problem [12], we can 
determine whether:  
 
• full task performance is being limited by performance on one 

of the subtasks 
fulltask ≈ subtask1 and subtask2 > fulltask, in which case 
subtask1 is a good candidate for increased automation 

• full task performance shows some cost of concurrence for 
sharing the subtasks but subtasks scale at different rates 

fulltask < subtask1  ,  fulltask < subtask2  , and  
subtask1(N+) - subtask1(N) > subtask2(N+) – 
subtask2(N), in which case subtask2, which scales at a 
slower rate, is a good candidate for increased 
automation 
 

If performance is equal across the conditions or the subtasks scale 
at the same rate, automation decisions would need to be based on 
other factors. The logic of our approach depends upon the 
equivalence among these three conditions.   
 
In the fulltask condition operators used waypoint control to 
explore an office like environment. When victims were detected 
using the onboard cameras the robot was stopped and the operator 
marked the victim on the map and returned to exploration. 
Equating the exploration subtask was relatively straightforward.  
Operators were given the instruction to explore as large an area as 
possible with coverage judged by the extent of the laser 
rangefinder generated map.  Because operators in the exploration 
condition did not need to pause to locate and mark victims the 
areas they explored should be strictly greater than in the fulltask 
condition.  This discrepancy can be removed, however, by 
truncating these data by an interval corresponding to the pauses in 
the fulltask data. 

 
Developing an equivalent perceptual search condition is more 
complicated.  The operator’s task resembles that of the payload 
operator for a UAV or a passenger in a train, in that she has no 
control over the platform’s trajectory but can only pan and tilt the 
cameras to find targets.  The targets the operator has an 
opportunity to acquire, however, depend on the trajectories taken 
by the robots.   If an autonomous path planner is used, robots will 
explore continuously covering a wider area than when operated by 
a human (where pauses typically occur upon arrival at a 
waypoint).  If human generated trajectories are taken from the 
fulltask condition, however, they will contain additional pauses at 
locations where victims were found and marked providing an 
undesired cue.  Instead, we have chosen to use trajectories from 
the exploration condition since they should contain pauses 
associated with waypoint arrival but not those associated with 
identifying and marking victims. As a final adjustment, operators 
in the perceptual search condition must be able to pause their 
robots in order to identify and mark the victims they discover.   
While the equivalence of these trajectories cannot be directly 
established determining that for area covered exploration > 
fulltask ≈ perceptual search, that for pause durations exploration 
< fulltask ≈ perceptual search supports equivalence. 
   



 
Figure 1. GUI for Multirobot control

2. METHODS 
2.1 USARSim and MrCS 
The reported experiment was performed using the USARSim 
robotic simulation with 4-12 simulated UGVs performing Urban 
Search and Rescue (USAR) foraging tasks.  USARSim is a high-
fidelity simulation of urban search and rescue (USAR) robots and 
environments developed as a research tool for the study of HRI 
and multi-robot coordination.  USARSim supports HRI by 
accurately rendering user interface elements (particularly camera 
video), accurately representing robot automation and behavior, 
and accurately representing the remote environment that links the 
operator’s awareness with the robot’s behaviors.  USARSim can 
be downloaded from www.sourceforge.net/projects/usarsim and 
serves as the basis for the Virtual Robots Competition of the 
RoboCup Rescue League.  USARSim uses Epic Games’  
 
UnrealEngine2 [13] to provide a high fidelity simulator at low 
cost.  Validation studies showing agreement for a variety of 
feature extraction techniques between USARSim images and 
camera video are reported in Carpin et al. [14]. Other sensors 
including sonar and audio are also accurately modeled.  
Validation data showing close agreement in detection of walls and 
associated Hough transforms for a simulated Hokuyo laser range 
finder are described in [15]. The current UnrealEngine2 integrates 
MathEngine’s Karma physics engine [16] to support high fidelity 
rigid body simulation.  Several validation studies show close 
agreement in behavior between USARSim models and real robots 
being modeled [17,18,19,20,21].  

MrCS (Multi-robot Control System), a multirobot 
communications and control infrastructure with accompanying 
user interface developed for experiments in multirobot control and 

RoboCup competition [22] was used in these experiments. MrCS 
provides facilities for starting and controlling robots in the 
simulation, displaying camera and laser output, and supporting 
inter-robot communication through Machinetta a distributed 
mutiagent system.  Figure 1 shows the elements of the MrCS.  
The operator selects the robot to be controlled from the colored 
thumbnails at the top of the screen.  To view more of the selected 
scene shown in the large video window the operator uses pan/tilt 
sliders to control the camera. Robots are tasked by assigning 
waypoints on a heading-up map on the Mission Panel (bottom 
right) or through a teleoperation widget (bottom left). The current 
locations and paths of the robots are shown on the Map Data 
Viewer (middle left).  

2.2 Experimental Conditions 
A large USAR environment previously used in the 2006 RoboCup 
Rescue Virtual Robots competition [22] was selected for use in 
the experiment.  The environment was a maze like hall with many 
rooms and obstacles, such as chairs, desks, cabinets, and bricks. 
Victims were evenly distributed within the environment. A second 
simpler environment was used for training. The experiment 
followed a between-groups repeated measures design with 
number (4, 8, 12) of robots defining the repeated measure.  
Participants in the fulltask condition performed the complete 
USAR task.  In the subtask conditions they performed variants of 
the USAR task requiring only exploration or perceptual search.   
Participants in the fulltask condition followed instructions to use 
the robots to explore the environment and locate and mark on the 
map any victims they discovered.  The exploration condition 
differed only in instructions.  These operators were instructed to 
explore as much of the environment as possible without any 
requirement to locate or mark victims.  From examination of area 
coverage, pausing, and other characteristics of trajectories in the 



fulltask and exploration conditions a representative trajectory was 
selected from the exploration data for each size of team.  In the 
perceptual search condition operators’ retained control of the 
robots’ cameras but robots followed the representative trajectory 
except when individually paused by the operator. 

2.3 Participants 
45 paid participants were recruited from the University of 
Pittsburgh community. None had prior experience with robot 
control although most were frequent computer users.  

2.4 Procedure 
After collecting demographic data the participant read standard 
instructions on how to control robots via MrCS. In the following 
20 minute training session, participants in the fulltask and 
exploration conditions  practiced control operations.  Participants 
in the fulltask and perceptual search conditions were encouraged 
to find and mark at least one victim in the training environment 
under the guidance of the experimenter.    Participants then began 
three testing sessions (15 minute each) in which they performed 
the search task using 4, 8, and finally 12 robots. After each task, 
the participants were asked to complete the NASA-TLX workload 
survey. 

3. RESULTS 
Data were analyzed using a repeated measures ANOVA 
comparing fulltask performance with that of the subtasks.  Where 
measures were inappropriate for some subtask, comparisons are 
pairwise rather than tripartite.  Number of robots had a significant 
effect on every dependent measure collected (smallest effect was 
N switches in focus, F2,54 = 12.6, p < .0001).  The task/subtask 
conditions also had nearly universal effects.  The N robots x 
task/subtask interaction that would indicate differential scaling in 
N robots was less robust but found for the most crucial 
performance measures.  Overall, fulltask participants were 
successful in searching the environment at all team sizes, finding 
as many as 12 victims on a trial. The average number of victims 
found was 4.8 using 4 robots, 7.06 for 8 robots, but dropping back 
to 4.73 when using 12 robots.  Participants in the perceptual 
search condition, however, were significantly more successful, 
F1,28 = 27.4, p < .0001, finding 6.93, 8.2, and 8.33 victims 
respectively. 
 

 
Figure 2.  Victims found as a function of N robots 

As shown in Figure 2 search performance in the perceptual search 
condition improved monotonically albeit shallowly while fulltask 

performance peaked at 8 robots then declined resulting in a 
significant N robot x Task interaction, F2,56 = 8.45, p = .001.  

 
Figure 3.  Area explored as a function of N robots 

 
As figure 3 shows coverage was nearly identical at 4 and 8 robots 
but diverged at 12 robots, (between groups F1,27 = 11.43, p = .002,  
fulltask x N robots F2,54 = 4.15, p = .021) with perceptual search 
participants continuing to improve while those in the fulltask 
condition declined.   

Of the process measures, switches in focus among robots (figure 4) 
most strongly differentiated the groups, with perceptual search 
participants switching far less than those involved in exploration.  
No difference (F1,27 = 1.02, p = .32) was found between the 
fulltask and exploration groups.  The number of assigned missions 
(sets of waypoints) increased from 4 to 8 robots and declined 
slightly for 12.  The exploration group who did not need to search 
for victims assigned significantly more missions, F1,27 = 6.34, p 
= .018.  Average path length for missions increased monotonically 
in N robots with no difference found between fulltask and 
exploration groups.    

Robots that were completely neglected, χ2
2 = 10.75,   p = .005, or 

operated only once, χ2
2 =  31.3, p < .0001, increased substantially 

more with N robots for fulltask than for exploration operators as 
determined by the Friedman  test.   

 
Figure 4. Switches in robot focus as a function of N robots 

 



Figure 5. Assigned missions as a function of N robots 
 

Figure 6.  Average path length as a function of N robots 

Workload increased monotonically in all groups but was 
substantially lower, F1,27 = 21.17, p < .0001, in the perceptual 
search condition. 

4. DISCUSSION 
The purpose of this experiment was to examine the tasks which go 
into controlling foraging robots in order to identify subtasks 
which might benefit most from increased automation.  Rather than 
looking for cognitive tasks that go into controlling robot teams [8,  

 
Figure 7.  Robots neglected or used only once 

 
Figure 8.  Workload as a function of N robots (NASA-tlx) 

 

23] we have adopted a naïve model of the process by identifying 
two isolatable activities (each consisting of many cognitive tasks) 
that could be separated for an experiment. 
Our data suggest that there is some cost of concurrence for 
performing the exploration and perceptual search tasks because 
both victims found (perceptual search) and area explored 
(exploration) were performed better alone than in the full task 
condition.  In particular, for both measures performance at the 
subtasks was still increasing between 8 and 12 robots while both 
measures for full task performance decreased.    Although there is 
no direct way to compare improvements in perceptual search and 
exploration examination of Figures 2 and 3  and comparison of 
η2

p values (accounting for variance) for the N robots x subtask 
interaction shows that improvements in perceptual search (η2

p= 
.35) contribute more to victims found than improvements in 
exploration (η2

p= .13) do to area explored.   

These results support automation of path planning and navigation 
over efforts to improve automation for target recognition and 
cueing providing the technical challenges are comparable.  
Because robots followed comparable trajectories in the full task 
and perceptual search conditions the larger number of victims 
found in the perceptual search condition represents a more 
thorough search and indicates that full task participants were 
missing victims they should have found.  Since avoiding missed 
targets is crucial to many foraging tasks such as de-mining or 
search and rescue this advantage is more important than other 
performance gains such as widening the search area.   

The finding of distinctly lower workload ratings for perceptual 
search is also encouraging in that it suggests that there remains 
reserve capacity to monitor additional robots.  The top of the 
curve for perceptual search participants between 8 and 12 robots 
may have been artificially low due to a ceiling on the number of 
targets that could be observed given the limitations in trajectories.  
While suboptimal trajectories were needed to match the 
trajectories of other experimental conditions, a MrS using 
autonomous exploration could avoid the pauses and overlaps of 
our user generated trajectories.  

The image of a MrS operator sitting in front of a bank of screens 
like a security guard monitoring surveillance cameras raises 
concerns over SA.  Operators might be able to detect targets but 
be unable to relate these detections to the overall search.  This was 
not the case in our data, however, because victims could only be 
scored by locating them on a map.   



These results are encouraging for the future of large scale MrS in 
suggesting that systems could scale beyond the 12 robots we 
tested by using autonomous exploration.  For largely independent 
tasks such as foraging this would allow very large teams by 
adding additional operators.  While our results do not directly 
address more complex cooperative tasks such as assembly or 
construction our participants ability to maintain SA without direct 
control over exploration behaviors holds out hope that they may 
be able to successfully monitor and direct large teams of indirectly 
controlled cooperating robots as well. 

5. ACKNOWLEDGMENTS 
This research has been sponsored in part by AFOSR FA9550- 07-
1-0039, AFOSR FA9620-01-1-0542, ONR Grant N00014-03-1-
0580 and L3-Communications (4500257512) 
 

6. REFERENCES 
[1] B. Gerkey and M. Mataric. A formal framework for the study 

of task allocation in multi-robot systems. International 
Journal of Robotics Research, 23(9):939–954, 2004. 

[2] Miller, C.  Modeling human workload limitations on multiple 
UAV control, Proceedings of the Human Factors and 
Ergonomics Society 47th Annual Meeting, 526-527, 2004. 

[3] Cummings, M. and Guerlain, S.  An interactive decision 
support tool for real-time in-flight replanning of autonomous 
vehicles, AIAA Unmanned Unlimited Systems, 
Technologies, and Operations, 2004. 

[4] J. W. Crandall, M. A. Goodrich, D. R. Olsen, and C. W. 
Nielsen. Validating human-robot interaction schemes in 
multitasking environments. IEEE Transactions on Systems, 
Man, and Cybernetics, Part A, 35(4):438–449, 2005. 

[5] J. Wang, M. and Lewis. Assessing coordination overhead in 
control of robot teams, Proceedings of 2007 IEEE 
International Conference on Systems, Man, and Cybernetics, 
2645-2649, 2007. 

[6] J. Wang, H. Wang, and M. Lewis, M. Assessing Cooperation 
in Human Control of Heterogeneous Robots,Proceedings of 
the Third ACM/IEEE International Conference on Human-
Robot Interaction (HRI'08), ACM, 2008.  

[7] Y. Cao, A. Fukunaga, and A. Kahng. Cooperative mobile 
robotics: Antecedents and directions, Autonomous Robots, 4, 
1-23, 1997. 

[8]  D.R Olsen and S.B. Wood, Fan-out: measuring human 
control of multiple robots, in Proceedings of the SIGCHI 
conference on Human factors in computing systems. 2004, 
ACM Press: Vienna, Austria. p. 231-238. 

[9] B. Trouvain, C. Schlick, and M. Mevert, Comparison of a 
map- vs. camera-based user interface in a multi-robot 
navigation task, in Proceedings of the 2003 International 

Conference on Robotics and Automation. 2003. p. 3224-
3231. 

[10] B. Trouvain and H. Wolf. Evaluation of multi-robot control 
and monitoring performance. In Proceedings of the 2002 
IEEE Int. Workshop on Robot and Human Interactive 
Communication, pages 111–116, September 2002. 

[11] C.M. Humphrey, C. Henk, G. Sewell, B. Williams, J. A. 
Adams. Evaluating a scaleable Multiple Robot Interface 
based on the USARSim Platform. 2006, Human-Machine 
Teaming Laboratory. 

[12] C. Wickens and J. Hollands. Engineering Psychology and 
Human Performance (3rd ed), NJ: Prentice-Hall Inc., 2000. 

[13] (UE 2) UnrealEngine2, 
http://udn.epicgames.com/Two/rsrc/Two/KarmaReference/K
armaUserGuide.pdf, accessed February 5, 2008. 

[14] S. Carpin,  T. Stoyanov,  Y. Nevatia,  M. Lewis and J. Wang. 
Quantitative assessments of  USARSim accuracy". 
Proceedings of PerMIS 2006 

[15] S. Carpin, J. Wang, M. Lewis, A. Birk and A. Jacoff. High 
fidelity tools for rescue robotics: Results and perspectives, 
Robocup 2005 Symposium, 2005. 

[16] Mathengine, MathEngine Karma User Guide, 
http://udn.epicgames.com/Two/KarmaReference/KarmaUser
Guide.pdf, accessed May 3, 2005. 

[17] S. Carpin, M. Lewis, J. Wang, S. Balakirsky, C. Scrapper.  
(2006b). Bridging the gap between simulation and reality in 
urban search and rescue. Robocup 2006: Robot Soccer 
World Cup X, Springer, Lecture Notes in Artificial 
Intelligence, 2006. 

[18] M. Lewis, S. Hughes, J. Wang, M. Koes, and S. Carpin. 
Validating USARsim for use in HRI research, Proceedings of 
the 49th Annual Meeting of the Human Factors and 
Ergonomics Society, Orlando, FL, 2005, 457-461 

[19] C. Pepper, S. Balakirsky, and C. Scrapper. Robot Simulation 
Physics Validation, Proceedings of PerMIS’07, 2007. 

[20] B. Taylor, S. Balakirsky, E. Messina and R. Quinn. Design 
and Validation of a Whegs Robot in USARSim, Proceedings 
of PerMIS’07, 2007. 

[21] M. Zaratti, M. Fratarcangeli and L. Iocchi. A 3D Simulator 
of Multiple Legged Robots based on USARSim. Robocup 
2006: Robot Soccer World Cup X, Springer, LNAI, 2006. 

[22] S. Balakirsky, S. Carpin, A. Kleiner, M. Lewis, A. Visser, J. 
Wang and V. Zipara. Toward hetereogeneous robot teams for 
disaster mitigation: Results and performance metrics from 
RoboCup Rescue, Journal of Field Robotics, 2007 

[23] J. W. Crandall and M. L. Cummings. Developing 
Performance Metrics for the Supervisory Control of Multiple 
Robots. In Proceedings of the ACM/IEEE International 
Conference on Human-Robot Interaction, 2007. 

 


