
Data Exploration across Temporal Contexts

Mark Derthick and Steven F. Roth
Carnegie Mellon University Robotics Institute

{mad+, roth+}@cs.cmu.edu

Abstract

The ability to quickly explore and compare multiple
scenarios is an important component of exploratory data
analysis. Yet today’s interfaces cannot represent
alternative exploration paths as a branching history, forcing
the user to recognize conceptual branch points in a linear
history. Further, the interface can only show information
from one state at a time, forcing the user to use her
memory to compare scenarios.

Our system includes a tree-structured visualization for
navigating across time and scenarios. The visualization
also allows browsing the history and selectively
undoing/redoing events within a scenario or across
scenarios. It uses the AI formalism of contexts to maintain
multiple, possibly mutually inconsistent, knowledge base
states. Cross-context formulas can be written for explicit
scenario comparison, including visualizations of scenario
differences.

Keywords: Undo, Exploratory Data Analysis, Context

1. Introduction

When I stopped using a mechanical typewriter and started
using a word processor I marveled at its ability to rub out
characters. With today’s powerful computers it is possible
to record all the actions performed through the user
interface for a wide variety of applications. Yet user
interfaces limit the usefulness of all this recorded
information to little more than electronic white-out. One
can reconstruct previous states by undoing multiple
actions. With selective undo it is also possible to reach
novel states by redoing only a subset of actions performed
from some previous state. This is like deleting a character
in a word processor other than the one most recently typed.
I am no longer so impressed.

We would like to go beyond the mindset of using
recorded information to fix mistakes. Perhaps we can infer
the user's intentions, or link interface actions to a broader
range of related events similar in time or topic. In the
context of Exploratory Data Analysis systems, we could
treat the record of the exploration process as a dataset
itself. This could benefit the analyst in remembering her
train of thought, or providing high level summaries of her
progress. It could also be used to familiarize coworkers
with recent progress, for training students, or for
presentations of results and justifications to management.

Our research group is pursuing a range of research into
the uses of electronically captured experience. Hill and
Hollan [1] were perhaps the first to point out the rich uses
for history recording in a user interface. Programming-by-
demonstration is an entire field based on this idea. In this
paper, we focus on the idea that the data exploration
process is not characterized by monotonic progress
towards a goal, but rather involves much backtracking and
opportunistic goal revision. An undo interface where
actions are modeled as a linear sequence fails to capture
this structure. Users who can’t visualize history structure
are doomed to repeat it poorly. A system that recognizes
the structure and presents it visually potentially offers
better support to the analyst for the purposes mentioned
above. The same structure supports analyses that explicitly
consider multiple alternative possibilities. Users of
simulation packages often create such sets of scenarios by
varying input parameters for multiple simulation runs.

In the next section we more fully describe previous
undo models and our alternative ‘time travel’ conception.
We offer a principled architecture for capturing user
actions and representing application states as contexts. We
then describe a particular data exploration environment in
which we’ve implemented our time travel interface. It is
based on a tree-structured visualization of scenario
branching structure and also shows the actions performed
in each scenario. An example is given to illustrate its use.
We then discuss capturing user intention along with actions
and the improvement to selective redo this provides.
Finally we present related work.

A first version of the interface has been implemented.
This paper describes additional features, as noted in the
text, which will be added to the second version. High-
resolution color versions of all figures are available as, e.g.,

Proceedings of Intelligent User Interfaces (IUI '00), New Orleans, LA, January, 2000, pp. 60-67.



http://www.cs.cmu.edu/~sage/papers/IUI00/Fig1.GIF.
There is a shockwave animation of the interface at
http://www.cs.cmu.edu/~sage/papers/IUI00/demo.html.

2. Scenarios, Undo, and Context

The ability to quickly explore multiple scenarios is an
important component of exploratory data analysis. For
example, a financial spreadsheet can show the effect of
various interest rates on profitability. For each interest
rate, the user can browse and visualize various contributors
to profit. These explorations are conceptually sequential
operations, each building on the previous ones. Resetting
the interest rate is best conceptualized as starting a new
scenario that branches off from the previous one at a point
before the sequential operations were performed. The
entire exploration session might be summarized by
graphing interest rate vs. profit for all scenarios in a single
visualization.

One way to navigate among scenarios is with undo and
redo. Previous undo implementations have concentrated
on allowing undo or redo of single interface events, using
buttons or menus. The simplest mechanism allows undo of
only the most recently done, but not already undone, event.
Selective undo allows the user to choose any done, but not
already undone, event. This is usually called non-linear
undo, because at any point the user has multiple choices of
what event to undo. Due to possible confusion of non-
linear with explicit representation of branching, we will use
‘selective’ or ‘non-selective,’ and ‘branching’ or ‘non-
branching.’ There are complications and alternative
semantics that have been proposed for selective undo [2],
which there is no space to describe here.

Most undo models represent history as an ordered list of
events. An alternative, closer to the way we think about
the real world, is that time is the organizing principle and
events are landmarks on the time line. Following
Rekimoto [3], we call non-selective undo ‘time travel.’ In
this view selective undo involves replaying intervals of
time within or across scenarios.

Several previous papers have commented on the
possibility of showing the user a scenario tree, and point
out that their semantics can handle branching [2, 4].
US&R [4] even maintains a graph-structured history
internally. But no previous interface has exposed the
conceptual branching structure to the user. Thus it has
been very difficult for the user to quickly navigate among
the final states of all the scenarios, for instance, because he
is responsible for picking these states out from an
undifferentiated menu.

Even if he could find these states, he cannot analytically
compare them. Previously interfaces can restore previous
states by performing events’ undo and redo methods, but at
any moment they are ‘in’ exactly one state. In order to
compare scenarios, the user must rely on memory or make
a copy of the system in different states. There is no way to
write a formula that computes the difference in profitability

of two scenarios with either the undo method or the copy
method. And no previous system can create the interest
rate vs profit graph mentioned above.

In Artificial Intelligence, contexts are used as a
convenient way to allow a single database at a single time
to capture multiple states of a system. Each context must
be self-consistent, but different contexts need not be
mutually consistent. Using formulas that mention contexts
explicitly, it is possible to compare quantities in different
contexts, as in the Situation Calculus [5].

A major advantage of the context approach is that it is
largely invisible to the underlying domain model.
Formulas encoding domain constraints usually hold across
all contexts, and need not mention context explicitly. For
instance, profit is defined the same way in all contexts in
terms of revenue and cost. The formula is always
evaluated in a specific context, which provides values for
the variables revenue and cost. The formula

profit = revenue – cost
implicitly stands for a schema that applies in all contexts

∀ c profitc = revenuec – costc

Without abstracting context this way, all the formulas in
the domain model would have to incorporate extra
variables. No previous GUI has used contexts to support
undo.

3. Visage and Information-Centricity

Before describing the context model and time travel
interface, for concreteness we describe the operations that
support exploration within scenarios. By capturing these
operations, we can support time travel. We used the
Visage data visualization system [6], developed jointly by
CMU and Maya Design Group. Visage is an information-
centric [7] user interface environment for data exploration
and for creating interfaces to data-intensive applications.
Domain data objects are represented as first class interface
objects that can be manipulated using a common set of
basic operations, such as drill-down and roll-up, drag-and-
drop, copy, and dynamic scaling. These operations are
universally applicable across the environment, whether
graphical objects appear in a hierarchical table, a map, a
slide show, a query, or other application user interface.
These containers are called frames. A frame is analogous
to a window in other systems, and serves to visually
organize logically related information. The most salient
difference between windows and frames is that the latter
can be nested.

Integrating the visualization system directly with an
underlying database, rather than just deriving visualizations
from individually exported tables, is key to coordinating
visualization applications with the other components of an
exploratory data analysis environment. For instance,
graphical objects can be dragged across application UI
boundaries. The integral database also made it easy to
implement time travel using contexts, as described in
Section 4.



Visage includes five ubiquitous extensional query
operations: A user can navigate from the visual
representation of any database object to other related
objects. For instance in Figure 1 (1), the user has navigated
from an army corps unit to its subordinate units. He can
brush [8] graphical objects in a visualization with a choice
of colors, and have graphical objects in all visualizations
representing the same data object also be colored. This
kind of coordination enables the user to see correlations
among more variables than can be encoded in a single
visualization. In Figure 1 (3), the user has used a bounding
box to brush the subordinates of the 53rd Mechanized
Division, turning them all green. Dragging any of them to
the bar chart brings along the whole similarly colored set.
(Subsequent brushing with different colors has changed
some of them to red and then orange.)

It is also possible to roll up, or aggregate, database
objects into a new object, which will have attributes
derived from its elements. In Figure 1 (5), the user has
aggregated three high-supply units located near one

another on the map. The aggregate appears in the outliner.
He could then look up the total supply needs, or partition
this set into sub-aggregates based on role (e.g., all medical
units would form one element of the partition).

The user can filter objects based on any attribute with a
Dynamic Query slider [9]. Graphical objects representing a
data object whose attribute value falls outside the range
selected by the slider are made invisible. Filtering is
another way to coordinate multiple visualizations and see
relationships among more variables than can be shown in a
single visualization.

4. Branching Time Model

The user will begin his exploration session in some
initial database state. He will explore for a while, and then
backtrack and try an alternative scenario. Additional
scenarios can branch off of the main trunk, or any previous
branch scenario. This leads to the tree-structured
branching time model illustrated in Figure 2 (middle
section of large rectangle). We consider every tree branch
to be a distinct scenario, and branches are created every
time the user backtracks in time and performs new
operations, as discussed in Section 6. Each of the four
scenarios shown has a name, which is initially generated
automatically. The root is labeled 1, followed by 1.2,
1.2.2, and 1.3. Users are encouraged to change the scenario
names to something meaningful. The x-coordinate in this
tree visualization represents time, and is labeled below the
timeline.

A context is a <scenario, time> pair. Each time an
update is made to the database, it happens in exactly one
context. To organize the contexts into a tree, lifting rules
are defined so that assertions made in one context affect
other contexts [10]. Our only lifting rule is the following:
The propositions that hold in a context are those that result
from starting in the initial database state, traversing the
path to the context and performing each recorded update.
Note that some of these operations will have been done at
an earlier time in the same scenario, while others will have
been done in a parent scenario. Archer [11] calls this
semantics for selective undo the ‘script model.’

In order to implement contexts in Visage, we added an
additional argument, context, to each database call. Only
one piece of interface code had to be modified. We
modified the most general frame type to deal with contexts,
so all frames inherit the capability. Any frame can be
explicitly assigned a context. This can be done with the
time travel interface or programmatically. If a frame has
not been assigned an explicit context, it inherits that of its
parent frame. The top-level frame always has the context
<1, now>, that is, the root scenario and the current time.
“Now” is a special symbol that may be used instead of an
absolute time and is reevaluated each time it is accessed.

When an interface object sends a message to query or
update the database, its parent frame handles the message

Figure 1 Illustration of direct manipulation operations in Visage. 1)
Drill down from an Army corps to its four constituent divisions (first
level of indentation). 2) Drill down from 53rd mechanized division to
its constituent brigades. These are then selected using brushing
with a bounding box, and 3) a copy is dragged to the bar chart,
where the same units are represented in a different way, showing
the weight of their supplies. Notice that as a result of brushing the
background colors of units are coordinated between visualizations.
4) The units requiring the most supplies are selected with a
bounding box, and a copy is dragged to the map. Here the units are
represented by domain-specific icons showing their type and
echelon. 5) Three of the high-supply units farthest inland are
selected and aggregated. The aggregate, dubbed ‘High Supply
Units,’ appears in the outliner, where properties like total supply
weight can be shown.



and adds its associated context before calling the database
function.

The propositions that hold in <1, now> are cached. For
all other contexts, a database query involves walking
backward from the current context until an answer is
found. This implementation does not impose a penalty
unless the user is time traveling, in which case the cost of
querying is linear in the number of database updates. The
CSpace project, which is developing sublinear algorithms
for querying multiple versions of documents and data,
demonstrated fast response given 10,000 versions about
500,000 objects [Bill Scherlis, personal communication
1999]. If applied to Visage this would amount to 10,000
reachable contexts, where each interface event would
require one context.

A changeContext command was added to the database
API. When a frame changes its context, its appearance
must reflect the new state. It is given a package of updates
optimized to include only true differences between the old
and new contexts, rather than every update that occurred
on the path between them. For instance, if a bar chart is
created and then deleted, the containing frame won’t have
to waste time repeating those operations. The frame
processes the changes just as it does for real-time updates.
The complexity of this operation is also linear in the
number of database updates.

Finally, a holdsIn operator was added to the attribute
definition language to allow explicit control of context.
Consider a base interest rate scenario of 4.0%, which we
want to compare with several other scenarios. We can
define

deltaProfit = profit – holdsIn(baseScenario, profit)
The new attribute will have the appropriate value in each
context.

5. Time Travel Interface

Figure 2 (middle section of large rectangle) shows how the
interface arranges the scenarios. The current scenario for
this frame’s context, 1.3, is shown as the horizontal line
that constitutes the top tree branch. The time is shown as a
slider position (red rectangle) on the current scenario.
Here the slider is at the rightmost time coordinate,
representing ‘now.’

As the user travels in time, the frame’s context is
continually changed. This generates an animation of its
history. Scenario-based time travel navigation can be
accomplished by clicking anywhere on the tree, or by
dragging the slider anywhere on the tree. Alternatively,
chronological time travel can be accomplished by dragging
the slider on the timeline below the scenario tree. The
system then chooses the scenario that was “active” at that
real time. The active scenario is defined to be the one in
which the most recent database update was made. The
active scenario is shown with thicker line segments in the
scenario tree and with labels on the chronological timeline.
Tight coupling between the scenario and chronological

sliders maintains consistent positions no matter which one
is dragged.

When time traveling to a new scenario, the vertical
position of branches is minimally changed by moving other
scenarios down. The change occurs on mouse release.

Interface events are shown for the current scenario
using a comic strip notation [12] (see Figure 2). There is a
label describing the event and a snapshot of the frame’s
appearance at the conclusion of the event1. By default,
Visage creates events for drag, navigation, and brushing
operations. In addition, the user can create events,
defining the start and end. In Figure 2, the user has created
an event labeled “find underused supply points.”

Comic strips at different levels of detail are stacked,
with the most detailed on top. For instance, “find
underused supply points” is accomplished by two drags, a
navigate, and an aggregate. An event is always considered
a subevent of the most detailed current event in the current
scenario, if any. Thus hierarchical events are created
automatically.

6. Acting in Time

User actions performed in a context whose time is
“now” are recorded in the current scenario and time-
stamped with the real time. In the more complicated case,
the user moves a slider to a context in the past before
taking an action. In that case a new scenario is created and
the context is set to <new scenario, now> before the action
is performed. Thus operations are always performed in the
present, avoiding paradoxes.

Selective undo/redo is performed by drag-and-drop.
Any subset of events can be selected and a copy dragged to
any point on the context tree. A new scenario is created at
that point, and the database updates that occurred during

1 The current implementation has only a label. The snapshots were
added to the figures in this paper with Photoshop.

Figure 2 A Visage frame containing an interval chart, scatter plot,
histogram, and time travel interface (large bottom rectangle). For
expository purposes, the time travel interface has been made
larger than would be typical, while the other subframes have been
made smaller.



the events are applied. The timestamp recorded for the
updates is the current real time. Then the rest of the
updates that follow the branch point are applied, also
timestamped with the real time (see Figure 3). Since
replaying each event takes finite time, the timestamps of
successive events will differ slightly. Thus the temporal
order is maintained, although the quantitative relationships
are lost. This sacrifice is made so that formally all updates
happen “now,” even though conceptually we are updating
in the past.

Any subset of events can also be selectively undone by
dragging them out of the time travel interface. A new
scenario is created at the beginning of the earliest selected
event, and any remaining events are replayed.

Object identity is shared by all contexts, and it is always
possible to make arbitrary database updates. An object that
“doesn’t exist” in a context simply has no attributes there.
However, with selective undo/redo, some database updates
may not have a useful effect. For instance, redoing a drag
into a frame that doesn’t exist in some context will add a
member relationship to the otherwise empty object. But
since the object doesn’t represent a frame in this context,
the interface won’t show a change.

7. Information Appliances by Demonstration

By inferring the user's intention we can do a better job of
replaying events in a different scenario. For instance after
the sequence performed in Figure 1, the analyst may want
to look for divisions of a different army corps with high
supply needs. The stored database updates contain
information such as "add 53ARTY to the bar chart."
Replay using this low-level representation of the drag event
cannot be transferred to new data objects.

In previous work, recorded history has been used to
create macros with explicit arguments [12]. The system
generalizes the example to abstract out the macro
arguments, either heuristically or through a dialog with the
user. In our example, if the corps becomes an argument
we can meaningfully replay the macro in a scenario
analyzing a different corps.

We now describe the two simple heuristics we use to
infer user intention and generalize recorded events. We
then describe how we can use intention to do a better job
of selective redo. Visage can also create persistent
information appliances from recorded events. Appliances
are custom user interfaces for performing a specialized
class of tasks. They are declarative alternatives to
traditional procedural macros. Unfortunately there is no
space to describe them here.

7.1. Inferring Intention
Visage's basic operations of brushing, drag-and-drop, and
navigation record information about how the user
performed the operation, as well as the low-level database
updates that result. For navigation and dragging, the
brushing color of the dragged object is recorded along with
the identity of the object and the source and target frames.
If the object has no brushing color, replay of the event is
applied to the same object. Otherwise, the object identity
is ignored and the event is applied to any objects in the
source frame with the recorded brushing color.

In general we try to use very simple heuristics like this
that the user can readily understand and predict. Not only
are they a natural interpretation of the user's intention, but
the user can purposely use them to signal his intention.
Associating colors with macro arguments is such a cheap
operation that we hope users will get in the habit of using it
automatically. More intrusive interfaces for recording
intention at execution time are rarely used.

In Visage, brushing is accomplished either by clicking
on a single object or with a bounding box around multiple
objects. In the former case, we offer no heuristics for
inferring intention. In the latter case we infer that the
intention is to include any objects that would fall in this
region of the visualization. For instance the horizontal
extent of the bounding box in the bar chart of Figure 1
extends from 150 tons to 1800 tons, so we infer that the
intention is to pick out objects whose supply weight falls in
this range. Since the box extends above and below the
range of the y-axis, we infer that the user does not intend to

Figure 3 Effect of selective redo. Dragging a copy of the selected event “find underused supply points” in Scenario 1.3 to a time point in
Scenario 1.2 (left) creates a new scenario, 1.2.3 (right). The new scenario is shown on top. The redone operations all occur in the short
interval required for their execution ‘now.’



take the concept name attribute into account when
choosing which objects to brush. Again, we hope that this
distinction is so transparent that the user will get in the
habit of purposely drawing bounding boxes that include the
whole y-axis range, even if a smaller box would enclose all
the same objects for the data in the current scenario.

7.2. Selective Redo
When the user drags events to a point on the scenario tree,
as in Figure 3, we make use of any inferred intention rather
than replaying the low-level database updates by rote.
Iterating through the dragged events in temporal order, we
send each one a message to redo itself. If it is one for
which we've captured the intention, it uses a hand-written
redo method. Otherwise it defaults to iterating over its
subevents, recursively telling them to redo themselves.
The default case also uses the changeContext mechanism
described in Section 4 to effect database updates that are
their immediate children.

8. Future Work

8.1. Temporal Domains
When exploring temporal domains, it is convenient to have
the environment transparently perform the temporal
reasoning. For instance, when planning budgets over
several years, one wants updates to one year to propagate
to succeeding years until explicitly changed. Encoding
defaults like this using spreadsheet macros would vastly
complicate the model. Further, the time travel interface is
much easier to use than anything that could be
programmed into the spreadsheet.

Using contexts for both undo and domain time travel
requires that two distinct times be recorded for each
database update: the real time at which the user performs
the interface action, and the simulated time at which he
wants any domain data updates to take effect. The lifting
rule changes slightly: The propositions that hold in a
context are those that result from starting in the initial
database state, traversing the path to the context and
performing each recorded update whose user time is at or
before the context’s user time. Updates are ordered
primarily by domain time, and secondarily by user time.

Each frame can have two time travel interfaces. One is
for user time and the other for domain time. The frame’s
context is a function of both interfaces: <user scenario,
user time, domain scenario, domain time>. Without
maintaining both interfaces, there would be no way to
distinguish whether the user wants to see the current
version of last year's budget, or last year's version of this
year's budget. The asymptotic complexity of time travel is
still linear in the number of events. User testing will clarify
whether maintaining two times is too confusing. No
previous interface has made the attempt.

8.2. Superimposed Contexts
In some situations it would be useful to visualize a range of
contexts simultaneously. For instance the scatterplot of
quarterly profit over all the interest rate scenarios
mentioned in Section 2 shows the predicted range that can
be expected. The scatterplot expects to show one plot
point for each budget object that it is told to display. But
there is only one budget object in the whole database,
whose attributes change with time and scenario.

In situations like this it is easier to reason about reified
states of objects. On an as-needed basis, we’d create
temporal subabstraction [13] objects like
Q3_budget_4%scenario. These objects would have fixed
profit values in all contexts. Many such objects could then
be displayed simultaneously in the plot chart. Any
applicable database update to the budget object would be
reflected in the temporal subabstraction. Updates to the
temporal subabstraction are just a shortcut for updating the
budget object in Q3, 4%scenario.

9. Related Work

9.1. Undo
Myers and Kosbie [14] introduce an elegant mechanism
for hierarchical undo. Each interface action is given a DO
and UNDO method, and a pointer to its parent action, if
any. This allows the user to undo an entire semantic
action, or just the subactions (e.g. a dialog box action).

By adding the context layer to the database, Visage
automatically captures the state changes caused by any
action. The application developer does not need to write
DO and UNDO methods. Hierarchical undo merely
requires that he have the actions issue ‘begin event’ and
‘end event’ messages.

In order to capture intention in order to perform more
intelligent selective redo, however, we are using exactly the
mechanism of Myers and Kosbie.

9.2. Macro Definition
Our comic-strip timeline visualization is borrowed from

Chimera [12]. Chimera is clever about generating comic
strip panels, which show only the subset of the screen
relevant to the current event. The user can change the
granularity of the comic strip, analogous to looking at the
different rows in Figure 2. Chimera histories are linear.

Chimera allows macro definition from the history of
interface actions. The user selects a subset of events to
generalize into a macro. A macro builder window pops up
containing a comic strip of these events. The user then
selects arguments to the macro graphically, and generalizes
the macro to apply in a variety of situations. Chimera has
an inference engine to guess default generalizations, which
the user can override by selecting from a list of possible
alternatives.

The explicit user interaction at macro-building time
would be a valuable complement to the simple heuristics



we use at the time events are recorded. Macros could be
visualized in a separate row of Figure 2. To apply them,
they could be dragged to other points on the context tree
just as in selective redo.

9.3. History Enriched Objects
Hill and Hollan [1] describe a set of applications enhanced
to show information about the usage history. For instance
Edit Wear displays a histogram of the number of times
each line in a file has been edited. The histogram is shown
in the scrollbar. Spreadsheet Wear colors the background
of cells to show the number of recalculations.

The same mechanism that supports time travel in
Visage also supports history-enriched objects. Each time a
Visage database update occurs, the context layer of the
database creates a history object. This object records the
user, domain object, attribute or relation, new value,
scenario, and the real time of the update. The history
objects are first-class and can be visualized as easily as any
other object. For instance, a bar chart might show the
number of times each person’s salary has been edited
during the budget creation process. Thus all Visage
objects are history-enriched.

However, Visage’s history mechanism is rather clumsy
for text editing, as it views any edit as completely changing
the value. Better would be a difference analyzer so
database updates are deltas linked to specific lines of text.
Given this, it would be straightforward to add custom
scrollbar histograms to the Visage editor frame. The more
interesting capability Visage provides is allowing the end
user to create custom displays of usage history on the fly.

9.4. Timeline Interfaces
In addition to Chimera, described above, there have been
several interfaces that rely on timeline visualizations for
undo, browsing and/or time travel.

TimeScape [3] uses a timeline metaphor to organize
objects on the computer desktop, rather than the usual
folder hierarchy. The existence and position of the objects
is recorded. Moving a slider time travels back to earlier
states of the desktop’s appearance. A document created in
the future becomes a reminder, as it pops into existence at
the appointed time. There is an alternate viewing mode
where the plane of the desktop is swept left to right leaving
tracks along the third dimension. Since TimeScape does
not track changes to the content of documents, it doesn’t
implement undo or scenario exploration.

Interlocus [15] takes discrete snapshots of workspaces,
allowing the user to return to previous appearance states,
providing non-selective undo.

Lifestreams [16] generates a visualization of documents
organized by time, forming a personal history. Document
icons form a stack extending back into the screen based on
their timestamp. Documents past or future can be cloned,
allowing multiple versions to be created. Subsequences of
documents can be grouped and shared, allowing bboards

for instance. The system does not keep track of versions or
track changes.

Lifelines [17] is also a timeline based visualization of
personal histories. It is oriented toward real life events
such as medical histories. It presents a single broad
overview of many events and attributes and allows easy
filtering and drill down to detailed information. Its pan and
zoom features would be a helpful addition to Visage’s time
travel interface. Unfortunately these events can’t be
selectively undone in our universe, nor can we try out
multiple scenarios.

Learning Histories [18] extend the interface of Lifelines
to physical simulation programs where undo and
modification is possible. In their example for training
operators when to turn on and off valves to a vacuum
pump, the relative timing between events is crucial. When
modifying the history, the original timestamps are
therefore maintained. We chose not to maintain
timestamps because of the potential for time travel
paradoxes. Perhaps because they are traveling in domain
time while we travel in user time the problems of self-
referential cycles do not come up. They do not support
branching histories, and this perhaps also reduces the
chance of paradox. Whether all these features can be
combined consistently is a very interesting research
question.

Meng et al [19] visualize a linear sequence of snapshots
showing the resulting state after each interface event. The
user chooses an event to undo/redo from the visualization,
rather than from a text menu. The most interesting
contribution is the ability to filter the visualization to only
show events that affect a specific object. The user can also
‘flash’ all the events of a certain type, such as create,
move, or change color. These capabilities make it easier to
find the desired event to undo.

Although not specifically designed to support these
filtering and selection operations, Visage’s Time Travel
interface intrinsically provides this capability. As in any
frame, DQ sliders can be added and set to filter the
interface events by type. A visual query linking events to
their history objects would allow DQ filtering to display
only events having at least one history object mentioning a
given object. Events from the TimeTravel interface could
even be copied and dragged to a scatterplot organizing
them by attribute and object type. Then those events for
selected attributes and object types could be dragged to a
point on the context tree to effect selective redo.

10. Contributions

Visage’s time travel implementation combines ideas from
diverse research areas in a new way. Like CSpace it
manages a branching version structure. Using the
formalism of contexts, it goes beyond the ability to be “in”
any of the versions: the holdsIn operator allows analytical
comparisons across contexts as well. Different Visage
frames can be in different contexts, so visual comparison is



also easy. Since context-specific updates are captured
automatically by a layer built on top of the database,
Visage is the first system to support undo without requiring
application developers to write explicit undo methods

Visage includes the first visualization-based interface to
a branching scenario structure, using ideas from the non-
branching timelines of TimeScape, Interlocus, Lifestreams,
LifeLines, and Chimera. It is the first to use drag-and-drop
selective undo/redo for easy manipulation of multiple
events at once. Due to the universal applicability of
Visage’s basic operations, sophisticated filtering and
selection of events to undo is intrinsic. In addition to the
procedural view of histories as sequences of events,
declarative representations of exploration scenarios can be
used to create information appliances by demonstration.

11. Acknowledgements

This work was supported by DARPA contract DAA-
1593K0005. Stephan Kerpedjiev suggested helpful
modifications to the design of the interface and the
presentation of this paper.

References

1. Hill, W.C. and J.D. Hollan, History-Enriched Digital
Objects: Prototypes and Policy Issues. The
Information Society, 1994. 10: p. 139-145.

2. Berlage, T., A Selective Undo Mechanism for
Graphical User Interfaces Based on Command
Objects. ACM Transactions on Computer-Human
Interaction, 1994. 1(3): p. 269-294.

3. Rekimoto, J. TimeScape: A Time Machine for the
Desktop Environment. in Human Factors in
Computing Systems (SIGCHI). 1999. Pittsburgh, PA,
p. 180-181.

4. Vitter, J.S., US&R: A New Framework for Redoing.
IEEE Software, 1984. 1(4): p. 39-52.

5. McCarthy, J., Programs with Common Sense, in
Readings in Knowledge Representation, R.J.
Brachman and H.J. Levesque, Editors. 1985, Morgan
Kaufmann. p. 299-308.

6. Kolojejchick, J.A., S.F. Roth, and P. Lucas,
Information Appliances and Tools in Visage.
Computer Graphics and Applications, 1997. 17(4): p.
32-4.

7. Roth, S.F., et al., Towards an Information
Visualization Workspace: Combining Multiple Means
of Expression. Human-Computer Interaction Journal,
1997. 12(1-2): p. 131-185.

8. Becker, R.A. and W.S. Cleveland, Brushing
Scatterplots. Technometrics, 1987. 29(2): p. 127-142.

9. Ahlberg, C., C. Williamson, and B. Shneiderman.
Dynamic Queries for Information Exploration: An

Implementation and Evaluation. in Human Factors in
Computing Systems (CHI). 1992. Monterey, CA: ACM
Press, p. 619-626.

10. Guha, R.V., Contexts: A Formalization and Some
Applications, in Computer Science. 1991, PhD Thesis,
Stanford: Palo Alto. p. 147.

11. Archer, J.E., R. Conway, and A.J. Dix, User Recovery
and Reversal in Interactive Systems. ACM
Transactions on Programming Language Systems,
1984. 6(1): p. 1-19.

12. Kurlander, D. and S. Feiner. A History-Based Macro
by Example System. in User Interface Software and
Technology (UIST). 1992. Monterey, CA: ACM Press,
p. 99-106.

13. Guha, R.V. and D.B. Lenat, Cyc: A Mid-Term Report.
AI Magazine, 1990. 11(3): p. 32-59.

14. Myers, B.A. and D.S. Kosbie. Reusable hierarchical
command objects. in Human Factors in Computing
Systems (SIGCHI). 1996. Vancouver, BC, Canada:
ACM Press, p. 260-267.

15. Hayashi, K. and E. Tamaru. Information Management
Strategies Using a Spatial-Temporal Activity
Structure. in Human Factors in Computing Systems
(SIGCHI). 1999. Pittsburgh, PA, p. 182-183.

16. Freeman, E. and D. Gelernter, Lifestreams: A Storage
Model for Personal Data. ACM SIGMOD Bulletin,
1996(March), p. .

17. Plaisant, C. and B. Shneiderman, An Information
Architecture to Support the Visualization of Personal
Histories. Information Processing & Management,
1998. 34(5): p. 581-597.

18. Plaisant, C., et al., The Design of History Mechanisms
and their Use in Collaborative Educational
Simulations, . 1999, University of Maryland Human
Computer Interaction Laboratory. Technical Report
99-11.

19. Meng, C., et al. Visualizing Histories for Selective
Undo and Redo. in Third Asian Pacific Computer &
Human Interaction. 1998. Kangawa, Japan: IEEE, p.
459-464.


