
Announcements

● Office Hours are posted on Piazza!
● trainerlab due date has been extended to next

Thursday 09/17
○ This week’s lab, sportslab, is still due next

Thursday 09/17
● Extratations are starting this week

○ Details will be announced on Piazza soon

All About Vim!
Lecture 2 - Jules Yang

Pet Tax
Richard “Richie” Parker Charcoal Noot Noot

What, Why,
How?

01

What is Vim?
● A screen-oriented text

editor
● Released in 1991

○ Improved version
of “vi” released in
1976

● A “programmer’s
editor”

● No mouse or ‘GUI’

Why Vim?

Efficiency
By only giving you the

choice of using a keyboard,
you can accomplish tasks

much quickly.
Customizable to your

typing needs!

Ergonomics
Vim is designed to have
your fingers always stay
near the home row. This

reduces hands fatigue and
improves performance.

Why Vim?

It’s Everywhere!
Vim exists on almost all

machines. It’s heavily used
for system administration,

programming, working
with markup languages,

and more!

Vim Keybindings
There are many music

players, organizers, web
browsers, file viewers,

terminals, IDEs, and more
that take advantage of

Vim’s keybindings.

http://www.youtube.com/watch?v=4Z8YbjQvb3s

Why Vim?

battery usage

Vim is Cool 😍👨💻👩💻

How: The Vim Philosophy

Think
How can I do what I want faster?
Don’t try to memorize all these

commands, understand what you
need to do next.

Practice, Practice, Practice

Efficiency

Modal Editing

The best and only way to learn
and gain familiarity! Mastery

takes time.

Teach Yourself!

Vimtutor
As easy as typing vimtutor

into the terminal

 All Over the Internet
Many years of documentation

and resources

Vim Wiki
Great online resource for

answering questions

:help <cmmd>
Internal vim help pages for

a specific command

http://www2.geog.ucl.ac.uk/~plewis/teaching/unix/vimtutor
https://vim.fandom.com/wiki/Vim_Tips_Wiki

The Modes of
Vim

02

01 Normal mode (Esc)
Editor commands are used
in this mode. The default
mode.

Command-line mode (:)
Single line input, used
mostly for file navigation.
Exits mode after command

04

Insert mode (i)
Editing a text buffer.
Similar to modern text
editors.

02 Select mode (gh)
Printable characters
replace text and Vim enters
insert mode.

05

Visual mode (v)
Used for highlighting areas
for text.

03 Ex mode (Q)
Similar to command-line
mode, but does not exit
mode after command.

06

$ vim </path/filename>

⤷ opens file in Normal Mode

Opening/Creating a
File in Vim

Save:w :wq Save and Quit

:q Quit :q! Force Quit

Normal Mode: Navigating

So how do we move around without a mouse?
Ergonomically best to navigate letterwise:

Normal Mode: Navigating

Inline
● find <next occurence of

letter
○ Find <previous>

● w <next word>
○ b <back a word>

● 0 (zero) - beginning of line
● $ - end of line

Filewide

● /<search text><enter>
○ ?<back search

text><enter>
● next occurence of search

○ N - previous
● Go to the end of file

○ ggo to beginning

The Parallel Shift

f <char> Look forwards for char F <char> Look backwards for char

o Open new line below O Open new line above

i Insert before cursor I Insert at beginning of line

a Insert after cursor A Insert at end of line

Normally, there is a pattern to Vim commands, but THIS IS NOT ALWAYS TRUE

Normal Mode: Editing

<COUNT> <VERB> <TEXT OBJECT>

2 delete word

Vim has its own intuitive
“language”. It has verbs
and objects, and the
commands are similar to
English counterparts. You
can create “clauses” to
manipulate this text.

This command would delete two
words from the current cursor
position.

● yank (copy)
○ Yank or yy a line

● delete (cut)
○ ddelete (cut) line

● paste below
○ Paste above

● undo
● Ctrl-redo

Normal Mode: Editing

Switching Modes

Normal → Insert

 the typical way

Normal → Visual
i

c hange - deletes
the following
text object

A ppend - jumps
to end of line

o pens a new line

character
mode

v

V line
mode

Ctrl + v block
mode

Most
Modes
→

Normal

Esc

Command-line Mode Commands

Command-line Mode Commands

:<cmd>!

/<pattern><Enter>

:<number>

Save:w

:wq Save and Quit

:q Quit

Force

Jump to pattern instance

Jump to line number

A Very Useful Command
(especially for the lab 😗)

:%s:<find>:<replace>:g

● % - through the whole file
● s - search command being run
● g - flag replaces every instance globally

Demo Time

03

Go Forth

03

● vimtutor
○ Walks you through a

tutorial of vim
● Practical Vim: Edit Text at

the Speed of Thought by
Drew Neil

● Practice, practice,
practice!

● Google is your friend!
● Vim Cheatsheet
● Vim Wiki!
● :help <topic>

Closing Vim Thoughts

Further Resources/Reading How to Help Yourself

https://www.cs.cmu.edu/~07131/f20/topics/vim/vim-cheatsheet.pdf

A Whole New World

● Registers
● Macros
● Interfacing with STDIN/STDOUT
● Customizing Vim to be an IDE

○ Vim plugins
● Code completion, folding, markers, etc.
● Using Vim in other editors

LPT: Lab Pro Tips

● If you get an error message that says something like “Vundle” just press enter
to continue

● If you get a “merge commit” screen on pull, then type “:wq!” and press enter to
exit vim and complete the merge
○ Vim itself is used for other command tools such as Git

● Treat both words “More dust” as dust
● The last instruction on sliding should be (I always practice in grassy fields).
● “Written by yours truly” (no quotes) should both be directly ABOVE and

BELOW those lines
● If you screw up on a file, `git checkout <filename>` to reset

