
~UML & OOD~
Unified modeling language
& Object Oriented Design

Amy Liu & Jeremy Wang
A F21 GPI extratation

Why this extratation?

I

Motivations

Motivation

● Communicate technological ideas regardless of programming

language

● Interview questions 👀
● Useful for writing design documents & documentation in general

● Develop good programming habits

Agenda for today

1. Quick intro to the Object-Oriented concept

2. Introduction to UML

3. Practice modeling a system together

4. Go over some pitfalls with examples

5. Future resources

What is OOD?

II

State & Behavior

5 principles of OOD

1. Object/Class: A tight coupling or association of data structures with

the methods or functions that act on the data.

2. Information hiding: The ability to protect some components of the

object from external entities.

3. Inheritance: The ability for a class to extend or override

functionality of another class.

4. Interface: The ability to defer the implementation of a method.

5. Polymorphism: The ability to replace an object with its subobjects.

But also, one thing we also thought was
important...

Modularity

● Trusting other people’s code

● Make sure others can’t mess with ours

What is UML?

III

Universal Modeling Language

Notation basics

Visibility Class

Has-A relationship Other relationships

“B implements A”

Amount

+ : public var/function
: protected
- : private

+ variables:type

+ functions(a,b):ret

name B A

B A

“B extends A”

Inheritance / Realization

A B

B “has a” A

hooman doggo
pet

person car

party guest

1 10

0…*

Notation basics - Example

+ time
+ eventName: String
+ eventDescription: String

+ start()
+ end()

<<interface>>
Event

+ name: String

<<interface>>
Guest0..*

CMUCareerFair

<<interface>>
Student

Professional

CMUStudent

Venue1

Usage basics

● Capture:

○ Important objects

○ What the states are called

○ Relationships

○ Interactions (between objects in the diagram & outside)

● Omit unimportant details (use … to omit)

● Avoid redundancy (same thing over and over? Just omit it)

● Pseudocode notation like [] is a OK

IV

Let’s model a party invite
system!

Modeling

When modeling...

● Usually takes multiple iterations

● Steps:

a. Identify important nouns… could be classes!

b. Fill out the classes

c. Draw in relations

When modeling… (for system design q’s)

● Focus on interactions / how will other classes interact with this

class?

a. get/set functions

b. who makes decision / performs calculations?

● How will the states(variables) stored?

● How easy is it to update?

Designing a party invitation system for our
awesome halloween party … pt 1
● There are one-time parties, repeated weekly parties, and repeated

annual parties; other types might be added in the future.

● Each party has a name and roster of associated users and their

roles.

● A user can simultaneously be a host for multiple parties, and be a

guest for multiple parties. More party roles may be added in the

future.

● Host and guests must have accounts with username and password

in the system.

Designing a party invitation system for our
awesome halloween party… pt 2
● A host can use the system to notify all party guests of a message,

and a guest can use the system to notify the host of her intentions

to attend (or not attend).

● The system supports SMS and email, and more notification

mechanisms might be added in the future.

● Users can set their preferred notification mechanism(s) in their

accounts.

Pitfalls

V

Don’t do these things...

#1 - Don’t abuse Strings… use Enums!

● If there are set categories/types, don’t hardcode the category name as

Strings…
○ Typos (needs checks everywhere)

○ Hard to extend

○ Bad to case on (equals)

● Instead, use an Enum class!

● enum Suites{

 HEART,

 DIAMOND,

 SPADE,

 CLUB

}

But like… don’t abuse Enums either!

● enum Cards{

 HEART1,

 HEART2,

 HEART3,

 ...

 CLUBJ,

 CLUBQ,

 CLUBK

}

#2 - Don’t overstuff a class

● class chessPiece{

 howToMove

 whiteOrBlack

 pieceLocation //← is this necessary?

 locationOfOtherPieces // ???

 scoreOfTheGame // ??????

 listOfDefeatedPieces // ??????????

}

Other good to knows...

● Methods should be verbs
○ Eg. If we want to feed a dog, call the method feedDog() instead of dogFood()

○ Less ambiguous, more expected conventions since methods do actions

● Return empty collections instead of null
○ Dereferencing `null` causes NullPointerException

○ Requires the caller to remember do null checks <-- error-prone

● Refer to objects by their interfaces (use List instead of ArrayList)
○ Interfaces show the desired properties of the types we use

○ More flexible, client can use multiple implementations

○ (Unless desired behavior is implementation-specific)

CREDITS: This presentation template was
created by Slidesgo, including icons by Flaticon,
and infographics & images by Freepik

THANKS!
Resources:

- 17-214

- UML and Patterns textbook

- Effective Java textbook

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr
https://www.cs.cmu.edu/~charlie/courses/17-214/2021-spring/
https://www.oreilly.com/library/view/applying-uml-and/0131489062/
https://www.oreilly.com/library/view/effective-java/9780134686097/

