UNIFIED MODELING LANGUAGE
& OBJECT ORIENTED DESIGN

&

L WHY THIS EXTRATATION? &

—— Motivations
e I \\\ \\

\ N ;Q
\\ —

e Communicate technological ideas regardless of programming
language
Interview questions 33
Useful for writing design documents & documentation in general
e Develop good programming habits

<

b DRSS

Quick intro to the Object-Oriented concept
Introduction to UML

Practice modeling a system together

Go over some pitfalls with examples

Future resources

&

=

[\

»

WHAT 18 OOD?ﬁ

/_

¥§\\\
/.\ \
\\
\\

RN
=

1. Object/Class: A tight coupling or association of data structures with //
the methods or functions that act on the data.

2. Information hiding: The ability to protect some components of the
object from external entities.

3. Inheritance: The ability for a class to extend or override
functionality of another class.

4. Interface: The ability to defer the implementation of a method.

5. Polymorphism: The ability to replace an object with its subobjects.

\\ e,

IMPORTANT...

Modularity

e Trusting other people’s code
e Make sure others can't mess with ours

+: public var/function
: protected

- : private
Visibility
B “hasa” A

NOTATION BASICS

NS

+ variables:type

+ functions(a,b):ret

1 B

hooman

Class

pet

“B extends A"
B —>] A
“Bimplements A’
B > A

Inheritance / Realization

Has-A relationship

doggo

Other relationships

1 10
person [&=— car
0.7
party O—1 guest
Amount

NOTATION BASICS — EXAMPLE

<<interface>>
Event

+time
+ eventName: String
+ eventDescription: String

Venue

<<interface>>

Guest

+ start()
+ end()

3

CMUCareerFair

+ name: String

L]
L
L]
L]
L]
L]
" N
x

<<interface>>
Student

Professional

3

CMUStudent

Capture:

Important objects

What the states are called

Relationships

Interactions (between objects in the diagram & outside)
Omit unimportant details (use ... to omit)

Avoid redundancy (same thing over and over? Just omit it)
Pseudocode notation like [] is a OK

©)
©)
©)
©)

e Usually takes multiple iterations

e Steps:
a. ldentify important nouns... could be classes!
b. Fill out the classes
c. Drawinrelations

e Focuson interactions/how will other classes interact with this
class?
a. get/set functions
b. who makes decision / performs calculations?
How will the states(variables) stored?
How easy is it to update?

‘ DESIGNING A PARTY INVITATION SYSTEM FOR OUR
AWESOME HALLOWEEN PARTY ... PT |

e There are one-time parties, repeated weekly parties, and repeated //
annual parties; other types might be added in the future.
e Each party has aname and roster of associated users and their
roles.
e Auser cansimultaneously be a host for multiple parties, and be a
guest for multiple parties. More party roles may be added in the
future.

e Host and guests must have accounts with username and password
in the system.

TSN~ e

AWESOME HALLOWEEN PARTY... PT 2

e Ahost canuse the system to notify all party guests of a message,
and a guest can use the system to notify the host of her intentions
to attend (or not attend).

e Thesystem supports SMS and email, and more notification
mechanisms might be added in the future.

e Users can set their preferred notification mechanism(s) in their
accounts.

#1 - DON'T ABUSE STRINGS... USE ENUMS!

e Ifthere areset categories/types, don't hardcode the category name as
Strings...

o Typos (needs checks everywhere) :
o Hardtoextend w

o Badtocase on (equals)
e Instead, use an Enum class!
e enum Suites{

HEART,

DIAMOND,

SPADE,

CLUB

J

BUT LIKE... DONT ABUSE ENUMS EITHER!

e enum Cardsf{
HEART1,

HEART?2, :
HEARTS,

CLUBJ,
CLUBQ,
CLUBK

#2 - DONT OVERSTUFF A CLASS

e class chessPiecef
howToMove

whiteOrBlack :
pieceLocation //«is this necessary?

locationOfOtherPieces //??7?

OTHER GOOD TO KNOWS...

e Methods should be verbs
o Eg.If we want to feed a dog, call the method feedDog() instead of dogFood()

o Less ambiguous, more expected conventions since methods do actions :
e Return empty collections instead of null ﬁ

o Dereferencing 'null’ causes NullPointerException
o Requires the caller to remember do null checks <-- error-prone
e Refer to objects by their interfaces (use List instead of ArrayList)
o Interfaces show the desired properties of the types we use
o More flexible, client can use multiple implementations
o (Unless desired behavior is implementation-specific)

CREDITS: This presentation template was
created by Slidesgo, including icons by Flaticon,
and infographics & images by Freepik

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr
https://www.cs.cmu.edu/~charlie/courses/17-214/2021-spring/
https://www.oreilly.com/library/view/applying-uml-and/0131489062/
https://www.oreilly.com/library/view/effective-java/9780134686097/

