
Input/Output + Oneliners
By: Laura & Yosef

Bash Scripts #3

(Pixel) Pet Tax

Yoshi Psyduck Flappy Bird

Final Exam Logistics

● Week after Thanksgiving during lecture time (Dec 2nd)
● Will be multiple choice and short answer
● Cover all material including this lecture (Bash Pt. 3)
● Paper + pen/pencil
● Materials Allowed:

○ Man pages will be provided
○ 1 pg (8.5 x 11) handwritten cheat sheet (front and back)
○ You can write it out digitally but you must have it printed
○ Name at the top of the sheet
○ We will collect your cheat sheets at the end!
○ It will be heavily curved so don’t worry!

Final Grade Logistics

● All labs turned in by Dec 2nd (hard deadline!)
● Double check autolab!

○ Make sure you have done the pull request for collab on Github

How to Become a Bash Expert

Bash as a full-fledged
scripting language

Learn to browse files
and run programs

Bash as a data
processing language

STEP 3

STEP 2

STEP 1

Unix Process Communication

01

Scripting w. I/O Redirect

02

More Scripting

03

Oneliners

04

Everything is a file! How to use pipes and more to stream
info!

How programs talk to each other! One line programs to make Bash so
easy!

Unix Process Comm.

01.

(it’s I/Opening)

Unix as a 2-layered API

● C functions
○ for “real” system programming

● Shell commands
○ subset of C functionality
○ for scripting and interactive use

Unix as a 2-layered API

● C functions (15-213)
○ for “real” system programming

● Shell commands (GPI)
○ subset of C functionality
○ for scripting and interactive use

Unix process interacts with the world

● stdout
● stderr
● exitcode
● fs
● network

● stdin
● args
● env
● fs
● network

Process

We can script some of these

● stdout
● stderr
● exitcode
● fs
● network

● stdin
● args
● env
● fs
● network

Process

Input & Output (streams)

● stdin - standard input (file descriptor = 0)
○ raw_input, scanf

● stdout - standard output (file descriptor = 1)
○ print, printf

● stderr - standard error (file descriptor = 2)
○ fprint(stderr)

Arguments

● args - command line arguments
● Scripts can access arguments with

○ $# = number of arguments given to the script (different
from “argc” in C, which includes program name)

○ $1 = first argument, $2 = second argument, …
● e.g. $ echo Hello World

○ $# = 2
○ $1 = Hello
○ $2 = World
○ $0 = echo DEMO

Environment Variables

● A list of key-value pairs
● Essentially the shell’s global variables
● Any program can use these variables

○ Access a VAR by $VAR
● printenv - prints currently set environment variables

DEMO

Exit Code

● All programs exit with some code
● This is determined by the programmer
● In general, exit 0 means success
● Anything else indicates some error/failure
● Process can access last executed program’s exit code

DEMO

Scripting I/O (Redirect)

02.

 (or knowing your computer will always listen to you)

Redirection

Input Output Error

Append * [cmd]>>[file] [cmd]2>>[file]

Read/
Overwrite [cmd]<[file] [cmd]>[file] [cmd]2>[file]

Redirection Tricks

● Redirect one stream to another
○ [cmd] 2>&1

● Ignore a stream - redirect stdout to the “null device”
○ [cmd] > /dev/null

● Ignore any output from a program (both stdout and stderr)
○ [cmd] > /dev/null 2>&1
○ (alternatively) [cmd] 2> /dev/null 1>&2
○ (alternatively) [cmd] > /dev/null 2> /dev/null

DEMO

Scripting More

03.

 (playing with words is fun!)

Unix Pipes - Intro

● Pipes connect processes by linking stdout of first process to
stdin of second

● Think of it like function composition (if it’s not too traumatic):

g(f(x)) ↔ x | f | g

Unix Pipes - Syntax

<cmd> [ARGS] [REDIRECTS] | <cmd> [ARGS] [REDIRECTS]

● The pipe character is ⇧ Shift + \ (i.e. the character above ↵ Return)

Unix Pipes - Warnings

● A few things to keep in mind using pipes:

○ Programs in a series of pipes are run in PARALLEL

■ i.e. if your future programs are dependent on the previous

running to completion before starting, don’t use pipes

○ At pipe boundaries, results are buffered

■ i.e. if your future programs cannot handle buffered input,

don’t use pipes

DEMO TIME

(Commands in Demo)

fortune | cowsay -n (and optionally -p or -s or -d)

find . -name "*pdf" | grep -Ev ".*hw[0-9]*.pdf"

echo “some text” > tmp.txt | cat tmp.txt > tmp2.txt | cat tmp2.txt

● You can easily change the scripting environment by setting environment

variables before a command:

VAR1=value1 VAR2=value2 <cmd> [args]

● You can get the exit code of a program easily too:

$?

● Plus, Bash has all the features of a scripting language, including conditionals,

functions, loops, and processing tools

○ But, it’s hard to write correct code easily (see: pitfalls)

○ Bash is great for automation and it can make your life (a lot!) easier

Scripting More Things

http://bash.cumulonim.biz/BashPitfalls.html

Command Substitution

● You’ve already seen how to match file arguments easily with globs

● It’s pretty easy to use command substitution to get the output of a
command as a single argument: use $(command)

An example:

touch myfile-$(date +%s).txt

This creates a file with the current timestamp inputted in the name!

● Jon Bentley, a famous person who improved the speed of quicksort,
challenged Donald Knuth to write a program guided by documentation
(documentation is 🔑) and asked Doug McIlroy to critique it

● Knuth is famous -- he wrote The Art of Computer Programming, among
other things

● McIlroy is also famous -- he literally invented pipes

● Knuth wrote a 10+ page Pascal program -- McIlroy wrote a
well-explained 6-line Bash script

Find the original story here

An Aside:
The Parable of Knuth and McIlroy

https://en.wikipedia.org/wiki/Jon_Bentley_(computer_scientist)
https://en.wikipedia.org/wiki/Donald_Knuth
https://en.wikipedia.org/wiki/The_Art_of_Computer_Programming
https://en.wikipedia.org/wiki/Douglas_McIlroy
http://www.leancrew.com/all-this/2011/12/more-shell-less-egg/

See if you can figure out what the Bash script does!

tr -cs A-Za-z '\n' |

tr A-Z a-z |

sort |

uniq -c |

sort -rn |

sed ${1}q

The Parable of Knuth and McIlory
(Continued)

Aside 2: More Shells

ZSH is super
customizable!

Check out the Dotfiles
extratation slides to get

set up!

ZSH

Xonsh

The Python shell

ZSH

Yea it’s on here twice!
It’s super cool -

strongly recommend.
(I’m using it rn)

Oil

An upgrade from
Bash

PowerShell

The object-oriented
shell

Fish

The friendly
interactive shell

https://www.cs.cmu.edu/~07131/f20/topics/extratations/dotfiles/dotfiles.pdf
https://www.cs.cmu.edu/~07131/f20/topics/extratations/dotfiles/dotfiles.pdf
https://www.zsh.org
https://xon.sh/
https://www.zsh.org
http://www.oilshell.org/
https://docs.microsoft.com/en-us/powershell/scripting/overview?view=powershell-7
https://fishshell.com

It's midterm season and with the thought of studying for daunting tests
looming over your thoughts, you decide to make a wise(?) decision and play

some classic Super Mario Bros.

In fact, you've just finished the final boss fight with Bowser and Princess
Peach is about to be released when the game seems to glitch... You've

managed to unlock the secret hidden level!

"I'm still trapped, Mario, help!" cries Peach from in game. Eager to trounce
this level as handily as the others, you notice a green pipe has appeared

before you, and you jump right in.

PIPELAB

Oneliners

04.

 (I got into a fight with the number 1 once.
Its friends 3, 5, 7, and 9 showed up.

 The odds were against me)

● I'm reading a book about anti-gravity. It's impossible to put down.

● Don't spell part backwards. It's a trap.

● The past, the present, and the future walk into a bar. It was tense!

● How did the picture end up in jail? It was framed!

Examples

● We use grep to search through file contents

● find does the same thing for file names for deep recursive file

system searches

○ Walk a file hierarchy and do something for each things that matches

find <directory> -regex ‘<regex>’

find <directory> -name ‘<glob>’

find

● Read input from stdin and execute argument command with

arguments constructed from stdin

xargs <command>

xargs

● Find all my uses of find

history | grep -E "find .*"

● Find all my shell scripts, add permissions, and execute them:

○ -t flag is to also print the commands run

○ -n1 flag specifies run command per line of input (one at a time)

find . -name ‘*.sh’ | xargs -t chmod +rwx

find . -name ‘*.sh’ | xargs -t -n1 bash

Examples (For Real)

Examples (For Real)

● Find all my non-writeup files and reads them:

○ -E treats the expression as extended regex

○ -v all lines not matching the specified pattern

find . -name "*txt" | grep -Ev ".*hw[0-9]*.txt" | xargs cat

● Make a network request to return a file or webpage located at

the argument URL

curl <URL>

curl

● A Vim-related streaming editor used for scripting that supports

many of the same commands

sed ‘<sed_script>’ <files>

● This is the familiar substitute command which has similar syntax

sed ‘s/<original>/<replacement>/g’ <files>

sed

● Rename all occurrences of ‘google‘ in output to ‘duckduckgo’

○ -s is silent mode, doesn’t show progress bar or error messages

○ -v is verbose mode, displays some extra info (good for debugging)

○ Look! This also redirects stderr in the first command to stdout!

curl -v -s google.com 2>&1 | sed 's/google/duckduckgo/g'

Examples (For Real)

● The best way to get a fully working oneliner is to keep building iteratively

○ Try each step one at a time and see what happens when it runs

● Figure out what you think the steps to do what you want should be, and then

try to write the script

● You stand on the shoulders of all the programmers before you

○ Use Google/StackOverflow as resources to try and figure out if there’s

an easy way to do what you want

○ Use man pages, they’re made to teach people how to use a tool

Oneliner Tips

Useful
Resources Bash One-Liners Explained

A multi-part guide to various bash oneliners
explained in detail! (Also has different articles on sed,
awk, Perl, among others!)

Bash-Oneliner
A gigantic list of oneliners that will probably have
what you want to do with Bash!

Bash Scripting How-To
An introductory article to a wide list of features Bash
offers.

https://catonmat.net/bash-one-liners-explained-part-one
https://onceupon.github.io/Bash-Oneliner/
https://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html

Reminders

● hauntlab and zombielab due 11:59 pm ET tonight
● Extratation this Saturday 1-2 pm at GHC 4211: Exam Review
● Course Feedback on tinyurl.com/f21-gpi-feedback

http://tinyurl.com/f21-gpi-feedback

Helpful commands for pipelab:

● Curl - pulls content from an url
● Sed - Edits text (stream editing) (input can be supplied through

stdin)
● Xargs <command> - Transformed newline separated text in stdin

to arguments for the given command
● Test locally first! Construct iteratively!

Small secret:
● ./driver/driver is a bash script
● Wow! (you can hack it if you want
● But it’s probably easier to do the lab…)

Lab Pro Tips

