
Vim 2
GPI ‘21 - Lecture 4

Yosef + Deepti



HackCMU

Student sign up link: http://tinyurl.com/hackcmu2021
Mentor sign up: https://tinyurl.com/hackcmu21mentor

f

http://tinyurl.com/hackcmu2021
https://tinyurl.com/hackcmu21mentor


(Virtual) Pet Tax



Vim
Part 2



Undo      u

Redo       :redo OR ctrl-R

Save + Exit       :wq OR :x

Vim Recap
Normal mode for commands
Insert mode for editing text

⬡ ctrl not command on mac!



More Modes

v (lowercase v)
select text

Visual 
Mode

V (capital V) 
select whole line

Visual 
Line

ctrl-v
select rectangle

Visual 
Block

⬡ ctrl not command on mac!



Text Objects
<number><command><text object or motion>

2deleteword
⬡ <number>: how many times to perform <command>
⬡ <command>: change, delete (cut), yank (copy), etc.
⬡ <text object or motion>: word, sentence, paragraph, etc.



i
“ci}”

changes inside {curly 
braces} and goes into 

insert mode
a

“da(”
deletes along with 

(parens) 

More Text Objects

⬡ works with most delimiters
◂ “ { [ ( ‘ ` <

⬡ t and p
◂ change/delete html 

tag/paragraph contents



Substitutions
Find and Replace, but with Vim and regex!

:s/<find>/<replace>/<flags> OR :s:<find>:<replace>:<flags>
⬡ In normal mode
⬡ Specify ranges before the s

⬡ :10,30s/foo/bar
⬡ :%s/foo/bar/g

⬡ Example flags
⬡ g = every occurrence
⬡ c = confirm before applying

current line: s
whole file: %s
lines a-b: a,bs

line a to end: a,$s
selected 

region: ‘<, ’>s

⬡ regex = regular expression / pattern that matches against certain strings
⬡ :noh = “no highlight” / for erasing highlights



Vim
Demo!



Tabs & splits!
⬡ In the vim command line

⬡ :tabe file_name.txt to create a tab
⬡ :tabprevious/ tabnext to navigate

⬡ Splitting a tab 
⬡ :vsplit for vertical screen splits
⬡ :split for horizontal screen splits
⬡ <Ctrl-w>{h,j,k,l} to switch between split screens



⬡ Used for recording a sequence of commands and executing it one or more times

⬡ Create a macro:

q<letter><commands>q
⬡ Execute the macro <number> times (once by default):

<number>@<letter>
⬡ Must run the macro at the same places - 

Use j0 to go to the start of the next line at the end of the macro

Macros

start recording: 
q<letter>

stop recording: q
execute once: @<letter>

execute again: @@
view contents of a register: 

:reg <letter>
more info: :h recording



<commands>

Where do the sequences of commands 
given to macros go?

  Registers!

<commands>
...



⬡ Registers are spaces in memory that vim uses to store some text. Each has an identifier 
for later access

⬡ Use the ones denoted with letters (a-z) for regular use

⬡ Numbered registers, the default register, the blackhole register and read-only registers all 
have special purposes

⬡ Accessed using a double quote before its name. Ex: "r

⬡ Copy (yank) the selected text to the register r with "ry 

⬡ Paste the content of register r with "rp

⬡ See all registers with :reg

⬡ See contents of specific registers with :reg <space separated register names> 
Ex: :reg a b

Registers



⬡ An unnamed (or default) register that can be accessed with "" 

⬡ Any text that you delete (with d, c, s or x) or yank (with y) will be placed there

⬡ Vim uses this to paste, when no explicit register is given i.e. the command p is 
the same as doing ""p

Default Register

⬡ Is a write-only register that can be accessed with “_

⬡ Where vim writes to if it doesn’t want to keep track of the text

⬡ Nothing returned if read from

Black hole Register



Numbered Registers
⬡ Registers from "0 to "9

⬡ Automatically populated by vim

⬡ "0 has the content of the latest yank

⬡ The others will have last 9 deleted texts - "1 being the newest and "9 the oldest 

⬡ Can paste yanked text it using "0p



4 read-only registers: "., "%, ": and "#

⬡ ".  has the last inserted text

⬡ "%  has the current file path, starting from the directory where vim was first 
opened

⬡ ":  is the most recently executed command 

⬡ "#  is the name of the alternate file a.k.a the last edited file

Read-only Registers



  Bookmark positions
with Marks!

Tired of remembering line 
numbers, column numbers, 
and/or file names?



Set Mark  m<letter>

Jump to Line of 
Mark ‘<letter>      

Jump to Position of 
Mark `<letter>

Delete till Line of 
Mark d’<letter>

Delete till Position 
of Mark d`<letter>

Change Text of 
Lines Till Mark c’<letter>

List All Marks :marks

List Certain Marks
:marks 

<comma-separated 
letters>

⬡ Let you bookmark your current position 
so you can jump to it later

⬡ They are invisible

⬡ Each file has a set of marks identified by 
lowercase letters (a-z) 

⬡ Uppercase letters (A - Z) denote a set of 
marks used to globally identify a position 
within a particular file

⬡ Setting a mark with lowercase letters 
removes the existing one in current file

⬡ Setting with uppercase letters       
removes the existing one in                     
any file

Marks



Jump to Next 
Line of Mark  ]’

Jump to Prev 
Line of Mark [‘      

Jump to Next 
Mark  ]`

Jump to 
Previous Mark [`

      Delete Mark          :delmarks a

       Delete Marks   
in Range           :delmarks a-c

      Delete Specified 
Marks           :delmarks abc

Delete All
   Lowercase Marks     :delmarks!

More Commands 
with Marks



⬡ SportsLab due 11:59 pm ET tonight
⬡ Extratation this Saturday 1-2 pm at GHC 4211: Interview 

questions
⬡ Course Feedback on tinyurl.com/f21-gpi-feedback

http://tinyurl.com/f21-gpi-feedback


        Lab

⬡ fix-typos
◂ don’t swap the names in the header

⬡ hogwarts
◂ leave TWO spaces between books and MORE
◂ deleting inside the <container> tag leaves the closing tag on a new line, which 

is not considered correct. the tags should be next to each other (vim version 
dependent)

◂ after deleting paragraphs there should be ONE line in between them


