
How to
Time Travel
Laura, Yosef, and Keiffer

Git: Part I

Laura, Yosef, and Keiffer

Exam 1 Logistics

● Next week during lecture time (Oct 7th)

● Material up until this lecture (Git Pt. 1)

● Will be multiple choice and short answer

● Paper + pen/pencil

● Materials allowed:
○ Man pages will be provided
○ 1 pg (8.5 x 11) handwritten cheat sheet (front and back)

■ You can write it out digitally but you must have it printed
■ Name at the top of the sheet

○ We will collect your cheat sheets at the end!

● It will be heavily curved so don’t worry!

Midsem Grade Logistics

● Hard deadline for trainerlab to romancelab is October 14th (Thursday)
● Double check autolab!!

○ (if you didn’t submit your .tex files for smashlab, you may have a negative score)

● Your midsem grade will include your midterm score

Have you ever done this?

What’s wrong with that?

● Clunky!!
● Need to remember a lot and do a lot of copy pasting to

restore work
● What if you could use version control to do all of that for

you with a few simple commands?

Developing software is complicated

● Software developers everywhere use version control manage large projects!

What is git?

- Linus Torvalds

“the stupid

content tracker”

(type “man git” in your terminal - it actually says this!)

What is git?

● Distributed version control

(work easily with other

people)

● Stores the entire project

locally
● Quite literally a time

machine for your code!

What ISN’T git?
● GitHub is a website to

share and collaborate on git

repositories

● We’ll be learning more

about Github next week!

Haven’t we’ve been using git on all the HWs?

● Yes
● All of you have seen git before
● But…
● There is actually a lot more to it than you probably know
● Now you will understand why we ask you to add and

commit your files

git happens....

Time to git gud

● Check if its installed with
○ $ which git
○ If it gives you a path you’ve already got it!!

● Mac:
○ Already installed!

● Linux:
○ Ubuntu: sudo apt install git
○ Other distros: package manager

● Windows:
○ You can download it here:
○ https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

● Andrew:
○ Nothing!! It’s already installed so you don’t need to install anything for the HW

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Getting started using git

● You started a new project with some files and want to save your
progress

● Run git init in the project folder
● What just happened?

○ Creates a .git folder that stores the entire project history

● This starts the first node on our graph

Init

Checking what git is doing?

● We can check what git is doing with our files by using:
○ $ git status

● Two things to see here
○ No commits yet

■ What are commits?
○ Untracked files

■ What are those?
■ Do we want to track them and why?

Tracking files

● Some files we want git to keep track of (e.g. our code)
● Some files we want git to ignore (log files, compiled files, etc.)
● git will NOT track anything unless you tell it to!
● To tell git to track a file:

○ $ git add [path to file or folder]

● If you want to add all changes/files in the current folder, we often use:
○ $ git add .

● What if you want to add all changes/files except one or two?
○ Add these files you want to ignore to the .gitignore file

Commits: what are those?

● Commits are a collection of changes that get added to the graph

● These are the snapshots that you are able to jump between

● You also get to write a message describing what the changes you made were

● You can commit by running:
○ $ git commit

■ Will open in some text editor (vim by default) to write message
○ $ git commit -m “your message here”

■ Doesn’t open up anything

Init started

You can keep doing this as you make changes

● Make a new file
○ $ touch we-love-gpi

● $ git status
● What do you see?

● What happens when we run this command:
○ $ git diff
○ What about if we write some stuff into we-love-gpi

● We need to add we-love-gpi

● We need to commit these changes again

Init started we-love-gpi

What’s the process we just did?

1. Make some changes
2. Stage those changes with git add

a. This moves your changes into what is

called the staging area

3. Commit those changes with git commit
a. Commits your changes onto the tree

4. Repeat and have great snapshots of
your work!!

Reverting

● $ git log
○ Checks your previous commits and lists them

● $ git revert <commit-hash> reverts a commit
○ by making a new commit with opposite changes

○ Doesn’t actually go backwards

● We will talk about git reset next week!

There is this tree thingy, how do i see it?

● $ git log --graph --decorate
○ You can get out of git log by pressing “q”

● You can see you’re entire commit history all the way back to the git init in a
pretty format

● Do you notice the git hashes?
○ They look like this: 06a12a2465b78ca92f08aacf774cb98fda3c3519

○ They will be useful later

Init started we-love-gpi

Aren’t all these trees straight lines?

● Yes

● But you can change that by giving your trees branches

● So by default there is one branch called master
○ When you commit you extend the branch you’re currently on

● You keep track of where you currently are on the tree with the HEAD
○ When you commit you move what your current branch points to and therefore move the HEAD
○ HEAD always points to a branch

Init started we-love-gpi

master
HEAD

master

new commit

HEAD

Making branches

● You can make a branch from a commit with
○ $ git branch [branch name]

○ $ git checkout [branch name]

● branch makes a new branch
● checkout switches the head to point to that branch

Init started we-love-gpi

master

new commit
HEAD

branch

Making branches

● When you commit now you extend the branch HEAD
points to

● All other branches don’t change

Init started we-love-gpi

master

new commit
HEAD

branch

commit on
branch

HEAD
branch

Combining branches

● Branches let multiple people work on different parts of the project without
breaking each other!

● When you want to combine two branches:
○ $ git merge [branch you want to merge]

● This makes a commit that both branches and HEAD point to

Splitting
commit

Commit on
branch

master

Merge
commit

master

branch

How to actually merge branches?

● Merge the branches
○ $ git merge [branch name]

● Check to see if there were any issues merging
○ $ git status

● Fix all the conflicts
○ If there is a conflict in a file, git will surround the section that needs to be fixed with >>>>>>> or

<<<<<<<
○ You then need to combine those sections to finish the merge

● Stage and commit your changes
○ $ git add file1 file2 file3 …
○ $ git commit

● Yay you merged two branches together

When do we get to time travel?

● Right Now!!

● To jump between commits you can use:
○ $ git checkout [branch name]

● Use this to jump around between

branches!!

● What do you think this is doing with

HEAD?

● You can also checkout a commit with
○ $ git checkout [commit hash]
○ What branch are you on now?

○ You’re not, you have a detached head

branch

How to deal with a detached head?

● Go to the hospital
● You can make a new branch when you checkout the commit

○ $ git checkout -b [branch name]

● If you are confused by branching, there are interactive visualizations of
branching and merging at:
○ learngitbranching.js.org

https://learngitbranching.js.org/

Reminders

● WizardLab due 11:59 pm ET tonight

● Extratation this Saturday 1-2 pm at GHC 4211: Exam Review
● Course Feedback on tinyurl.com/f21-gpi-feedback

http://tinyurl.com/f21-gpi-feedback

Helpful hints for romancelab

● Before you start run ./setup.sh

● This week’s lab directory is a git repo by itself, despite being inside the gpi-labs repo

● When you are doing the labs, run the commands inside this week’s lab directory

● When you are done with the lab, commit your changes under gpi-labs directory

● Don't forget to commit and run driver between stages!

● Remember that git branch will show you what branch you're on and which branches exist

● Switch between branches using git checkout

● You can list your branches using
○ $ git branch l

● To revert to a commit:
○ $ git revert [commit hash]

● Always run the driver to make sure you’re on the right track!!!

