
GIT : [gɪt] (part 1)

 Jessica Dai & Kyle Booker

Pet Tax

Announcements

● Midterm 1 will take place during class on Oct 5 (Section A)/Oct 7 (Section B)
● You will have the full 80 minutes to take the exam. Please try to arrive early so we

can start on time. Do not stress about the test! The exam will be heavily curved. :)
● The exam will cover everything we have learned in class up to Git part 1. The test

format will include multiple choice and short answer and it will be conducted using
pen/pencil on paper. Man pages will be provided.

● You can bring one double-sided handwritten page of cheatsheet, letter-sized (8.5 x
11). You are allowed to write it digitally, but it must be printed out before the exam.
Please place your name at the top of the cheatsheet as we will be collecting your
cheatsheets at the end.

● Regardless of how many late days you have left, all labs must be turned in by
the hard deadline of October 23rd. After this date, unsubmitted labs will be
marked as a 0.

Have you
ever done

this?

What is wrong with this approach?
● Its clunky

● It relies on you knowing a lot

○ Ex: how part 1 and part 2 don’t work

together for whatever reason

○ What the difference is between all those

different backups?

● Switching between versions requires copying

and pasting

● What happens when you do your hw in multiple

files that interact?

What if you could
just do all that
version control in
just a few
commands?

(You can)

Developing software

1. Imagine you’re working on an operating system: windows, macos,
android, ios, linux, etc
a. It’s a lot of code (the Linux kernel is around 27.8 million lines)

2. 1000s of developers all working on different features, bug fixes,
performance improvements

3. You really need to have a really good way to track, integrate, and
deal with everyone’s changes

4. How does this software get developed?

What is Git?
● It is an open source distributed version control

system used for tracking changes in any set of
files

● Usually used for coordinating work among
programmers collaboratively developing

source code during software development.
● GIT IS NOT GITHUB!

● Stores project locally! for everyone involved :)

Wait…

Haven’t we’ve been using git on all the
HWs?

1. Yes
2. All of you have seen git before
3. But…
4. There is actually a lot more to it than you probably know

Got Git?

Check if you have git installed!

jdai2@linux-15:~$ which git
/usr/bin/git

Andrew has it installed!

● On mac:

$ brew install git

You should install homebrew if you
haven’t yet (brew.sh) <- will literally save
your life

● On linux and windows (Windows
Subsystem for Linux)

$ sudo apt-get install git

● It’s already on the andrew servers!

How to git Git- a visualization
Git workflow!

There are many different types
depending on your goals and
team.

Git branching workflow: (shown)

Every feature gets its own branch
when developers commit to this
workflow. Developers create a
branch, make changes, and then
merge it into main.

Gitting started with a repo

A Git repository (or repo
for short) contains all of
the project files and the
entire revision history.

What is a
repository?

Start in a project folder, then run:
git init

Created a .git sub folder that stores the
entire project history
(*Remember . is hidden so run ls -a to
see it!*)

How to make a repo

git status
1. You had some code that you already wrote for

this project
2. What is git doing with that?
3. We can check what git is doing by using:

a. $ git status
4. Two things to see here

a. No commits yet
i. What are commits?

b. Untracked files
i. What are those?
ii. Do we want to track them and why?

Tracking Files
1. Sometimes you have files you want git to keep

track of
a. Usually the code you work really hard to

write
2. There are also files you don’t want git to track

a. Compiled files, log files, etc.
3. Git won’t track anything that you haven’t told it

to
4. Git won’t track any changes unless you tell it to
5. Tell git to track a file or git it to track some

changes:
a. $ git add [path to changed file]

Commits: what are those?
1. Commits are a collection of changes that get

added to the graph
2. These are the snapshots that you are able to

jump between
3. You also get to write a message describing what

the changes you made were
4. You can commit by running:

a. $ git commit
i. Will open in some text editor (vim by

default) to write message
b. $ git commit -m “your message here”

i. Doesn’t open up anything

Init started

What’s the process we just did?
1. Make some changes

2. Stage those changes with git add
a. This moves your changes into what is called

the staging area
3. Commit those changes with git commit

a. Commits your changes onto the tree
4. Repeat and have great snapshots of your work!!

Git commands to git good!
Staging: what files do we want to
commit?

$ git add [path to file or folder]
$ git add .

We stage by using add!

Tells git to track a file
Tells git to track all files

Committing:

$ git commit
$ git commit -m “your message
here”

Commit files that are staged

Prompts you to write a message (vim)
You can write message directly!

$ git status check what git is doing with our files

● Commits
● Untracked files
● Changes not staged

Questions? Don’t worry
about push and pull right now!

:{

know

:)

git

:0

your

Gotta Git ‘Em All!

There is this tree thingy, how do i see it?
1. Great question!!

2. You can use a command
a. $ git log --graph --decorate
b. You can get out of git log by pressing “q”

3. You can see you’re entire commit history all the way
back to the git init

4. Do you notice the git hashes?
a. They look like this:

06a12a2465b78ca92f08aacf774cb98fda3c3519
b. They will be useful later

Init started we-love-gpi

Oops! I did it again…

Checks your previous commits
and lists them

“Reverts a commit” by making a new
commit with opposite changes!

git log
 git log --graph --decorate

git revert <commit-hash>

log rev

Are all these trees straight lines?
1. Yes

2. But you can change that by giving your trees branches
3. So by default there is one branch called master

a. When you commit you extend the branch you’re currently on
4. You keep track of where you currently are on the tree with the

HEAD
a. When you commit you move what your current branch

points to and therefore move the HEAD
b. HEAD always points to a branch

Init started we-love-gpi

master
HEAD

master

new commit

HEAD

Branching out?
1. You can make a branch from a commit with

a. $ git branch [branch name]
b. $ git checkout [branch name]

2. branch makes a new branch
3. checkout switches the head to point to that

branch

Init started we-love-gpi

master

new commit
HEAD

branch

Making branches
1. When you commit now you extend

the branch HEAD points to
2. All other branches don’t change

Init started we-love-gpi

master

new commit
HEAD

branch

commit on
branch

HEAD
branch

MerG it! Combining branches
1. Really nice thing about branches is you can have multiple

people working on different parts of the project at the same
time

2. They can do this without breaking each other’s versions of the
project

3. When they want to combine two branches you can:
a. $ git merge [branch you want to merge]

4. This makes a commit that both branches and HEAD point to

Splitting
commit

Commit on
branch

master

Merge
commit

master

branch

How to actually merge branches?
1. Merge the branches

a. $ git merge [branch name]
2. Check to see if there were any issues merging

a. $ git status
3. Fix all the conflicts

a. If there is a conflict in a file, git will surround the section
that needs to be fixed with >>>>>>> or <<<<<<<

b. You then need to combine those sections to finish the
merge

4. Stage and commit your changes
a. $ git add file1 file2 file3 …
b. $ git commit

5. Yay you merged two branches together

When do we get to time travel?

1. Right Now!!
2. To jump between commits you can use:

a. $ git checkout [branch name]
3. Use this to jump around between branches!!
4. What do you think this is doing with HEAD?
5. You can also checkout a commit with

a. $ git checkout [commit hash]
b. What branch are you on now?
c. You’re not, you have a detached head

branch

How to deal with a detached head?
1. Go to the hospital

2. You can make a new branch when you checkout the commit
a. $ git checkout -b [branch name]

3. If you are confused by branching, there are interactive
visualizations of branching and merging at:
a. learngitbranching.js.org

Helpful hints
● Before you start run ./setup.sh

● For the lab, this week’s lab is a git repo, but all of

our labs are in one git repo

● Git is smart enough to look for the closest .git

folder so do the lab in this labs folder, and then

commit all your changes from the gpi-labs folder

● Don't forget to commit and run driver between

stages!

● Remember that git branch will show you what

branch you're on and which branches exist

● Switch between branches using git checkout

● You can list your branches using
○ $ git branch l

● To revert to a commit:
○ $ git revert [commit hash]

● Always run the driver to make sure you’re on the

right track!!!

