
Git II

07-131 Great Practical Ideas
By: Lucy and Deepti

Pet Tax

GIT Review

What is git?

Version
control1. Keep track of previous work
Fix mistakes by reverting code

Centralized
workflow2. One main “copy” of the project
Clean way of keeping track

collaboration
3. Work with others on projects

Merge code (branches) with others

online
4. Examine others’ projects (if public repo)

*** Git is NOT for storing and
collaborating on projects online

But first

Adding and
commiting

$ git add .

$ git commit -m “message”

All things branches

switch

$ git checkout mybranch

create

$ git branch mybranch

merge

$ git merge thebranch

delete

$ git branch -d thebranch

← Both

$ git checkout -b mybranch

List branches

$ git branch

Code

The basic commands of git
** side note: we can use $ git status to check the
working tree of our repo
Everything else is the same as last week

Git 2.0

Undo actions
undo changes that weren’t committed

 git checkout <file_name>

unstage changes (after git add, before git commit)
 git reset HEAD <file_name> /

git reset <file_name>

remove commits by moving the HEAD pointer to
the commit specified:

git reset --hard HEAD~n (destructive)

git reset HEAD~n (changes from last n commits
remain in working directory)

git reset HEAD~n

git reset --hard HEAD~n

changes in last n
commits are

lost

Example 1

1 GPI is your favorite
class

$ vim what-is-gpi.txt

1 GPI is your class

:wq

How to undo changes that haven’t
been committed?

e324h89
“Initialized
repository”

HEAD ->
master

README.md
v1

Directory

README.md
what-is-gpi.txt

1 GPI is your favorite
class

$ vim what-is-gpi.txt

Answer: git checkout what-is-gpi.txt

Example 1
How to undo changes that haven’t

been committed?

e324h89
“Initialized
repository”

HEAD ->
master

README.md
v1

Directory

README.md
what-is-gpi.txt

Example 2
How to undo staging (tracking by

git) of changes?

e324h89
“Initialized
repository”

HEAD ->
master

README.md
v1

Directory

README.md
what-is-gpi.txt (tracking)

Answer:
git reset what-is-gpi.txt

Example 2
How to undo staging (tracking by

git) of changes?

e324h89
“Initialized
repository”

HEAD ->
master

README.md
v1

Directory

README.md
what-is-gpi.txt

Example 3
How to undo a commit without

losing changes?

Directory

README.md
what-is-gpi.txt

r3sdf28
“great practical

idling”

what-is-gpi.txt
v1

e324h89
“Initialized
repository”

README.md
v1

HEAD ->
master

Example 3
How to undo a commit without

losing changes?

Answer: git reset HEAD~1

Directory

README.md
what-is-gpi.txt

HEAD ->
master

r3sdf28
“great practical

idling”

what-is-gpi.txt
v1

e324h89
“Initialized
repository”

README.md
v1

Example 4
How to undo a commit while

obliterating changes?

r3sdf28
“a mistake”

git-is-GitHub.txt
v1

e324h89
“Initialized
repository”

README.md
v1

Directory

README.md
git-is-GitHub.txt

HEAD ->
master

Example 4
How to undo a commit while

obliterating changes?

HEAD ->
master

Answer: git reset --hard HEAD~1

Directory

README.md

e324h89
“Initialized
repository”

README.md
v1

Git Stash
Store staged/tracked changes since last commit

(will remove from working directory):

$ git stash

Seeing the stash:

git stash list

Retrieving changes from stash (will now appear in
working directory and as staged changes):

git stash apply stash@{n}

h234i2w
“treatise on empty

repos”

e324h89
“Initialized
repository”

HEAD ->
master

README.md
v1

README.md
v2

Example
How to commit changes to new file how-to-stash.txt

after first commit (e324h89)? There should be no trace
of the last commit. [Hint: 5 steps]

Directory

README.md
how-to-stash.txt

Directory

README.md
how-to-stash.txt (tracking)

Answer:
1. git add how-to-stash.txt

Example
How to commit changes to new file how-to-stash.txt

after first commit (e324h89)? There should be no trace
of the last commit. [Hint: 5 steps]

h234i2w
“treatise on empty

repos”

e324h89
“Initialized
repository”

README.md
v1

README.md
v2

HEAD ->
master

Answer:
1. git add how-to-stash.txt

2. git stash

Example
How to commit changes to new file how-to-stash.txt

after first commit (e324h89)? There should be no trace
of the last commit. [Hint: 5 steps]

h234i2w
“treatise on empty

repos”

e324h89
“Initialized
repository”

README.md
v1

README.md
v2

Directory

README.md

HEAD ->
master

Answer:
1. git add how-to-stash.txt

2. git stash
3. git reset --hard HEAD~1

HEAD ->
master

Example
How to commit changes to new file how-to-stash.txt

after first commit (e324h89)? There should be no trace
of the last commit. [Hint: 5 steps]

e324h89
“Initialized
repository”

README.md
v1

Directory

README.md

Answer:
1. git add how-to-stash.txt

2. git stash
3. git reset --hard HEAD~1

4. git stash apply stash

HEAD ->
master

Example
How to commit changes to new file how-to-stash.txt

after first commit (e324h89)? There should be no trace
of the last commit. [Hint: 5 steps]

e324h89
“Initialized
repository”

README.md
v1

Directory

README.md
how-to-stash.txt (tracking)

Answer:
1. git add how-to-stash.txt

2. git stash
3. git reset –hard HEAD~1
4. git stash apply stash

5. git commit -m “learnt stash”

h234i2w
“learnt stash”

how-to-stash.txt
v1

Directory

README.md
how-to-stash.txt

HEAD ->
master

e324h89
“Initialized
repository”

README.md
v1

Example
How to commit changes to new file how-to-stash.txt

after first commit (e324h89)? There should be no trace
of the last commit. [Hint: 5 steps]

reverting

- To check our commit history
$ git log

- To revert a previous commit
$ git revert commit-hash

- Different from reset!

- Makes a new commit for undone
changes (maintains existing commit
history)

- Does not require you to undo all past
commits until the wanted commit

r3sdf28
“great practical

idling”

what-is-gpi.txt
v1

e324h89
“Initialized
repository”

README.md
v1

Example
How to revert a commit?

Directory

README.md
what-is-gpi.txt

HEAD ->
master

f2h8w34
“Revert ‘great

practical idling’”

what-is-gpi.txt
v1

Example
How to revert a commit?

Answer: git revert r3sdf28

Directory

README.md

HEAD ->
master

r3sdf28
“great practical

idling”

what-is-gpi.txt
v1

e324h89
“Initialized
repository”

README.md
v1

rebase vs. merge

rebase

- moves branch to the tip
of another

- not as safe as merge
- please don’t do this on

public branches

merge

- new commit to “merge”
changes into the branch

- usually safer
- does not change existing

branches

rebase

git rebase <branch_to_base_on>

After rebase:
$ git checkout feature

$ git rebase main

After merge:
$ git checkout feature

$ git merge main

Before:

Example 1 - Original

sdf6ui2
“git has uses”

why-use-git.txt
v1

HEAD ->
master

r3sdf28
“great practical

idling”

what-is-gpi.txt
v1

e324h89
“Initialized
repository”

README.md
v1

al3j9r4
“learnt how to git

revert’”

what-is-revert.txt
v1

git-undo

tr2h34i
“learnt how to git

reset”

what-is-reset.txt
v1

Example 1 - Original

sdf6ui2
“git has uses”

why-use-git.txt
v1

HEAD ->
master

r3sdf28
“great practical

idling”

what-is-gpi.txt
v1

e324h89
“Initialized
repository”

README.md
v1

al3j9r4
“learnt how to git

revert’”

what-is-revert.txt
v1

git-undo

tr2h34i
“learnt how to git

reset”

what-is-reset.txt
v1

HEAD shows the branch
we’re currently on

Example 1 - Original

sdf6ui2
“git has uses”

why-use-git.txt
v1

HEAD ->
master

r3sdf28
“great practical

idling”

what-is-gpi.txt
v1

e324h89
“Initialized
repository”

README.md
v1

al3j9r4
“learnt how to git

revert’”

what-is-revert.txt
v1

git-undo

tr2h34i
“learnt how to git

reset”

what-is-reset.txt
v1

Example 1

sdf6ui2
“git has uses”

why-use-git.txt
v1

r3sdf28
“great practical

idling”

what-is-gpi.txt
v1

e324h89
“Initialized
repository”

README.md
v1

d8s73hw
“learnt how to git

revert’”

what-is-revert.txt
v1

hu723y2
“learnt how to git

reset”

what-is-reset.txt
v1

HEAD ->
git-undo

How to make it look like this?

master

Example 1 - rebase (good)

sdf6ui2
“git has uses”

why-use-git.txt
v1

r3sdf28
“great practical

idling”

what-is-gpi.txt
v1

e324h89
“Initialized
repository”

README.md
v1

HEAD ->
git-undo

$ git checkout git-undo

$ git rebase master

master

d8s73hw
“learnt how to git

revert’”

what-is-revert.txt
v1

hu723y2
“learnt how to git

reset”

what-is-reset.txt
v1

Example 2 - Original

sdf6ui2
“git has uses”

why-use-git.txt
v1

HEAD ->
master

r3sdf28
“great practical

idling”

what-is-gpi.txt
v1

e324h89
“Initialized
repository”

README.md
v1

al3j9r4
“learnt how to git

revert’”

what-is-revert.txt
v1

tr2h34i
“learnt how to git

reset”

what-is-reset.txt
v1

git-undo

f2h8w34
“Learnt rebase”

what-is-rebase.txt
v1

git-rebase

sdf6ui2
“git has uses”

Example 2 - rebase (bad)

d8s73hw
“git has uses”

why-use-git.txt
v1

HEAD ->
master

r3sdf28
“great practical

idling”

what-is-gpi.txt
v1

e324h89
“Initialized
repository”

README.md
v1

al3j9r4
“learnt how to git

revert’”

what-is-revert.txt
v1

tr2h34i
“learnt how to git

reset”

what-is-reset.txt
v1

git-undo

$ git rebase git-undo

f2h8w34
“Learnt rebase”

what-is-rebase.txt
v1

Still links to
old master

branch!

git-rebase

why-use-git.txt
v1

Diverging
histories -
bad as we

want to
maintain one
clean copy of

our project

Collaboration

Branches? Like a tree?

remotes

- These are basically copies of your repo stored in the cloud
- Default name: origin
- This enables collaboration, but you have to update it!!!
- Drawback: Hard to be consistent across versions

multiple remotes

You can have multiple remotes!

To check existing remotes:

$ git remote

The default name of a cloned remote is origin.

The -v flag shows the URLs linked to the remotes.

$ git remote add <name> <url>

Creating
a project

Two ways to access github

Github
desktop

Desktop app that’s easy to use,
but there is limited

functionality

Terminal /
command prompt

Great flexibility and speed
after knowing just a few

commands

Fill in corresponding information

It is good practice to add a
README.md to tell users about
your project and how to run it

This is in markdown

Under “code”, copy the link to your repo

To clone:

$ git clone github-link

This creates a new folder with
your github project

Updating your repo
Pushing:

$ git push <remote name> <remote branch>

When your local branch isn’t on the remote:

$ git push –-set-upstream <remote name> <remote
branch>

Pushing to current remote:

$ git push

Pulling:

$ git pull <remote name> <local branch>

Pulling current remote:

$ git pull

demo !

Fetch + merge = pull

- Fetch allows you to review the changes
before you merge your code with the
remote code

- It does not merge your code yet!
- $ git fetch <remote>

Forks

These are duplicate remotes of another remote giving you your own
private copy

Why use forks?
- You don’t have write permissions for the original remote
- You want to have one just for you to use while the original is for

your group

Pull requests (PR)

- If you want your changes to be merged into the og remote
version, make a PR!

- Just
1. Push your code
2. Go to the remote and make a PR

- The owner of the repo will then review your code and hopefully
merge your PR

Announcements

- No lecture in the next 2 weeks – happy break!
- Make sure to submit your username using

this form:
https://docs.google.com/forms/d/e/1FAIpQLS
eLIL8Q8xKph-dSL-TUAuQ3OrKUE9knvASjLwx
ier0pJjbSyg/viewform?usp=sf_link

- Feedback form:
https://forms.gle/wLZsrgcee1kFQ2Vs9

- Regardless of how many late days you have
left, all labs must be turned in by the hard
deadline of October 23rd. After this date,
unsubmitted labs will be marked as a 0.

Lab Clarifications

- When running “git status”
or “git diff”, do it inside the
“binsearch” directory

- If you have trouble
accessing github, let a TA
know!

- GitHub recently
implemented 2FA.. :’)
Search “github personal
access token” and follow
the StackOverflow link to
set this up

https://forms.gle/wLZsrgcee1kFQ2Vs9

