10-315

INSTRUCTIONS

- Due: Thursday, 30 April 2020 at 11:59 PM EDT.
- Format: Complete this pdf with your work and answers. Whether you edit the latex source, use a pdf annotator, or hand write / scan, make sure that your answers (tex'ed, typed, or handwritten) are within the dedicated regions for each question/part. If you do not follow this format, we may deduct points.
- How to submit: Submit a pdf with your answers on Gradescope. Log in and click on our class 10-315, click on the appropriate *Written* assignment, and upload your pdf containing your answers. Don't forget to submit the associated *Programming* component on Gradescope if there is any programming required.
- Policy: See the course website for homework policies and Academic Integrity.

Name	
Andrew ID	
Hours to complete (both written and programming)?	

For staff use only	
--------------------	--

Q1	Q2	Q3	Total
/10	/6	/12	/ 28

Q1. [10pts] Programming: Recommender Systems

The following questions should be completed after you work through the programming portion of this assignment.

After running matrix_factorization_alt_min with K=20, alpha=0.001, and num_epoch=200, which of the first 10 users (user indices 0-9) do you predict would rate The Lightning Thief (book index 6) the highest? Which would rate it the lowest? What are these respective ratings?

(a) [5pts] Which user would rate it the *highest*? What is the predicted rating?

User index:	Rating:

(b) [5pts] Which user would rate it the *lowest*? What is the predicted rating?

User index:	Rating:	

Q2. [6pts] Programming: K-means

The following questions should be completed after you work through the programming portion of this assignment.

(a) [2pts] K=2

Include the images of the cluster centers after running k-means with two clusters.

Centers K=2:

(b) [2pts] K=5

Include the images of the cluster centers after running k-means with five clusters.

Centers K=5:

(c) [2pts] K=10

Include the images of the cluster centers after running k-means with ten clusters.

Centers K=10:

4

Q3. [12pts] Programming: GMM

The following questions should be completed after you work through the programming portion of this assignment.

(a) [4pts] PCA

Include the plots of the toy dataset before and after running PCA with K=2.

PCA before and after:

Include the plots of the MNIST zeros and ones dataset after running PCA with K=2.

PCA MNIST:

(b) [4pts] GMM Toy Datasets

Include the plots of after learning the GMM parameters for K=2 on toy dataset one and two.

GMM Toy 1, K=2:	GMM Toy 2, K=2:

(c) [4pts] GMM MNIST Zeros and Ones

Include the plots of after learning the GMM parameters for K=2 and K=5 on the MNIST zeros and ones dataset.

GMM MNIST, K=2:	GMM MNIST, K=5: