Announcements

Coronavirus – COVID-19

- Take care of yourself and others around you
- Follow CMU and government guidelines
- We're "here" to help in any capacity that we can
- Use tools like zoom to communicate with each other too!

Zoom

- Let us know if you have issues
- Etiquette: Turn on video when talking or your turn in OH

Feedback: See Piazza post

Announcements

Assignments

- HW6 (written + programming)
 - Due Thu 3/26, 11:59 pm

HW7 (online) nex+ Tue

"Participation" Points

Polls open until 10 am (EDT) day after lecture

- "Calamity" option announced in recorded lecture
 - Don't select this calamity option or you'll lose credit for one poll (-1) rather than gaining credit for one poll (+1).
- Participation percent calculated as usual

Introduction to Machine Learning

Cross-Validation

Nonparametric Regression

Instructor: Pat Virtue

Validation

Why do we need validation?

- Choose hyperparameters
- Choose technique
- Help make any choices beyond our parameters

But now, we have another choice to make!

How do we split training and validation?

Trade-offs

- More held-out data, better meaning behind validation numbers
- More held-out data, less data to train on!

Cross-validation

K-fold cross-validation

Create K-fold partition of the dataset.

Do K runs: train using K-1 partitions and calculate validation error on remaining partition (rotating validation partition on each run). Report average validation error

Cross-validation

Leave-one-out (LOO) cross-validation

Special case of K-fold with K=N partitions Equivalently, train on N-1 samples and validate on only one sample per run for N runs

_		Total number of examples	☐ trainir	ng validation
	Run 1	9		
	Run 2			
		•		
	Run K			Slide credit: CMU MLD Aarti Singh

Cross-validation

Random subsampling

Randomly subsample a fixed fraction αN (0< α <1) of the dataset for validation.

Compute validation error with remaining data as training data.

Repeat K times

Practical Issues in Cross-validation

How to decide the values for K and α ?

- Large K
 - + Validation error can approximate test error well
 - -Observed validation error will be unstable (few validation pts) small <The computational time will be very large as well (many experiments)
- Small K
 - + The # experiments and, therefore, computation time are reduced
 - + Observed validation error will be stable (many validation pts)
 - Validation error cannot approximate test error well

Common choice: K = 10, α = 0.1 \odot

Piazza Poll 1

Say you are choosing amongst 10 values of lambda, and you want to do K=10 fold cross-validation.

How many times do I have to train my model?

$$X0 \in Calanity$$
 for X in $[0.1...100]$ 10
B. 1
C. 10 for $K=[...10]$

E. 100

D. 20

Reminder: Parametric models

Assume some model (Gaussian, Bernoulli, Multinomial, logistic, network of logistic units, Linear, Quadratic) with fixed number of parameters

■ Linear/Logistic Regression, Naïve Bayes, Discriminant Analysis, Neural Networks

Estimate parameters $(\mu, \sigma^2, \theta, w, \beta)$ using MLE/MAP and plug in

Pro – need fewer data points to learn parameters

Con – Strong distributional assumptions, not satisfied in practice

Reminder: Nonparametric models

Nonparametric: number of parameters scales with number of training data

- Typically don't make any distributional assumptions
- As we have more data, we should be able to learn more complex models

Example

Nearest Neighbor (k-Nearest Neighbor) Classifier

Piazza Poll 2

Are decision trees parametric or non-parametric?

- X Calanity
- B. Parametric
- C. Nonparametric

Piazza Poll 2

Are decision trees parametric or non-parametric?

It depends:)

- If no limits on depth or reuse of attributes, then non-parametric
 - Model complexity will grow with data
- If pruned/limited to fix size
 - Parametric
- If attributes only used once
 - Parametric; model complexity is limited by number of features

Trade-offs

- Non-parametric methods have very powerful representation capabilities
- But
 - Easily overfit
 - Can take up memory proportional to training size too

Decision Trees

Dyadic decision trees

(split on mid-points of features)

How to assign label to each leaf

Classification – Majority vote

Regression – Constant/Linear/Poly fit

Decision Trees

Decision Trees

Medicat Decision Tree Progress

$\hat{y} = h(x)$

Nearest Neighbor

Kernel Regression

$$\hat{y} = h(x)$$

$$= \sum_{i} \alpha_{i} k(x, x^{(i)})$$

$$\int_{x^{(i)}} \int_{x^{(i)}} x^{(i)} dx$$

Kernel Regression

$$K(x, x') = e^{-\frac{\|x - x'\|_{2}^{2}}{20^{2}}}$$

$$= e^{-\frac{\|x - x'\|_{2}^{2}}{20^{2}}}$$

$$= e^{-\frac{1}{2}}$$

RBF kernel and corresponding hypothesis function

unction)

Distance kernel (Gaussian / Radial Basis Function)

- Close to point should be that point
 - Far should be zero
 - Mini Gaussian window

$$k(x,x') = e^{\frac{-\|x-x'\|_{2}^{2}}{2\sigma^{2}}} = e^{-\gamma \|x-x'\|_{2}^{2}}$$

■ We control the variance

RBF kernel and corresponding hypothesis function

Prediction?

- Weighted sum of these little windows
 - $\hat{y} = h(x) = \sum_{i} \alpha_{i} k(x, x^{(i)})$
 - What should α_i be?
 - $\bullet \alpha_i = y_i, \alpha = y$?
 - Need to account for points that are close together

RBF kernel and corresponding hypothesis function

Prediction?

- Weighted sum of these little windows
 - $\hat{y} = h(x) = \sum_{i} \alpha_{i} k(x, x^{(i)})$
 - What should α_i be?
 - $\bullet \alpha_i = y_i, \alpha = y$?
 - Need to account for points that are close together

RBF kernel and corresponding hypothesis function

Prediction?

Weighted sum of these little windows

$$\hat{y} = h(x) = \sum_{i} \alpha_{i} k(x, x^{(i)})$$

■ What should α_i be?

- $\rightarrow \alpha_i = y_i, \alpha = y$?
 - Need to account for points that are close together

RBF kernel and corresponding hypothesis function

Prediction?

- Weighted sum of these little windows
 - $\hat{y} = h(x) = \sum_{i} \alpha_{i} k(x, x^{(i)})$
 - What should α_i be?
 - Need to account for points that are close together

RBF kernel and corresponding hypothesis function

Prediction?

- Weighted sum of these little windows
 - $\hat{y} = h(x) = \sum_{i} \alpha_{i} k(x, x^{(i)})$
 - What should α_i be?
 - Need to account for points that are close together

$$\hat{\alpha} = (K)^{-1}\hat{y}$$
 density training

$$\alpha = (K + \lambda I)^{-1} y$$

 $\hat{\alpha} = (K + \underline{\lambda}I)^{-1}\underline{y}$ where $K_{ij} = k(\underline{x}^{(i)}, \underline{x}^{(j)})$ and 2 is small to help inversion

Kernelized Linear Regression

Reminder: Polynomial Linear Regression

Polynomial feature function

Least squares formulation

Least squares solution

Reminder: Polynomial Linear Regression

Polynomial feature function

Least squares formulation

$$= \min_{w} \|y - \Phi w\|_2^2$$

Least squares solution

Plus L2 regularization

$$= \min_{w} \|y - \Phi w\|_{2}^{2} + \lambda \|w\|_{2}^{2}$$

$$w = \left(\Phi^T \Phi + \lambda I\right)^{-1} \Phi^T y$$

Can rewrite as

$$w = \Phi^T (\Phi \Phi^T + \lambda I)^{-1} y$$

Kernelized Linear Regression

$$\Phi \in \mathbb{R}^{N \times (d+1)}$$

L2 regularized linear regression (with feature function)

$$k(x,x') = \phi(x)^T \phi(x')$$

$$w = (\Phi^T \Phi + \lambda I)^{-1} \Phi^T y$$

Can rewrite as

Prediction

$$\hat{y} = h(x) = w^{T}x \quad w^{T} \phi(x)$$

$$= \phi(x)^{T} \omega$$

$$= \phi(x)^{T} \phi^{T} \alpha$$

Let
$$\alpha = (\Phi \Phi^T + \lambda I)^{-1} \mathbf{y}$$

$$\alpha = (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y}$$

$$\mathbf{K} = \mathbf{K} (\mathbf{x}^{(i)}, \mathbf{x}^{(i)})$$