Announcements

Assignments

- HW6 (written + programming)
	- \blacksquare Due Thu 3/26, 11:59 pm
- HW7 (online)
	- Out later tonight
	- Due Tue 3/31, 11:59 pm

Introduction to Machine Learning

Support Vector Machines

Instructor: Pat Virtue

Linear Classification

Max Margin

Linear Program

- min $\boldsymbol{\chi}$ $\boldsymbol{c}^T\boldsymbol{x}$
	- s.t. $Ax \leq b$

Linear Program

min $\boldsymbol{\chi}$ $\boldsymbol{c}^T\boldsymbol{x}$ s.t. $Ax \leq b$

Solvers

- **E** Simplex
- Interior point methods

Figure: Fig 11.2 from Boyd and Vandenberghe, *Convex Optimization*

Linear Program

min $\boldsymbol{\chi}$ $\boldsymbol{c}^T\boldsymbol{x}$

s.t. $Ax \leq b$

Quadratic Program min $\boldsymbol{\chi}$ $\bm{\mathbf{x}}^T\bm{Q}\bm{\mathbf{x}}+\bm{c}^T\bm{\mathbf{x}}$ s.t. $Ax \leq b$

Solvers

- Simplex
- Interior point methods

Linear Program

min $\boldsymbol{\chi}$ $\boldsymbol{c}^T\boldsymbol{x}$

s.t. $Ax \leq b$

Solvers

- Simplex
- Interior point methods

Quadratic Program min $\boldsymbol{\mathcal{X}}$ $\bm{\mathbf{x}}^T\bm{Q}\bm{\mathbf{x}}+\bm{c}^T\bm{\mathbf{x}}$ s.t. $Ax \leq b$

Solvers

- Conjugate gradient
- Ellipsoid method
- Interior point methods

Linear Program

min $\boldsymbol{\chi}$ $\boldsymbol{c}^T\boldsymbol{x}$ s.t. $Ax \leq b$

Solvers

- Simplex
- Interior point methods

Quadratic Program min $\boldsymbol{\chi}$ $\bm{\mathbf{x}}^T\bm{Q}\bm{\mathbf{x}}+\bm{c}^T\bm{\mathbf{x}}$ s.t. $Ax \leq b$

Special Case

- \blacksquare If **Q** is positive-definite, the problem is convex
- \blacksquare **Q** is positive-definite if: $\bm{v}^T\bm{Q}\bm{v}>0~~~\forall~\bm{v}\in\mathbb{R}^M\backslash{\bm 0}$

Convex Optimization

Linear function

If $f(x)$ is linear, then:

- $f(x + z) = f(x) + f(z)$
- $f(\theta x) = \theta f(x) \quad \forall \theta$
- \bullet $f(\theta x + (1 \theta)z) = \theta f(x) + (1 \theta)f(z) \quad \forall \theta$

Convex Optimization

Convex function

If $f(x)$ is convex, then:

■ $f(\theta x + (1 - \theta)z) \leq \theta f(x) + (1 - \theta)f(z)$ \forall 0 ≤ θ ≤ 1

Convex optimization

If $f(x)$ is convex, then:

■ Every local minimum is also a global minimum ☺

Linear Program

min $\boldsymbol{\chi}$ $\boldsymbol{c}^T\boldsymbol{x}$ s.t. $Ax \leq b$

Solvers

- Simplex
- Interior point methods

Quadratic Program min $\boldsymbol{\chi}$ $\bm{\mathbf{x}}^T\bm{Q}\bm{\mathbf{x}}+\bm{c}^T\bm{\mathbf{x}}$ s.t. $Ax \leq b$

Special Case

- \blacksquare If **Q** is positive-definite, the problem is convex
- \blacksquare **Q** is positive-definite if: $\bm{v}^T\bm{Q}\bm{v}>0~~~\forall~\bm{v}\in\mathbb{R}^M\backslash{\bm 0}$

Quadratic Program $1.0 -$ **SICO** \mathbb{L} **POOR** 2.000 **POSITION** $0.5 -$ **HICOCO** 0.0 O_{OC} $-0.5 \overline{}$ $-1.0 -0.5$ 0.5 $\overline{1.0}$ -1.0 0.0

Quadratic Program $1.0 -$ **SICO** L **POSTA POOL POSITION** $0.5 -$ **HISOSI** 0.0 O_{COC} $-0.5 \overline{}$ -1.0 -1.0 -1.0 -0.5 0.5 $\overline{1.0}$ 0.0

Quadratic Program $1.0 -$ **SICO** L **POSTA P.OOC POSITION** $0.5 -$ **HISOSI** 0.0 O_{COC} $-0.5 \overline{}$ -1.0 -1.0 -1.0 -0.5 0.5 $\overline{1.0}$ 0.0

Find linear separator with maximum margin

(Lecture 5) Poll

Which vector is the correct w ? $y = \boldsymbol{w}^T \boldsymbol{x} + b$

 X_{2} $x,$ $y = c$ \bigvee \bigvee $=$ \bigwedge

Piazza Poll 1

As the magnitude of w increases, will the distance between the contour lines of $y = w^T x + b$ increase or decrease?

Find linear separator with maximum margin

Linear Separability

Data

$$
\mathcal{D} = \{x^{(i)}, y^{(i)}\}_{i=1}^N \quad x \in \mathbb{R}^M, \ \ y \in \{-1, +1\}
$$

Linearly separable iff:

$$
\exists w, b
$$
 s.t. $w^T x^{(i)} + b > 0$ if $y^{(i)} = +1$ and
 $w^T x^{(i)} + b < 0$ if $y^{(i)} = -1$

Linear Separability

Data

$$
\mathcal{D} = \{x^{(i)}, y^{(i)}\}_{i=1}^N \quad x \in \mathbb{R}^M, \ \ y \in \{-1, +1\}
$$

Linearly separable iff:

$$
\exists w, b \qquad s.t. \quad w^T x^{(i)} + b > 0 \quad \text{if} \quad y^{(i)} = +1 \quad \text{and}
$$
\n
$$
w^T x^{(i)} + b < 0 \quad \text{if} \quad y^{(i)} = -1
$$
\n
$$
\Leftrightarrow \exists w, b \qquad s.t. \quad y^{(i)} \big(w^T x^{(i)} + b \big) > 0
$$
\n
$$
\Leftrightarrow \exists w, b, c \quad s.t. \quad y^{(i)} \big(w^T x^{(i)} + b \big) \geq c \quad \text{and} \quad c > 0
$$
\n
$$
\Leftrightarrow \exists w, b \qquad s.t. \quad y^{(i)} \big(w^T x^{(i)} + b \big) \geq 1
$$

Piazza Poll 2

Are these to statements equivalent? $\exists w, b, c \text{ s.t. } y^{(i)}(w^T x^{(i)} + b) \ge c \text{ and } c > 0$ $\exists w, b \quad s.t. \quad y^{(i)}(w^T x^{(i)} + b) \ge 1$

Linear Separability

Data

$$
\mathcal{D} = \{x^{(i)}, y^{(i)}\}_{i=1}^N \quad x \in \mathbb{R}^M, \ \ y \in \{-1, +1\}
$$

Linearly separable iff:

$$
\exists w, b \qquad s.t. \quad w^T x^{(i)} + b > 0 \quad \text{if} \quad y^{(i)} = +1 \quad \text{and}
$$
\n
$$
w^T x^{(i)} + b < 0 \quad \text{if} \quad y^{(i)} = -1
$$
\n
$$
\Leftrightarrow \exists w, b \qquad s.t. \quad y^{(i)} \big(w^T x^{(i)} + b \big) > 0
$$
\n
$$
\Leftrightarrow \exists w, b, c \quad s.t. \quad y^{(i)} \big(w^T x^{(i)} + b \big) \geq c \quad \text{and} \quad c > 0
$$
\n
$$
\Leftrightarrow \exists w, b \qquad s.t. \quad y^{(i)} \big(w^T x^{(i)} + b \big) \geq 1
$$

Find linear separator with maximum margin

Let x_+ and x_- be hypothetical points on the +/- margin from the decision boundary

$$
\exists w, b \qquad s.t. \quad y^{(i)}(w^T x^{(i)} + b) \ge 1
$$

\n
$$
\Leftrightarrow \exists w, b \qquad s.t. \quad w^T x_+ + b \ge +1 \quad \text{and}
$$

\n
$$
w^T x_- + b \le -1
$$

Consider the vector from x_+ to x_+ and its projection onto the vector w :

Find linear separator with maximum margin

 $\max_{w,b}$ "width"

s.t. $y^{(i)}(w^T x^{(i)} + b) \ge 1 \quad \forall i$

Find linear separator with maximum margin

arg max w, b width ⇔ argmax w, b 2 $w\|_2$ ⇔ argmin w,b $\frac{1}{2}$ $\left.w\right\|_2$ \Leftrightarrow argmin w,b $\frac{1}{2}$ $\|w\|_2^2$ ⇔ argmin w,b $\frac{1}{2}$ $\boldsymbol{w}^T\boldsymbol{w}$

SVM Optimization

Quadratic program!

$$
\min_{\mathbf{w}, \mathbf{b}} \quad \frac{1}{2} \mathbf{w}^T \mathbf{w}
$$
\ns.t.

\n
$$
y^{(i)} \left(\mathbf{w}^T \mathbf{x}^{(i)} + b \right) \ge 1 \quad \forall \ i
$$

Quadratic Program \min_{x} $\boldsymbol{x}^T\boldsymbol{Q}\boldsymbol{x} + \boldsymbol{c}^T\boldsymbol{x}$ s.t. $Ax \leq b$

SVM Optimization

How did we go from maximizing margin to minimizing $||w||_2$?

Note: We added $y = \pm 1$ to the function to make any correct classification have an f(**x**, y) > 0

What happens to the value of f(**x**, y) if we scale θ?

With $f(x, y) = 1$ for the support vector points, $f(x^i, y^i) \ge 1$ for all points

Although f(**x**, y) is dependent on the magnitude of θ, we define the margin by the Euclidean distance (normalized by the magnitude of θ)

distance from the hyperplane to the support vector points

$$
\gamma = \min_{i} \frac{y^i \theta \cdot x^i}{\|\theta\|}
$$

Our decision to make $f(x, y) = 1$ for the support vector points, helps to simplify the definition of margin

For support vectors,

 $f(x,y) = y \theta \cdot x = 1$

The minimum in the margin equation is realized by the support vectors. Thus: $\gamma = \min_i \frac{y^i \theta \cdot x^i}{\|\theta\|}$

becomes

$$
\gamma = \frac{1}{||\theta||}
$$

Now, we can finally get to optimization

We want to maximize the margin, while still making sure that all points are on the correct side of the margin: $f(x^i, y^i) \ge 1$

The margin is now fixed to the locations where $f(x,y) = y(\theta \cdot x) = 1$

Now, let's see what happens when we scale θ

