
Announcements
Assignments

▪ HW6 (written + programming)

▪ Due Thu 3/26, 11:59 pm

▪ HW7 (online)

▪ Out later tonight

▪ Due Tue 3/31, 11:59 pm



Introduction to 
Machine Learning

Support Vector Machines

Instructor: Pat Virtue



Support Vector Machines
Linear Classification
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Support Vector Machines
Max Margin
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Constrained Optimization
Linear Program

min
𝒙

𝒄𝑇𝒙

s.t. 𝑨𝒙 ⪯ 𝒃



Constrained Optimization
Linear Program

min
𝒙

𝒄𝑇𝒙

s.t. 𝑨𝒙 ⪯ 𝒃

Solvers

▪ Simplex

▪ Interior point methods

Figure: Fig 11.2 from Boyd and Vandenberghe, Convex Optimization
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Constrained Optimization
Linear Program

min
𝒙

𝒄𝑇𝒙

s.t. 𝑨𝒙 ⪯ 𝒃

Solvers

▪ Simplex

▪ Interior point methods

Quadratic Program

min
𝒙

𝒙𝑇𝑸𝒙 + 𝒄𝑇𝒙

s.t. 𝐴𝒙 ⪯ 𝒃

Solvers

▪ Conjugate gradient

▪ Ellipsoid method

▪ Interior point methods



Constrained Optimization
Linear Program

min
𝒙

𝒄𝑇𝒙

s.t. 𝑨𝒙 ⪯ 𝒃

Solvers

▪ Simplex

▪ Interior point methods

Quadratic Program

min
𝒙

𝒙𝑇𝑸𝒙 + 𝒄𝑇𝒙

s.t. 𝐴𝒙 ⪯ 𝒃

Special Case

▪ If 𝑸 is positive-definite, the 
problem is convex

▪ 𝑸 is positive-definite if:
𝒗𝑇𝑸𝒗 > 0 ∀ 𝒗 ∈ ℝ𝑀\𝟎



Convex Optimization
Linear function

If 𝑓(𝒙) is linear, then:

▪ 𝑓 𝒙 + 𝒛 = 𝑓 𝒙 + 𝑓 𝒛

▪ 𝑓 𝜃𝒙 = 𝜃𝑓 𝒙 ∀ 𝜃

▪ 𝑓 𝜃𝒙 + 1 − 𝜃 𝒛 = 𝜃𝑓 𝒙 + 1 − 𝜃 𝑓 𝒛 ∀ 𝜃



Convex Optimization
Convex function

If 𝑓(𝒙) is convex, then:

▪ 𝑓 𝜃𝒙 + 1 − 𝜃 𝒛 ≤ 𝜃𝑓 𝒙 + 1 − 𝜃 𝑓 𝒛 ∀ 0 ≤ 𝜃 ≤ 1

Convex optimization

If 𝑓(𝒙) is convex, then:

▪ Every local minimum is also a 
global minimum ☺



Constrained Optimization
Linear Program

min
𝒙

𝒄𝑇𝒙

s.t. 𝑨𝒙 ⪯ 𝒃

Solvers

▪ Simplex

▪ Interior point methods

Quadratic Program

min
𝒙

𝒙𝑇𝑸𝒙 + 𝒄𝑇𝒙

s.t. 𝐴𝒙 ⪯ 𝒃

Special Case

▪ If 𝑸 is positive-definite, the 
problem is convex

▪ 𝑸 is positive-definite if:
𝒗𝑇𝑸𝒗 > 0 ∀ 𝒗 ∈ ℝ𝑀\𝟎



Quadratic Program

13Slide credit: CMU MLD Matt Gormley
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Quadratic Program
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Quadratic Program
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Support Vector Machines
Find linear separator with maximum margin



(Lecture 5) Poll
Which vector is the correct 𝒘?

𝑦 = 𝒘𝑇𝒙 + 𝑏



Piazza Poll 1
As the magnitude of w increases, will the distance between the contour 
lines of 𝑦 = 𝒘𝑇𝒙 + 𝑏 increase or decrease?



Support Vector Machines
Find linear separator with maximum margin

x1

x2

x1

x2

x1

x2



Linear Separability
Data

𝒟 = 𝒙 𝑖 , 𝑦 𝑖
𝑖=1

𝑁
𝒙 ∈ ℝ𝑀 , 𝑦 ∈ {−1,+1}

Linearly separable iff:

∃ 𝒘, 𝑏 𝑠. 𝑡. 𝒘𝑇𝒙(𝑖) + 𝑏 > 0 if 𝑦(𝑖) = +1 and 

𝒘𝑇𝒙(𝑖) + 𝑏 < 0 if 𝑦(𝑖) = −1

Slide credit: CMU MLD Matt Gormley



Linear Separability
Data

𝒟 = 𝒙 𝑖 , 𝑦 𝑖
𝑖=1

𝑁
𝒙 ∈ ℝ𝑀 , 𝑦 ∈ {−1,+1}

Linearly separable iff:

∃ 𝒘, 𝑏 𝑠. 𝑡. 𝒘𝑇𝒙(𝑖) + 𝑏 > 0 if 𝑦(𝑖) = +1 and 

𝒘𝑇𝒙(𝑖) + 𝑏 < 0 if 𝑦(𝑖) = −1

⇔ ∃𝒘, 𝑏 𝑠. 𝑡. 𝑦(𝑖) 𝒘𝑇𝒙(𝑖) + 𝑏 > 0

⇔ ∃𝒘, 𝑏, 𝑐 𝑠. 𝑡. 𝑦 𝑖 𝒘𝑇𝒙 𝑖 + 𝑏 ≥ 𝑐 and 𝑐 > 0

⇔ ∃𝒘, 𝑏 𝑠. 𝑡. 𝑦 𝑖 𝒘𝑇𝒙 𝑖 + 𝑏 ≥ 1

Slide credit: CMU MLD Matt Gormley



Piazza Poll 2
Are these to statements equivalent?

∃ 𝒘, 𝑏, 𝑐 𝑠. 𝑡. 𝑦 𝑖 𝒘𝑇𝒙 𝑖 + 𝑏 ≥ 𝑐 and 𝑐 > 0

∃ 𝒘, 𝑏 𝑠. 𝑡. 𝑦 𝑖 𝒘𝑇𝒙 𝑖 + 𝑏 ≥ 1
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Slide credit: CMU MLD Matt Gormley



Support Vector Machines
Find linear separator with maximum margin

Let 𝒙+and 𝒙− be hypothetical points on the +/- margin 
from the decision boundary

∃ 𝒘, 𝑏 𝑠. 𝑡. 𝑦 𝑖 𝒘𝑇𝒙 𝑖 + 𝑏 ≥ 1

⇔ ∃𝒘, 𝑏 𝑠. 𝑡. 𝒘𝑇𝒙+ + 𝑏 ≥ +1 and

𝒘𝑇𝒙− + 𝑏 ≤ −1

Consider the vector from 𝒙− to 𝒙+ and its      
projection onto the vector 𝒘:



Support Vector Machines
Find linear separator with maximum margin

max
𝒘,𝒃

"width"

s.t. 𝑦 𝑖 𝒘𝑇𝒙 𝑖 + 𝑏 ≥ 1 ∀ 𝑖

𝑤𝑖𝑑𝑡ℎ =
𝒘𝑇

𝒘 2
(𝒙+- 𝒙−)



Support Vector Machines
Find linear separator with maximum margin

argmax
𝒘,𝒃

width

width =
2

𝑤 2



Support Vector Machines
Find linear separator with maximum margin

argmax
𝒘,𝒃

width

⇔ argmax
𝒘,𝒃

2

𝒘 2

⇔ argmin
𝒘,𝒃

1

2
𝒘 2

⇔ argmin
𝒘,𝒃

1

2
𝒘 2

2

⇔ argmin
𝒘,𝒃

1

2
𝒘𝑇𝒘

width =
2

𝒘 2



SVM Optimization
Quadratic program!

min
𝒘,𝒃

1

2
𝒘𝑇𝒘

s.t. 𝑦 𝑖 𝒘𝑇𝒙 𝑖 + 𝑏 ≥ 1 ∀ 𝑖

Quadratic Program
min
𝒙

𝒙𝑇𝑸𝒙 + 𝒄𝑇𝒙

s.t. 𝐴𝒙 ⪯ 𝒃



SVM Optimization
How did we go from maximizing margin to minimizing 𝒘 2? 



Find a θ vector that causes f(x) to separate the data in to 
positive and negative based on class

x1

x2

Note: We added y = ±1 to the function to make any correct 
classification have an f(x, y) > 0

θ



Given θ, what is the value of f(x, y)
for the points closest to the hyperplane?

x1

x2

Closest positive point 
(a support vector)
x = [6; -1], y = 1

θ



What happens to the value of f(x, y) if we scale θ?

x1

x2

The value of f(x, y) increases even though the 
hyperplane does not change

Closest positive point 
(a support vector)
x = [6; -1], y = 1

θ



We can scale θ, such that f(x, y) = 1 for 
the support vector points

x1

x2

Closest positive point 
(a support vector)
x = [6; -1], y = 1

θ



With f(x, y) = 1 for the support vector points,
f(xi, yi) ≥ 1 for all points

x1

x2



Although f(x, y) is dependent on the magnitude of θ,
we define the margin by the Euclidean distance

(normalized by the magnitude of θ)

x1

x2 Margin γ is the 
distance from the 
hyperplane to the 

support vector points 



Our decision to make f(x, y) = 1 for the support vector 
points, helps to simplify the definition of margin

For support vectors,

The minimum in the 
margin equation is 

realized by the 
support vectors. Thus:

becomes

x1

x2



Now, we can finally get to optimization

We want to maximize the margin, while still
making sure that all points are on the correct

side of the margin: f(xi, yi) ≥ 1 

From the 
previous slide

Invert the 
objective to 

switch from max 
to min



x1

x2

x1

x2

x1

x2

The margin is now fixed to the locations where

Now, let’s see what happens when we scale θ


