
10-315: Introduction to Machine Learning Recitation 2

1 The Jacobian matrix

In the last recitation, we solved a few problems with gradients, which are defined for functions that have
vector input and scalar output. Now consider a function f : RN → RM which takes a vector x ∈ RN and
outputs a vector f(x) ∈ RM . The gradient doesn’t make much sense here since there are multiple outputs.
In fact, since each output fi could be a function of each input xj , there is a partial derivative for each
combination of fi and xj . This is the intuition for the Jacobian matrix ∂f

∂x , whose (i,j)th entry is defined to

be ∂fi
∂xj

. Since i refers to the output vector and j refers to the input vector, ∂f
∂x has shape MxN.

1. To make this idea more concrete, let’s find the Jacobian for a few functions. Let f(x) = Ax where
A ∈ RMxN and x ∈ RN .

(a) What is the shape of ∂f
∂x?

The shape is MxN because the output has dimension M and the input has dimension N.

(b) Express fi in terms of Ai,: (the ith row of A) and x. Write this in summation form as well.

fi = Ai,:x. This is equivalent to
∑N

j=1Ai,jxj .

(c) What is ∂fi
∂xj

?

Since fi =
∑N

j=1Ai,jxj , then ∂fi
∂xj

= Ai,j .

(d) What is ∂f
∂x? Does this coincide with your intuition based on scalar calculus?

Since ( ∂f
∂x )i,j = ∂fi

∂xj
= Ai,j , then ∂f

∂x = A.

2. Let f(x) = −x where x ∈ RN .

(a) What is the shape of ∂f
∂x?

Since the input and output are both N-dimensional, the Jacobian has shape NxN.

(b) What is ∂fi
∂xi

?

∂fi
∂xi

= ∂
∂xi
−xi = −1.

(c) What is ∂fi
∂xj

where i 6= j?

∂fi
∂xj

= ∂
∂xj
−xi = 0.

(d) What is ∂f
∂x? Does this coincide with your intuition based on scalar calculus?

Since the diagonal is all -1’s, and everything else is 0, then ∂f
∂x = −I.
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3. Let f(x) = xTx where x ∈ RN .

(a) What is the shape of ∂f
∂x?

Since the output is 1-dimensional and the output is N-dimensional, the Jacobian has shape 1xN.
This is a row vector of length N.

(b) Express f in summation form.

f(x) =
∑N

i=1 x
2
i .

(c) What is ∂f
∂xi

?

∂f
∂xi

= ∂
∂xi

x2i = 2xi.

(d) What is ∂f
∂x?

Since (∂f
∂x )1,i = ∂f

∂xi
= 2xi, then ∂f

∂x = 2xT .

(e) What is the gradient of f with respect to x? What does this suggest about the relationship
between the gradient and the Jacobian?

The gradient of f is 2x, and the Jacobian is 2xT . This suggests that the gradient is the transpose
of the Jacobian.
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2 Closed-form solution to linear regression

Armed with our understanding of Jacobian matrices, we will now find the closed-form matrix solution to
linear regression using the chain rule. Recall the quantity we are trying to minimize is J(w) = 1

2 ||y−Xw||22,
where X ∈ RN×M . This can be modeled as a composition of three functions:

f1(w) = Xw

f2(f1) = y− f1

f3(f2) = ||f2||22

J(w) = f3(f2(f1(w)))

1. Using the chain rule, what is ∂J
∂w in terms of the derivatives of the three functions?

Working from outer to inner, the derivative is 1
2
∂f3
∂f2

∂f2
∂f1

∂f1
∂w .

2. What is ∂f3
∂f2

? What is its shape?

From question 1.3, the answer is 2fT2 = 2(y−Xw)T . The shape is 1xN because the output has dimension
1 and the input has dimension N.

3. What is ∂f2
∂f1

? What is its shape?

Since y is a constant, the derivative is 0, and as for −f1, the derivative is −I (see question 1.2). The
shape is NxN because the output and input both have dimension N.

4. What is ∂f1
∂w? What is its shape?

From question 1.1, the answer is X. The shape is NxM because the output has dimension N and the
input has dimension M.

5. What is ∂J
∂w? What is its shape?

1

2

∂f3
∂f2

∂f2
∂f1

∂f1
∂w

=
1

2
(2(y−Xw)T )(−I)(X) = (y−Xw)T (−1)(IX) = (Xw− y)TX

The three shapes are (1XN),(NxN),(NxM), so multiplying all these together the shape is 1xM.

6. What is the optimal w?

We will set ∂J
∂w equal to 0:

(Xw− y)TX = 0

(wTXT − yT )X = 0

wTXTX− yTX = 0

wTXTX = yTX

XTXw = XTy

w = (XTX)−1XTy
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3 Gaussian Distribution

Review: 1-D Gaussian Distribution

The probability density function of N (µ, σ2) is given by:

p(x;µ, σ2) =
1√

2πσ2
exp

[
− 1

2σ2
(x− µ)2

]

Multivariate Gaussian Distribution

The multivariate Gaussian distribution in M dimensions is parameterized by a mean vector µ ∈ RM and a
covariance matrix Σ ∈ RM×M , where Σ is a symmetric and positive-definite. This distribution is denoted
by N (µ,Σ), and its probability density function is given by:

p(x;µ,Σ) =
1√

(2π)M |Σ|
exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]
where |Σ| denotes the determinant of Σ.

Let X = [X1, X2, ..., Xm]T be a vector-valued random variable where X = [X1, X2, ..., Xm]T ∼ N (µ,Σ).
Then, we have:

Σ = Cov[X] =


Cov[X1, X1] = V ar[X1] Cov[X1, X2] . . . Cov[X1, XM ]

Cov[X2, X1] Cov[X2, X2] = V ar[X2] . . . Cov[X2, XM ]
...

...
. . .

...
Cov[XM , X1] Cov[XM , X2] . . . Cov[XM , XM ] = V ar[XM ]


Note: Any arbitrary covariance matrix is positive semi-definite. However, since the pdf of a multivariate

Gaussian requires Σ to have a strictly positive determinant, Σ has to be positive definite.

In order to get get an intuition for what a multivariate Gaussian is, consider the simple case where M = 2.
Then, we have:

X =

[
X1

X2

]
µ =

[
µ1

µ2

]
Σ =

[
σ2
1 Cov[X1, X2]

Cov[X1, X2] σ2
2

]
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1. For each surface plot, (1) find the corresponding contour plot (2) use the plotting tool provided to find
the parameter(µ,Σ) of the distribution.

(a)→ (z) (b)→ (y) (c)→ (x)

µ =

[
0

2.5

]
µ =

[
0

2.5

]
µ =

[
2.5
−2

]
Σ =

[
0.1 0
0 1

]
Σ =

[
1 0
0 0.6

]
Σ =

[
0.4 0
0 0.4

]
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2. For each surface plot, find the corresponding contour plot and the corresponding parameters.

(a) (b) (c) (d)

(h) (i) (j) (k)

(x) (y) (z) (w)

µ =

[
0
0

]
µ =

[
0
0

]
µ =

[
−2
2

]
µ =

[
−2
2

]
Σ =

[
1 0.5

0.5 1

]
Σ =

[
1 0.9

0.9 1

]
Σ =

[
1 −0.5
−0.5 1

]
Σ =

[
1 −0.5
−0.5 0.6

]

(a)→(j)→(w) (b)→(h)→(z) (c)→(i)→(x) (d)→(k)→(y)
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