10-315: Introduction to Machine Learning Recitation 2

1 The Jacobian matrix

In the last recitation, we solved a few problems with gradients, which are defined for functions that have
vector input and scalar output. Now consider a function f : RV — RM which takes a vector x € RV and
outputs a vector f(x) € RM. The gradient doesn’t make much sense here since there are multiple outputs.

In fact, since each output f; could be a function of each input x;, there is a partial derivative for each

combination of f; and x;. This is the intuition for the Jacobian matrix %, whose (i,j)th entry is defined to

be gg L. Since i refers to the output vector and j refers to the input vector, % has shape MxN.
J

1. To make this idea more concrete, let’s find the Jacobian for a few functions. Let f(x) = Ax where
A € RM*N and x € RV,

(a) What is the shape of %?

The shape is MxN because the output has dimension M and the input has dimension N.
(b) Express f; in terms of A; . (the i*" row of A) and x. Write this in summation form as well.

fi = A, .x. This is equivalent to Zivzl A ;.

iq Ofi
(c) What is ks

=A

Since f; = Z;\;l A; jx;, then 3?] i
d) What is 2£7 Does this coincide with your intuition based on scalar calculus?
ox

- of ofi _ of _
Since (g, )i, = d—fj = A j, then 5 = A.

2. Let f(x) = —x where x € RV
(a) What is the shape of 257
Since the input and output are both N-dimensional, the Jacobian has shape NxN.
i Ofi
(b) What is 5:-7

9fi — 0

—T; = —1.

(c) What is ggf where 1 # 57
J
ofi _ _0o —
92, = 9z; i =0

(d) What is %? Does this coincide with your intuition based on scalar calculus?

Since the diagonal is all -1’s, and everything else is 0, then % =-I
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3. Let f(x) = xTx where x € RV,

(a) What is the shape of 257

Since the output is 1-dimensional and the output is N-dimensional, the Jacobian has shape 1xN.
This is a row vector of length N.

(b) Express f in summation form.
fx) = Z'f\il 3.
(¢c) What is 8%,?

of _ 9

r? = 2z;.
(d) What is 2£7
Since (%)M = % = 2x;, then % =2xT.

(e) What is the gradient of f with respect to x? What does this suggest about the relationship
between the gradient and the Jacobian?

The gradient of f is 2x, and the Jacobian is 2x”. This suggests that the gradient is the transpose
of the Jacobian.
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2 Closed-form solution to linear regression

Armed with our understanding of Jacobian matrices, we will now find the closed-form matrix solution to

linear regression using the chain rule. Recall the quantity we are trying to minimize is J(w) = 1||y — Xwl||3,

2
where X € RVXM_ This can be modeled as a composition of three functions:

fi(w) = Xw
fo(ff)) =y —fi
fa(f2) = [|f2]]3

J(w) = f3(f2(fi(w)))
1. Using the chain rule, what is % in terms of the derivatives of the three functions?

; : svative is L Ofs 0fs Of1
Working from outer to inner, the derivative is 5 5t OF Ow -

2. What is g—g? What is its shape?

From question 1.3, the answer is 2f§ = 2(y—Xw)?. The shape is 1xN because the output has dimension
1 and the input has dimension N.

3. What is %? What is its shape?
1

Since y is a constant, the derivative is 0, and as for —f;, the derivative is —1I (see question 1.2). The
shape is NxN because the output and input both have dimension N.

4. What is %? What is its shape?

From question 1.1, the answer is X. The shape is NxM because the output has dimension N and the
input has dimension M.

5. What is g—v{,? What is its shape?

%%%% = %(2(y —Xw)")(-I)(X) = (y - Xw)" (-1)(IX) = Xw —y)"X

The three shapes are (1XN),(NxN),(NxM), so multiplying all these together the shape is 1xM.

6. What is the optimal w?
We will set g—v{, equal to 0:

Xw—-y)'X =0
wIXT —y")X =0
wIXTX —yT'X =0
wIXTX =yTX
XTXw =XTy
w=(XTX)"1xXTy
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3 Gaussian Distribution

Review: 1-D Gaussian Distribution
The probability density function of N'(u,o?) is given by:
1 1
. 2y = (p—)?
p(xhu?o. ) - Wexp |: 20_2 (Jj M) :|

Multivariate Gaussian Distribution

The multivariate Gaussian distribution in M dimensions is parameterized by a mean vector u € R™ and a
covariance matrix X € RM*M shere X is a symmetric and positive-definite. This distribution is denoted
by M(p,X), and its probability density function is given by:

@) @ )

1
T, X)) = ————ex
p(z; p, X) EoE| P35

where |X| denotes the determinant of 3.
Let X = [X1, X2, ..., X,;n]T be a vector-valued random variable where X = [X1, Xa, ..., X;,]T ~ N (u, X).
Then, we have:

Cov[X1, X1] = Var[X;] Cov[X1, X5 Cov[X1, X ]
Cov[ X2, X1] Cov[Xa, Xo] = Var[Xs] ... Cov[Xa, X ]
Y =Cow[X]= . . ) .
COU[XZM,Xﬂ CO’U[XM,XQ} COU[XM,X]VI] :VCLT[XM}

Note: Any arbitrary covariance matrix is positive semi-definite. However, since the pdf of a multivariate
Gaussian requires Y to have a strictly positive determinant, 3 has to be positive definite.

In order to get get an intuition for what a multivariate Gaussian is, consider the simple case where M = 2.
Then, we have:

o X1 M o O’% CO’U[Xl,XQ]
x= [ } a L@] = [COU[Xl’Xﬂ 3
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1. For each surface plot, (1) find the corresponding contour plot (2) use the plotting tool provided to find
the parameter(p, X) of the distribution.

contour plot

contour plot
2 ¢ (7\ ’
X o o 8
g 0 % ° % ¢
s g e
~ variable X1 7 Variablext ) - " variable X1 '
(a) — (z) (b) = (v) (c) = (%)
To To 125
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2. For each surface plot, find the corresponding contour plot and the corresponding parameters.

-2
Variapje X2

(a)

contour plot

variable X2

variable X2
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Variabnle X22

(b)

contour plot

B 13 H
variable X1

(i)

R 13 7
variable X1

variable X2
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()

contour plot
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variable X1
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(d)

contour plot

variable X2
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