1 The Jacobian matrix

In the last recitation, we solved a few problems with gradients, which are defined for functions that have vector input and scalar output. Now consider a function $f : \mathbb{R}^N \to \mathbb{R}^M$ which takes a vector $\mathbf{x} \in \mathbb{R}^N$ and outputs a vector $\mathbf{f}(\mathbf{x}) \in \mathbb{R}^M$. The gradient doesn't make much sense here since there are multiple outputs. In fact, since each output f_i could be a function of each input x_j , there is a partial derivative for each combination of f_i and x_j . This is the intuition for the Jacobian matrix $\frac{\partial \mathbf{f}}{\partial \mathbf{x}}$, whose (i,j)th entry is defined to be $\frac{\partial f_i}{\partial x_i}$. Since *i* refers to the output vector and *j* refers to the input vector, $\frac{\partial \mathbf{f}}{\partial \mathbf{x}}$ has shape MxN.

- 1. To make this idea more concrete, let's find the Jacobian for a few functions. Let $\mathbf{f}(\mathbf{x}) = \mathbf{A}\mathbf{x}$ where $\mathbf{A} \in \mathbb{R}^{MxN}$ and $\mathbf{x} \in \mathbb{R}^N$.
 - (a) What is the shape of $\frac{\partial \mathbf{f}}{\partial \mathbf{x}}$?

The shape is MxN because the output has dimension M and the input has dimension N.

(b) Express f_i in terms of $\mathbf{A}_{i,:}$ (the ith row of \mathbf{A}) and \mathbf{x} . Write this in summation form as well.

 $f_i = \mathbf{A}_{i,:} \mathbf{x}$. This is equivalent to $\sum_{j=1}^N A_{i,j} x_j$.

- (c) What is $\frac{\partial f_i}{\partial x_j}$? Since $f_i = \sum_{j=1}^N A_{i,j} x_j$, then $\frac{\partial f_i}{\partial x_j} = A_{i,j}$.
- (d) What is $\frac{\partial \mathbf{f}}{\partial \mathbf{x}}$? Does this coincide with your intuition based on scalar calculus? Since $(\frac{\partial \mathbf{f}}{\partial \mathbf{x}})_{i,j} = \frac{\partial f_i}{\partial x_j} = A_{i,j}$, then $\frac{\partial \mathbf{f}}{\partial \mathbf{x}} = \mathbf{A}$.
- 2. Let $\mathbf{f}(\mathbf{x}) = -\mathbf{x}$ where $\mathbf{x} \in \mathbb{R}^N$.
 - (a) What is the shape of $\frac{\partial \mathbf{f}}{\partial \mathbf{x}}$? Since the input and output are both N-dimensional, the Jacobian has shape NxN.
 - (b) What is $\frac{\partial f_i}{\partial x_i}$? $\frac{\partial f_i}{\partial x_i} = \frac{\partial}{\partial x_i} - x_i = -1.$
 - (c) What is $\frac{\partial f_i}{\partial x_j}$ where $i \neq j$? $\frac{\partial f_i}{\partial x_j} = \frac{\partial}{\partial x_j} - x_i = 0.$
 - (d) What is $\frac{\partial \mathbf{f}}{\partial \mathbf{x}}$? Does this coincide with your intuition based on scalar calculus? Since the diagonal is all -1's, and everything else is 0, then $\frac{\partial \mathbf{f}}{\partial \mathbf{x}} = -\mathbf{I}$.

- 3. Let $f(\mathbf{x}) = \mathbf{x}^T \mathbf{x}$ where $\mathbf{x} \in \mathbb{R}^N$.
 - (a) What is the shape of $\frac{\partial \mathbf{f}}{\partial \mathbf{x}}$?

Since the output is 1-dimensional and the output is N-dimensional, the Jacobian has shape 1xN. This is a row vector of length N.

(b) Express f in summation form.

 $f(\mathbf{x}) = \sum_{i=1}^{N} x_i^2.$

(c) What is $\frac{\partial f}{\partial x_i}$?

$$\frac{\partial f}{\partial x_i} = \frac{\partial}{\partial x_i} x_i^2 = 2x_i.$$

(d) What is $\frac{\partial \mathbf{f}}{\partial \mathbf{x}}$?

Since $\left(\frac{\partial f}{\partial \mathbf{x}}\right)_{1,i} = \frac{\partial f}{\partial x_i} = 2x_i$, then $\frac{\partial f}{\partial \mathbf{x}} = 2\mathbf{x}^T$.

(e) What is the gradient of f with respect to \mathbf{x} ? What does this suggest about the relationship between the gradient and the Jacobian?

The gradient of f is $2\mathbf{x}$, and the Jacobian is $2\mathbf{x}^T$. This suggests that the gradient is the transpose of the Jacobian.

2 Closed-form solution to linear regression

Armed with our understanding of Jacobian matrices, we will now find the closed-form matrix solution to linear regression using the chain rule. Recall the quantity we are trying to minimize is $J(\mathbf{w}) = \frac{1}{2} ||\mathbf{y} - \mathbf{X}\mathbf{w}||_2^2$, where $\mathbf{X} \in \mathbb{R}^{N \times M}$. This can be modeled as a composition of three functions:

$$f_1(\mathbf{w}) = \mathbf{X}\mathbf{w}$$

$$f_2(\mathbf{f}_1) = \mathbf{y} - \mathbf{f}_1$$

$$f_3(\mathbf{f}_2) = ||\mathbf{f}_2||_2^2$$

$$J(\mathbf{w}) = f_3(\mathbf{f}_2(\mathbf{f}_1(\mathbf{w})))$$

1. Using the chain rule, what is $\frac{\partial J}{\partial \mathbf{w}}$ in terms of the derivatives of the three functions?

Working from outer to inner, the derivative is $\frac{1}{2} \frac{\partial \mathbf{f}_3}{\partial \mathbf{f}_2} \frac{\partial \mathbf{f}_2}{\partial \mathbf{f}_1} \frac{\partial \mathbf{f}_2}{\partial \mathbf{w}}$.

2. What is $\frac{\partial \mathbf{f}_3}{\partial \mathbf{f}_2}$? What is its shape?

From question 1.3, the answer is $2\mathbf{f}_2^T = 2(\mathbf{y} - \mathbf{X}\mathbf{w})^T$. The shape is 1xN because the output has dimension 1 and the input has dimension N.

3. What is $\frac{\partial \mathbf{f}_2}{\partial \mathbf{f}_1}$? What is its shape?

Since y is a constant, the derivative is 0, and as for $-\mathbf{f}_1$, the derivative is $-\mathbf{I}$ (see question 1.2). The shape is NxN because the output and input both have dimension N.

4. What is $\frac{\partial \mathbf{f}_1}{\partial \mathbf{w}}$? What is its shape?

From question 1.1, the answer is \mathbf{X} . The shape is NxM because the output has dimension N and the input has dimension M.

5. What is $\frac{\partial J}{\partial \mathbf{w}}$? What is its shape?

$$\frac{1}{2} \frac{\partial \mathbf{f}_3}{\partial \mathbf{f}_2} \frac{\partial \mathbf{f}_2}{\partial \mathbf{f}_1} \frac{\partial \mathbf{f}_1}{\partial \mathbf{w}} = \frac{1}{2} (2(\mathbf{y} - \mathbf{X}\mathbf{w})^T) (-\mathbf{I}) (\mathbf{X}) = (\mathbf{y} - \mathbf{X}\mathbf{w})^T (-1) (\mathbf{I}\mathbf{X}) = (\mathbf{X}\mathbf{w} - \mathbf{y})^T \mathbf{X}$$

The three shapes are (1XN),(NxN),(NxM), so multiplying all these together the shape is 1xM.

6. What is the optimal \mathbf{w} ?

We will set $\frac{\partial J}{\partial \mathbf{w}}$ equal to 0:

$$(\mathbf{X}\mathbf{w} - \mathbf{y})^T \mathbf{X} = 0$$
$$(\mathbf{w}^T \mathbf{X}^T - \mathbf{y}^T) \mathbf{X} = 0$$
$$\mathbf{w}^T \mathbf{X}^T \mathbf{X} - \mathbf{y}^T \mathbf{X} = 0$$
$$\mathbf{w}^T \mathbf{X}^T \mathbf{X} = \mathbf{y}^T \mathbf{X}$$
$$\mathbf{X}^T \mathbf{X} \mathbf{w} = \mathbf{X}^T \mathbf{y}$$
$$\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

3 Gaussian Distribution

Review: 1-D Gaussian Distribution

The probability density function of $\mathcal{N}(\mu, \sigma^2)$ is given by:

$$p(x;\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2\sigma^2}(x-\mu)^2\right]$$

Multivariate Gaussian Distribution

The multivariate Gaussian distribution in M dimensions is parameterized by a **mean vector** $\boldsymbol{\mu} \in \mathbb{R}^{M}$ and a **covariance matrix** $\boldsymbol{\Sigma} \in \mathbb{R}^{M \times M}$, where $\boldsymbol{\Sigma}$ is a symmetric and positive-definite. This distribution is denoted by $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, and its probability density function is given by:

$$p(\boldsymbol{x};\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^M |\boldsymbol{\Sigma}|}} \exp\left[-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right]$$

where $|\Sigma|$ denotes the determinant of Σ .

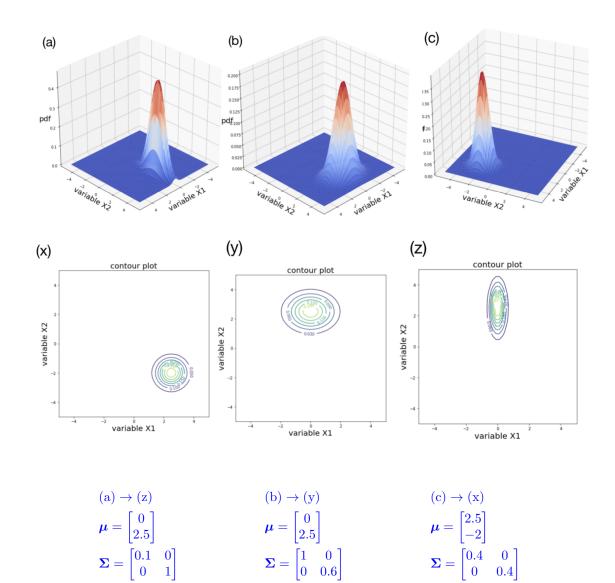
Let $\mathbf{X} = [X_1, X_2, ..., X_m]^T$ be a vector-valued random variable where $\mathbf{X} = [X_1, X_2, ..., X_m]^T \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. Then, we have:

$$\boldsymbol{\Sigma} = Cov[\boldsymbol{X}] = \begin{bmatrix} Cov[X_1, X_1] = Var[X_1] & Cov[X_1, X_2] & \dots & Cov[X_1, X_M] \\ Cov[X_2, X_1] & Cov[X_2, X_2] = Var[X_2] & \dots & Cov[X_2, X_M] \\ \vdots & \vdots & \ddots & \vdots \\ Cov[X_M, X_1] & Cov[X_M, X_2] & \dots & Cov[X_M, X_M] = Var[X_M] \end{bmatrix}$$

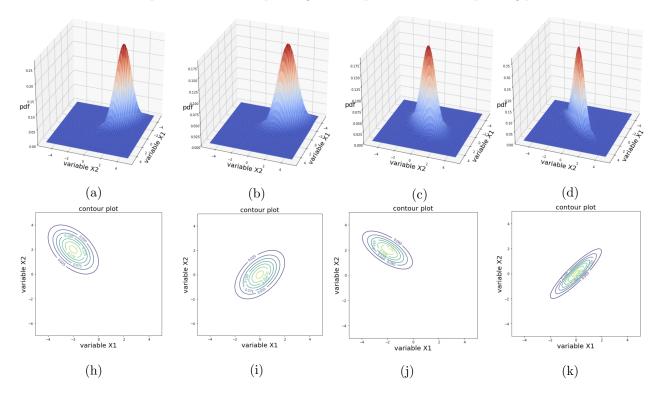
Note: Any arbitrary covariance matrix is positive semi-definite. However, since the pdf of a multivariate Gaussian requires Σ to have a strictly positive determinant, Σ has to be positive definite.

In order to get get an intuition for what a multivariate Gaussian is, consider the simple case where M = 2. Then, we have:

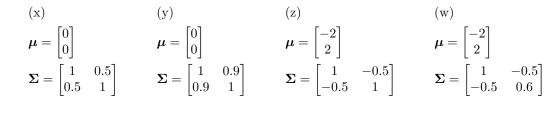
$$\boldsymbol{X} = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \qquad \boldsymbol{\mu} = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} \qquad \boldsymbol{\Sigma} = \begin{bmatrix} \sigma_1^2 & Cov[X_1, X_2] \\ Cov[X_1, X_2] & \sigma_2^2 \end{bmatrix}$$



1. For each surface plot, (1) find the corresponding contour plot (2) use the plotting tool provided to find the parameter (μ, Σ) of the distribution.



2. For each surface plot, find the corresponding contour plot and the corresponding parameters.



 $(a) \rightarrow (j) \rightarrow (w)$ $(b) \rightarrow (h) \rightarrow (z)$

 $(c) \rightarrow (i) \rightarrow (x)$

) $(d) \rightarrow (k) \rightarrow (y)$