
10-315 Notes

Feature Engineering &

Logistic Regression

Carnegie Mellon University
Machine Learning Department

Contents

1 Feature Engineering 1

1.1 Intuition: Weakness of Linear Regression . 1

1.2 Idea: Creating New Features in our Dataset . 3

1.3 Aside: Another Perspective of Feature Engineering 5

1.4 Generalizing Example to Polynomial Features . 5

1.5 Abstract Feature Transforms . 6

1.6 Feature Engineering and Overfitting . 7

2 Logistic Regression 9

2.1 Probabilistic Classification . 9

2.2 New Classification Loss for Probabilities . 10

2.3 Logistic Regression: a Linear Model for Classification 13

1 Feature Engineering

When performing machine learning, if your dataset is complex (i.e. input values have complex
relationships with output values), then, sometimes certain simpler models may be unable to appro-
priately model/fit to said datasets. Within machine learning, one powerful and interesting tool is
using feature engineering to allow simpler models to fit more complex distributions of data.

1.1 Intuition: Weakness of Linear Regression

Recall our linear regression model on x ∈ R

h(x) = wx+ b

1

If we were given a dataset D = {(x(i), y(i))}Ni=1 that followed a linear trend, we could easily fit a
linear model, as shown below

Figure 1: Linear Dataset with Linear Regression Model

The choice of the model for this dataset makes clear sense, and it fits the data well. However,
suppose that our data is non-linear. For example, suppose that our dataset D followed this format

Figure 2: Nonlinear Dataset

If we attempt to fit a linear regression model to this dataset, we can see that it doesn’t necessarily
model the dataset distribution well.

2

Figure 3: Linear Regression Model Fitted on Nonlinear Dataset

This is seemingly a setback for linear regression models. The linearity constraint of linear regression
models makes it a model that is easily interpretable, easy to optimize, and simple; however, it would
seem that it doesn’t make it a good model for more complex (e.g. non-linear) distributions of data.
This is where the idea of feature engineering can come into play.

1.2 Idea: Creating New Features in our Dataset

Recall Figure 2. We can see that the dataset strongly resembles a quadratic curve. For example, if
we had some kind of model that learned optimal parameters [w1, w2, b]

⊤ for

h(x) = w1x
2 + w2x+ b

then we could create a better hypothesis for our non-linear dataset D because it can represent a
quadratic data distribution, but how do we go about this?

While the quadratic formulation of h(x) is non-linear with respect to the input data x ∈ R, we can
note that h(x) is still a linear function with respect to the model’s parameters. This
means that we can apply linear regression! However, instead of just having one feature x ∈ R, we
have essentially constructed a new dimension/feature in our dataset x2 ∈ R that we are using as a
feature to train on, in addition to the original feature, x.

More, specifically, when given the non-linear dataset D, we can construct (or engineer) new features
to create a dataset D′ that allows us to properly model this more complex distribution.

y x

5 6

12 7

1 3

5 2

15 0
...

...

Table 1: Original Dataset D

3

y x x2

5 6 36
12 7 49
1 3 9
5 2 4
15 0 0
...

...
...

Table 2: Feature-Engineered Dataset D′

Now, we can train a linear regression model with this new dataset D′. By adding the new feature,
x2, by hand into the dataset, we can allow our model to fit to a quadratic function. If we trained a
linear regression model using the dataset D′ where one feature is x and another feature is x2, then
we would receive a model that matches our desired quadratic hypothesis

h(x) = w1x
2 + w2x+ b

and as a result, it would fit better to the dataset. Below is the result of training a linear regression
model on dataset D′

Figure 4: Linear Regression Model Trained on D′

This is extremely powerful. Note that this curve still represents the predictions of a linear regression
model that takes in samples from D, our original dataset, as input. However, when predicting on
a sample, x ∈ R, then we first have to engineer the feature x2 which would then allow our model,
h(x) = w1x

2 + w2x + b, to predict. Thus, we can see that when we train a model on a feature-
engineered dataset, we have to make sure that we follow the same transformations when predicting
with this model as well.

Without changing the model, we have allowed it to generalize to a new family of hypothesis functions
by simply changing the dataset that we were given, D, to a new dataset D′. This is the primary
strength that feature engineering brings to machine learning and is extremely prevalent throughout
the entire field.

4

1.3 Aside: Another Perspective of Feature Engineering

Note that while our original dataset, D, had only 1 feature. The linear regression model that we
trained was trained on the 2 features from the engineered dataset D′. As a result, because we are
still working with 2D inputs, we can visualize the dataset that our model was trained on.

Figure 5: Feature-Engineered D′ Plot

Because our model is trained on 2 features, instead of fitting a line to the dataset, we are now fitting
a plane. We can note that this dataset D′ can easily be fitted by a plane in this dimension. That
is precisely what our newly trained model h is doing when it was trained on the engineered dataset
D′.

1.4 Generalizing Example to Polynomial Features

Note that in order to model a quadratic function, we simply engineered a new feature x2 that allowed
us to develop a model for h(x) = w1x

2 + w2x+ b. However, suppose that we now wanted to model
a cubic function,

h(x) = w1x
3 + w2x

2 + w3x+ b

or even a quartic function (degree 4 polynomial)

h(x) = w1x
4 + w2x

3 + w3x
2 + w4x+ b

Then, all we have to do is simply engineer the features for the higher-powered terms, and we will
be able to successfully have our h model those polynomials. In general, if we wanted to model a
polynomial of degree M on our original (1-feature) dataset, D, all we have to do is add features to
construct a new dataset, as shown below.

y x

y(1) x(1)

y(2) x(2)

y(3) x(3)

y(4) x(4)

y(5) x(5)

...
...

Table 3: Original Dataset D (note: that x(i) is the i-th sample, not exponent!)

5

y x x2 x3 . . . xM

y(1) x(1) (x(1))2 (x(1))3 . . . (x(1))M

y(2) x(2) (x(2))2 (x(2))3 . . . (x(2))M

y(3) x(3) (x(3))2 (x(3))3 . . . (x(3))M

y(4) x(4) (x(4))2 (x(4))3 . . . (x(4))M

y(5) x(5) (x(5))2 (x(5))3 . . . (x(5))M

...
...

...
...

...
...

Table 4: Feature-Engineered Dataset D′ with M -degree polynomial features

This generalization of feature engineering to M -th degree polynomials is known as a polynomial
feature transform where the dataset is now augmented/engineered to include polynomial terms.
We will take a look at some models trained on datasets with larger degree polynomial feature trans-
forms; however, before looking at that, we can generalize our understanding of feature engineering
even further.

1.5 Abstract Feature Transforms

So far, we have looked only at feature transformations that involve exponentiating some terms inside
of our dataset. However, this is just a specific case of feature engineering. Instead of applying an
exponent, we could have chosen any other function we desired. We could have applied a period
function sin to our feature x to construct a new feature sin(x). We could have transformed our
original features by including the distance from the origin, ∥x∥2 as a feature as well.

In reality, we could choose any transformation that we would like to apply to our features, as long
as we apply the same transformation to each sample in our dataset for training and at time of
prediction.

We can represent this notion of feature transformation mathematically, if we are given a dataset
X ∈ RN×K where we have N samples and K features per sample, then, we can define a feature
transformation function, ϕ : RK → RM , where M is the number of features that are produced by
the transformation ϕ. Now, when we want to train our model on our feature-transformed dataset,
we can write the notation as follows, ϕ(X), where

X =

— x(1)⊤ —

— x(2)⊤ —

— x(3)⊤ —
. . .

— x(N)⊤ —

ϕ(X) =

— ϕ

(
x(1)

)⊤
—

— ϕ
(
x(2)

)⊤
—

— ϕ
(
x(3)

)⊤
—

. . .

— ϕ
(
x(N)

)⊤
—

Note, that now, the dataset matrix ϕ(X) ∈ RN×M because we’ve applied the feature transform ϕ
to each sample x(i) in our dataset. We now have a generalized notion of feature transformations as

6

this function ϕ which machine learning engineers (that’s you!) can define to be anything.

Example 1: Relating back to our original example, when performing a polynomial feature trans-
formation of degree 3, we were using the feature transform

ϕ ([x]) = [x, x2, x3]⊤

Example 2: Another example of feature transformations that we have been implicitly using is
the feature transform that appends the bias coefficient of 1 inside of our design matrix for linear
regression models:

ϕ(x) =

[
1
x

]
allowing us to model linear models that don’t necessarily go through the origin (i.e., affine models).
It is useful to think about how this feature transform allows us to create the design matrix used in
linear regression.

1.6 Feature Engineering and Overfitting

Before concluding this chapter on an introduction to feature engineering, one might be asking, ”why
not just have more and more features?”. In the examples above, we’ve shown how adding more
features can allow us to create models that are able to fit to more complex data distributions, such
as k-dimensional polynomial curves.

However, if adding more features allows our model to generalize to a larger family of functions,
why not add as many features as we can? What downside is there to having too many features?
Unfortunately, there are some downsides to applying high-dimensional and complex transformations
to your dataset. To show this, we will look at what happens to a linear regression model when we
apply polynomial feature transforms of degree k for increasing k on a linear dataset, D.

Figure 6: Linear regression with k = {1, 5, 11, 30} polynomial feature transforms

7

As we can see, when we increase the number of features to be very large, the model starts to
break down and begins to prioritize matching the exact distribution of the training data as opposed
to capturing its general trend. This is a prime example of model overfitting and can commonly
occur when the dimensionality of the data is too high, which is the case with complex feature
transforms. As a result, we can note that it may not be best to always have very large feature
transformations. Instead, we must make reasonable transformations that both improve the model’s
ability to generalize well to the data distribution without allowing it to overfit.

There’s certainly more to come in this course on how to combat overfitting despite having very
expressive models, such as linear regression with high-degree polynomial features and even neural
networks.

8

2 Logistic Regression

On a different topic, we are going to take a look at classification from a new perspective. Previously,
we have viewed classification as making an explicit decision on whether a given sample, x(i), belongs
to one of K classes. However, making a discrete decision on the class of x(i) doesn’t necessarily
provide information on how strongly we believe x(i) belongs to a given class. This idea will raise the
notion of developing a probability distribution over classes when performing prediction.

Additionally, some classification models that we have investigated are the Decision Tree and K-
nearest neighbor models. However, we can note that these models aren’t necessarily linear functions
with respect to their input, x(i). Instead, they perform some non-linear function in order to decide
their classes. This is where logistic regression models arise. Logistic regression models are an
intuitive extension to our well-known linear regression models that allow us to perform classification
in a linear manner.

2.1 Probabilistic Classification

For some motivation, suppose that we are predicting whether it is going to rain today using some
features like humidity, cloud coverage, etc. In the past, we have used models that firmly decide
which class a sample will belong to. For example, if we are given a sample, x, and we have to assign
it to one of K classes. Our past models, such as the decision tree and k-nearest neighbor models,
would make a decision (typically through majority vote) and say that x is assigned label k. However,
this effectively states that our model believes that x has a 100% chance of belonging to class with
label k and a 0% chance with all other labels.

This can be problematic when our models are very uncertain about their predictions. For example,
if we were predicting the type of a flower given its sepal width and sepal length in the classic iris
classification dataset, typically, we would either make a decision and say that a given sample is one
of 3 classes, a setosa, a versicolor, or virginica.

However, suppose that we were uncertain about the type of flower, even with its sample information
x. In this case, it wouldn’t make sense to decidedly state which flower our sample is because we
aren’t really confident in that decision. Instead, it would be beneficial if we could estimate how
confident we are in our predictions. For example, if we had very little information about the flower
type, our model could preferably say that there is a 33.3% chance of the flower being a setosa, a
33.3% chance of the flower being a versicolor, and a 33.3% chance of our flower being a virginica.
As a result, allowing our model to produce probabilities for a sample belonging to a class allows it
to express its confidence which is useful for portraying uncertainty in our model.

In Figure 7, we can see that we are trying to classify iris samples in two fundamentally different
ways: using K-nearest neighbor to give a hard classification of a single class to each possible input,
x1, x2; whereas, logistic regression provides a soft classification by providing the probability of the
sample being in each of the three classes.

9

Figure 7: Hard classification vs. soft (probabilistic) classification. The logistic regression plot
(right) shows contour lines colored for each class as the probabilities for those classes move from 0.0
(transparent white) to 1.0 (solid blue/orange/green). The logistic regression plot shows a gradual
transition from solid orange to solid green, particularly in the region where there is considerable
overlap between sepal features for versicolor (orange) and virginica (green).

In the plot on the left, we can see that the k-NN model has very strict decision boundaries where if
a sample lands in a region belonging to a class, the k-NN model will predict the sample as that class
with 100% confidence. However, when attempting to classify a point like x = [x1, x2] = [6.1, 3], we
can see that there is a relatively even mix of both versicolor and virginica classes around that point.
As a result, it would be better if the model stated that there is a 0% chance of x being a setosa, a
50% chance of x being a versicolor, and a 50% chance of x being a virginica.

This is what the model on the right is doing. This logistic regression classification model (which
we will learn about soon), indicates the probability P (Yspecies = 1 | x). As a result, when given
the sample, x = [x1, x2] = [6.1, 3], instead of producing a hard classification, the model produces
a vector, ŷ, that represents a probability distribution. Let h be our logistic regression prediction
function for input x. Then the predicted output would have the following vector form:

ŷ = h(x) =

 P (Ysetosa = 1 | x)
P (Yversicolor = 1 | x)
P (Yvirginica = 1 | x)

 =

 0
0.5
0.5

instead of something like ŷ = h(x) = 2 where 2 represents the class virginica. This is the goal
of probabilistic classification. Instead of having a model that decides what class a sample belongs
to, the model will estimate the probability that a sample belongs to a class. As a result, if we
had a probabilistic classification model when predicting on a sample, x, it produces a probability
distribution over the classes, ŷ, where ŷk = P (Yk = 1 | x) where Yk is the random variable of class
k being the correct class.

One point to note is that even if our model produces probabilities for a sample belonging to a class,
we can still produce a decision (or assignment) on which class a sample belongs to. The typical policy
for this is to assign a sample x that has probability distribution ŷ over K classes the label with the
maximum probability. In other words, the label we assign to that sample is argmaxk∈{1,...,K} ŷk.

2.2 New Classification Loss for Probabilities

As a result, we have a new formulation for how we can do classification. Instead of producing
hard labels, we produce a probability distribution over the classes, representing the probability of a

10

sample belonging to a class. However, with a new representation of our model output, ŷ, we now
need to have a new loss function.

Originally, when performing decision-based predictions, our ground-truth label, y ∈ C would be a
label indicating the class of the sample, and our model would output one of those labels, ŷ ∈ C
where C = {0, 1, 2} (each number corresponds to a class). With this representation, we defined a
loss function that was effectively an indicator function

ℓ(y, ŷ) = 1[ŷ ̸= y]

However, our representation of our targets has changed because we would now like to predict a prob-
ability distribution. Because of this, we will have to map our ground-truth labels, y to probability
distributions as well. If our sample belonged to class k in our dataset, then the associated sample,
y, is now an element of RK where we have K classes (note it is a vector). All elements of y will
be 0 except for the k-th element, yk, which will be 1. This is known as a one-hot vector, and it
describes a probability distribution that the sample belongs to the k-th class with probability 1 and
0 probability with all other classes.

In the iris classification example above, samples belonging to class 1 (versicolor, we are 0-indexing)
would have their labels as follows.

y =

01
0

As shown earlier, our model outputs probability distributions. Suppose for the label y above, we
have the prediction

ŷ =

0.150.7
0.15

Recall, that we need to now define a new loss function ℓ(y, ŷ) because our original indicator function
definition on target labels won’t work. If we take a look at a plot of these two vectors (in this case,
probability distributions), we can see that there is some difference between them that we could
quantify.

11

Figure 8: Plot of probability distributions defined for the true output value y (blue) and the predicted
output ŷ (orange). Note that the true output will always be a one-hot vector (vector with exactly
one 1 value), while the predicted output may have some uncertainty about which class the sample
belongs to.

One common loss function when performing this form of classification is called cross-entropy loss.
The cross-entropy loss is generally a function that compares any two probability distributions. In
our case, this is perfect because we would like to compare the probability distribution that our model
produces, ŷ, with the probability distribution defined by our ground truth label, y. Given that K
is the number of classes that we are predicting over, the cross-entropy loss definition is as follows:

ℓ(y, ŷ) = −
K∑

k=1

yk log ŷk

For the example above with y = [0, 1, 0]⊤ and ŷ = [0.15, 0.7, 0.15]⊤, the cross-entropy loss is:

ℓ(y, ŷ) = −y1 log ŷ1 −y2 log ŷ2 −y3 log ŷ3

= −0 log 0.15 −1 log 0.7 −0 log 0.15

= 0.36

whereas if the prediction was perfect, ŷ = [0.0, 1.0, 0.0]⊤, the cross-entropy would be 0.0:

ℓ(y, ŷ) = −0 log 0.0 −1 log 1.0 −0 log 0.0

= 0.0

Note that, by convention in machine learning, we use the natural log to compute cross-entropy
values.

In future material, we will go over how this loss is used in various machine learning models, how
we use it for training, and some more interesting properties of this loss function. As an exercise
for gaining a better understanding of cross-entropy loss, it is useful to take various probability
distributions (e.g. distributions with K = 3 classes) and calculate the cross-entropy loss between
them. Understand what terms in the summation cause the loss to grow or not grow.

12

2.3 Logistic Regression: a Linear Model for Classification

Now that we have covered this new intuition for performing classification in a probabilistic manner,
we can look at a new model that performs this kind of behavior, the logistic regression model. We
will inspire an understanding of this model with an example.

Suppose that we wanted to perform classification on a dataset D = {x(i), y(i)}Ni=1 where x(i) ∈ R and
y(i) ∈ {0, 1} and that we wanted to create a linear classifier (i.e. the decision boundary is linear).

Figure 9: Dataset to Train Classifier On

One idea that we might have to implement this linear classifier is to use a simple linear regression
model where ŷ = wx+ b. Training such a model produces the following regression.

13

Figure 10: D trained on Linear Regression Model

We can see that our model learns some relationship between the input x and the class y, where the
class will increase if the input increases. However, this doesn’t necessarily constrain the output of
a model to the appropriate class that we would like, either a 0 or a 1. As a result, we can consider
placing some threshold on this linear regression. For example, at a value of 0.5, we can threshold our
function to class 0 if the linear regression is less than 0.5 and to class 1 otherwise. This thresholding
produces a new model formulation ŷ = gthreshold(wx+ b). Training such a model produces a fit as
follows

Figure 11: D trained on thresholding model

While our model now produces only valid values of ŷ, we still have an issue described earlier in these

14

notes. The model is extremely certain about its predictions! It transitions rapidly from one class to
the other right around input values x = 1. However, looking at the overlap in our data, we probably
want our model to state that for x = 1, P (Y = 1 | x) ≈ 0.5. In addition to this hard-classification
property of the threshold model, it has a derivative of zero essentially everywhere, making it very
problematic to optimize over.

As a result, we can try working with a different model h(x). Note, that in order to create a valid
classifier, we simply applied the threshold function gthreshold onto a linear combination of the features
wx + b. We can apply the same idea but with a function that smoothly maps all real input values
(−∞,∞) to the range (0, 1) (i.e., a probability distribution for binary classification). One such
common function is a specific sigmoid (s-shaped) function, the logistic function, which is often
just called the sigmoid function and denoted as σ:

glogistic(z) = σ(z) =
1

1 + e−z

A plot of this function is in Figure 12. Prove to yourself that this function outputs values in [0, 1]
and outputs 0.5 when the input is 0.

Figure 12: Plot of logistic (sigmoid) function

Now, with the logistic function, σ(z), we can apply it to our linear transformation of our input,
wx+ b, to get a new model

h(x) = ŷ = σ(wx+ b)

This is the logistic regression model for 1-dimensional inputs. If we wanted to generalize this model
to samples x ∈ RM , where we have M features (assume the bias term is included in this x), then a
more general definition of the logistic regression model would be:

h(x) = ŷ = σ(w⊤x)

Note that this model is used for performing binary classification. Because the output of the model
h(x) is a value in (0, 1), we can re-think this value as a probability where h(x) = P (Y = 1 | x). We
can read this as our logistic regression model producing the probability of a sample, x, belonging to
class 1.

15

Finally, after defining a new logistic regression model, h(x), we can optimize over it on our toy
dataset D, see Figure 13.

Figure 13: D trained on logistic regression model

We can now see that our logistic regression model is a prediction function that accounts for uncer-
tainty in our data and indicates a probability for a sample being in class 1. While this example may
seem simple, the logistic regression model is an extremely powerful model. It is used as a building
block for many larger machine learning models, can be learned efficiently, and is great for simple
classification problems.

In lecture, we will investigate this model further by looking at how we can estimate the error of this
model on a dataset, how we can use that information to train our model, and how we can apply this
model to multi-class classification problems.

16

	Feature Engineering
	Intuition: Weakness of Linear Regression
	Idea: Creating New Features in our Dataset
	Aside: Another Perspective of Feature Engineering
	Generalizing Example to Polynomial Features
	Abstract Feature Transforms
	Feature Engineering and Overfitting

	Logistic Regression
	Probabilistic Classification
	New Classification Loss for Probabilities
	Logistic Regression: a Linear Model for Classification

