
10-315 Notes

Maximum Likelihood Estimation

Carnegie Mellon University
Machine Learning Department

Contents

1 Distributions 2

1.1 Bernoulli . 2

1.2 Categorical . 2

1.3 Gaussian . 2

1.4 Multivariate Gaussian . 3

2 Likelihood 3

2.1 Examples . 4

2.1.1 Bernoulli: Flipping a coin with sides heads and tails 4

2.1.2 Categorical: Rolling a four-sided die with sides red, green, blue, and magenta 4

2.1.3 Gaussian: Grades on a test . 5

3 Maximum Likelihood Estimation 6

3.1 Likelihood function . 6

3.2 Log-likelihood . 7

3.3 Negative log-likelihood . 8

3.4 Optimization for MLE . 8

3.5 Examples . 8

3.5.1 Notation . 8

3.5.2 Bernoulli . 9

3.5.3 Categorical . 10

3.5.4 Gaussian . 11

4 MLE for Logistic Regression 12

4.1 Conditional likelihood and M(C)LE . 13

4.2 Logistic regression . 14

4.2.1 Binary logistic regression . 14

4.2.2 Multi-class logistic regression . 15

1

1 Distributions

We’ll focus on just a few key distributions: Bernoulli, categorical, Gaussian, and multivariate Gaus-
sian. The first two are discrete distributions and the Gaussian distributions are continuous.

1.1 Bernoulli

The Bernoulli distribution is a discrete distribution with two possible outcomes, 0 and 1. The
probability of 1 is denoted by ϕ and the probability of 0 is 1− ϕ. (So, yeah, it’s pretty boring, but
of course, pretty useful.)

Canonical Example Single flip of a (potentially biased) coin

Random Variable Y , discrete, binary

Parameters ϕ ∈ [0, 1]

Probability, p.m.f. P (Y = 1 | ϕ) = ϕ

P (Y = 0 | ϕ) = 1− ϕ

p(y | ϕ) =

{
ϕ y = 1

1− ϕ y = 0

1.2 Categorical

The categorical distribution is a discrete distribution with K possible values (often corresponding
to K discrete events). This is not a very standard distribution from a statistical standpoint, but we
use it *all the time* in machine learning to represent the probability of something belonging to one
of K classes. In this course, we’ll represent this distribution as a one-hot vector of K random binary
random variables, Y = [Y1, Y2, . . . , YK]⊤, where Yk takes on the value 1 if the outcome is in class k
and 0 otherwise. The probability of each Yk being one is denoted by ϕk, and all of the ϕk’s sum to
1 (e.g., because the event must belong to one of the K classes).

Canonical Example Single roll of a (potentially weighted) K-sided die

Random Variable Y , vector of K binary random variables Yk

Parameters ϕ = [ϕ1, ϕ2, . . . , ϕK]⊤, where ϕk ∈ [0, 1] and
∑K

k=1 ϕk = 1

Probability, p.m.f. P (Yk = 1 | ϕ) = ϕk

p(yk | ϕ) = ϕk

1.3 Gaussian

The Gaussian, or normal, distribution is a continuous distribution with two parameters: one for the
mean, µ, and one for the variance, σ2 (or equivalently, the standard deviation, σ). The Gaussian
distribution is our go-to distribution for representing continuous random variables. It is known for
its signature bell curve shape, where the likelihood of a value being close to the mean is much higher
than the likelihood of a value being far from the mean. The Gaussian distribution is often denoted
by N (µ, σ2).

2

Canonical Example Height of a person

Random Variable Y , continuous

Parameters µ ∈ R and σ2 ∈ R+

Density, p.d.f. p(y | µ, σ2) = 1√
2πσ2

e

(
− (y−µ)2

2σ2

)

1.4 Multivariate Gaussian

The multivariate Gaussian is a generalization of the Gaussian distribution for the case where the
random variable has a dimension M rather than being restricted to 1-D. The parameters for the
multivariate Gaussian similarly need to be in higher dimensions. The mean is now an M -dimensional
vector, µ, and the variance is now an M ×M covariance matrix, Σ. Like the univariate Gaussian
distribution, the multivariate Gaussian is also denoted by N (µ,Σ). The classic bell curve p.d.f for
dimension M = 2 now looks a bit like a hat.

Canonical Example Height and weight of a person

Random Variable M -dimensional vector X ∈ RM

Parameters µ = [µ1, . . . , µM]⊤ ∈ RM and Σ ∈ RM×M

Density, p.d.f. P (X = x | µ,Σ)

p(x | µ,Σ) = 1
(2π)M/2|Σ|1/2 e

(− 1
2 (x−µ)⊤Σ−1(x−µ))

2 Likelihood

Likelihood:

p(D | θ) =
N∏
i=1

p(y(i) | θ) (1)

The likelihood is the probability (or density) of the data given the parameters of the model, p(D | θ).
We use θ generically represents the parameter(s) of the distribution that we are interested in, and
we use D to represent the set of N observed values {y(i))}Ni=1 of the random variable Y .

By default, we assume that each y(i) is i.i.d. or independent and identically distributed, meaning
that each y(i) is drawn from the same distribution and drawn independently from every other sample
y(n), n ̸= i. Because of this i.i.d. assumption, we can write the likelihood as:

p(D | θ) = p(y(1), y(2), . . . , y(N) | θ) (2)

= p(y(1) | θ) p(y(2) | θ) p(y(3) | θ) . . . p(y(N) | θ) (3)

=

N∏
i=1

p(y(i) | θ) (4)

Note: If we didn’t have this assumption, then we would haveN different random variables, Y (1), Y (2), . . . , Y (N)

with N different parameters θ1, θ2, . . . , θN (not identical) and we couldn’t just multiply the individ-
ual probabilities/densities together, and we’d be stuck with each outcome depending on all previous

3

https://en.wikipedia.org/wiki/Covariance_matrix

outcomes:

p(D | θ) = p(y(1), y(2), . . . , y(N) | θ1, θ2, . . . , θN) (5)

= p(y(1) | θ1) p(y(2) | y(1), θ2) p(y(3) | y(1), y(2), θ3) . . . p(y(N) | y(1), y(2), . . . , y(N−1), θN)
(6)

2.1 Examples

2.1.1 Bernoulli: Flipping a coin with sides heads and tails

Consider a Bernoulli random variable Y ∈ {0, 1} with parameter ϕ where Y = 1 represents the value
of a coin flip coming up heads and Y = 0 represents the value of a coin flip coming up tails.

Suppose we have the dataset D = {1, 1, 0, 1} corresponding to outcomes {heads, heads, tails, heads}.

Notational note: For Bernoulli and categorical random variables in machine learning, events often
correspond to one and only one value, e.g. heads is 1 and tails is 0. This leads us to the notational
shortcut of writing P (Y = 1 | ϕ) as just p(heads | ϕ).

We can write the likelihood as:

p(D | θ) = p
(
y(1), y(2), y(3), y(4) | ϕ

)
(7)

= p(heads, heads, tails, heads | ϕ) (8)

= p(heads | ϕ) p(heads | ϕ) p(tails | ϕ) p(heads | ϕ) (9)

= ϕ ϕ (1− ϕ) ϕ (10)

= ϕ3(1− ϕ)1 (11)

For a fair coin, where ϕ = 1/2, the likelihood is:

p(D | θ) = ϕ ϕ (1− ϕ) ϕ (12)

=
1

2

1

2

(
1− 1

2

)
1

2
(13)

=
1

8
(14)

For an biased coin, where ϕ = 3/10, the likelihood is:

p(D | θ) = ϕ ϕ (1− ϕ) ϕ (15)

=
3

10

3

10

(
1− 3

10

)
3

10
(16)

=
189

10000
(17)

2.1.2 Categorical: Rolling a four-sided die with sides red, green, blue, and magenta

Consider a categorical random variable Y = [Y1, Y2, Y3, Y4]
⊤ with parameters ϕ = [ϕ1, ϕ2, ϕ3, ϕ4]

⊤

where Y1 = 1 represents the value of a die roll coming up red and Y1 = 0 represents the value of a
die roll not coming up red. Similarly for Y2, Y3, Y4 and green, blue, magenta respectively.

Notational note: Again, we’ll use the notational shortcut that combines events with values for
random variables. Specifically, we’ll write our dataset and probabilities in terms of the colors of
the die rolls rather than the one-hot encoded values of the random variable, e.g. green instead of
[0, 1, 0, 0]⊤.

4

Suppose we have the dataset D = {green,magenta,magenta, red, green}. We can write the likeli-
hood as:

p(D | θ) = p
(
y(1), y(2), y(3), y(4), y(5) | ϕ

)
(18)

= p(green,magenta,magenta, red, green | ϕ) (19)

= p(green | ϕ) p(magenta | ϕ) p(magenta | ϕ) p(red | ϕ) p(green | ϕ) (20)

= P

Y =

0
1
0
0

 | ϕ

P

Y =

0
0
0
1

 | ϕ

P

Y =

0
0
0
1

 | ϕ

P

Y =

1
0
0
0

 | ϕ

P

Y =

0
1
0
0

 | ϕ

(21)

= P (Y2 = 1 | ϕ) P (Y4 = 1 | ϕ) P (Y4 = 1 | ϕ) P (Y1 = 1 | ϕ) P (Y2 = 1 | ϕ) (22)

= ϕ2 ϕ4 ϕ4 ϕ1 ϕ2 (23)

= ϕ1 ϕ2
2 ϕ2

4 (24)

For an evenly weighted die, where ϕ = [1/4, 1/4, 1/4, 1/4]⊤, the likelihood is:

p(D | θ) = ϕ2 ϕ4 ϕ4 ϕ1 ϕ2 (25)

=
1

4

1

4

1

4

1

4

1

4
(26)

=
1

1024
(27)

For a weighted die with ϕ = [2/10, 1/10, 4/10, 3/10]⊤, the likelihood is:

p(D | θ) = ϕ2 ϕ4 ϕ4 ϕ1 ϕ2 (28)

=
1

10

3

10

3

10

2

10

1

10
(29)

=
18

100000
(30)

2.1.3 Gaussian: Grades on a test

Consider a Gaussian random variable Y with parameters µ and σ2 where Y represents the grade on
a test.

Suppose we have the dataset D = {75, 95, 80}. We can write the likelihood as:

p(D | θ) = p
(
y(1), y(2), y(3) | µ, σ2

)
(31)

= p(75, 95, 80 | µ, σ2) (32)

= p(75 | µ, σ2) p(80 | µ, σ2) p(95 | µ, σ2) (33)

=
1√
2πσ2

e−
(75−µ)2

2σ2
1√
2πσ2

e−
(95−µ)2

2σ2
1√
2πσ2

e−
(80−µ)2

2σ2 (34)

For parameters µ = 80 and σ2 = 52, the likelihood is:

p(D | θ) = p(75 | µ, σ2) p(80 | µ, σ2) p(95 | µ, σ2) (35)

= 0.0252834 · 0.0000000157990 · 0.150786 (36)

= 6.02316e−11 (37)

For parameters µ = 85 and σ2 = 102, the likelihood is:

p(D | θ) = p(75 | µ, σ2) p(80 | µ, σ2) p(95 | µ, σ2) (38)

= 0.000272286 · 0.000272286 · 0.0295651 (39)

= 2.19194e−9 (40)

5

Important note: Notice that the likelihood values above are really small despite fairly reasonable
parameters. These values will very quickly underflow and won’t be able to compare likelihood values
to figure out which parameters are best. We’ll come back to this later, but this is one of the two
main reasons why we use log-likelihoods.

3 Maximum Likelihood Estimation

The above examples for likelihood show that for a given set of parameters θ, we can compute the
likelihood of the data D. While it’s definitely important to understand how to compute a likelihood
value, we actually aren’t terribly interested in the likelihood value itself.

For example, knowing that the likelihood p(D | θ) is 6.02316e−11 for parameters µ = 80, σ2 = 52

doesn’t tell us much. BUT... also knowing that p(D | θ) is 2.19194e−9 for parameters µ = 85,
σ2 = 102 tells us that the parameters µ = 85, σ2 = 102 are better than the parameters µ = 80,
σ2 = 52 for this dataset!

Maximum likelihood estimation (MLE) is trying to find the best parameters for a specific

dataset, D. Specifically, we want to find the parameters θ̂MLE that maximize the likelihood for D.

Caution: This may seem like we are starting to flip p(D | θ) to p(θ | D) but we are not. The likelihood
is still the probability (or density) of the data given the parameters. We are just searching for the
parameter values that maximize this.

θ̂MLE = argmax
θ

p(D | θ) (41)

3.1 Likelihood function

To emphasize that we are trying to optimize over the parameters, we introduce the likelihood
function, L(θ;D), also seen written as L(θ | D) and L(θ;D).

The likelihood function is the SAME as the likelihood. We just write it differently because maximum
likelihood estimation is optimizing a function of the parameters.

L(θ;D) = p(D | θ) (42)

θ̂MLE = argmax
θ

L(θ;D) (43)

= argmax
θ

p(D | θ) (44)

= argmax
θ

N∏
i=1

p
(
y(i) | θ

)
Assuming i.i.d. (45)

Notational note: We’ll often drop the D from the likelihood function and the parameter(s) θ from
the probabilities/densities when it is (hopefully) clear that they are implied:

θ̂MLE = argmax
θ

L(θ) (46)

= argmax
θ

p(D | θ) (47)

= argmax
θ

N∏
i=1

p
(
y(i)
)

Assuming i.i.d. (48)

6

3.2 Log-likelihood

When doing MLE, we typically use the log of the likelihood rather than the likelihood itself. We
denote the log-likelihood function as:

ℓ(θ;D) = logL(θ;D) = log p(D | θ) (49)

We do use the log-likelihood for two main reasons: to avoid underflow and to simplify the calculus
for optimization.

Avoiding underflow : As we saw with some of the numerical examples in the previous section, with
just a few data points, the likelihood values can become extremely small very quickly, for example,
6.02316e−11 for just three points in a Gaussian model. These will just keep getting smaller and
smaller as we add more data points. Mathematically, this isn’t an issue, but when working with
computers, these values will underflow.

Simplifying calculus: As we’ll soon see, to find the parameters that minimize the likelihood, we’ll
take the gradient with respect to the parameters and either set it equal to zero or use some form of
gradient descent. Because we have many i.i.d. data points, the likelihood is product of N factors.
Products are a pain with calculus, but applying a log nicely converts products to sums:

ℓ(θ;D) = log p(D | θ) (50)

= log

N∏
i=1

p
(
y(i) | θ

)
Assuming i.i.d. (51)

=

N∑
i=1

log p
(
y(i) | θ

)
(52)

The log can also simplify exponential family distributions such as the Gaussian distribution, effec-
tively removing the exponential. We’ll definitely see this more later.

We can can get away with taking the log during MLE because the log function is monotonically
increasing, so if x2 > x1 then log(x2) > log(x1):

The log function is monotonically increasing, see interactiveDesmos demo

Specifically, if p(D | θB) > p(D | θA) then log p(D | θB) > log p(D | θA) and:

θ̂MLE = argmax
θ

p(D | θ) (53)

= argmax
θ

log p(D | θ) (54)

(even though p(D | θ) and log p(D | θ) are not equal).

7

https://www.desmos.com/calculator/ggkr0kfisu

3.3 Negative log-likelihood

Just so we can continue to use gradient descent rather than changing to gradient ascent, we negate
the log-likelihood and then flip the argmax to an argmin:

θ̂MLE = argmax
θ

ℓ(θ;D) (55)

= argmin
θ

− ℓ(θ;D) (56)

3.4 Optimization for MLE

Generally speaking, the recipe for doing MLE is to:

1. Formulate the likelihood, p(D | θ)

2. Set the objective J(θ) equal to the negative log-likelihood, J(θ) = − log p(D | θ)

3. Compute the (partial) derivative ∂J/∂θ

4. Find θ̂MLE by either

(a) Setting derivative equal to zero and solve for θ or

(b) Using a form of gradient descent to step towards better θ values

Note: Steps 3 and 4 are exactly what we’ve been doing for linear regression, logistic regression, and
neural networks.

3.5 Examples

3.5.1 Notation

Before we get started with examples, let’s go over notational tricks that we’ll be using with the
likelihood for Bernoulli and categorical distributions.

Bernoulli:

In our earlier examples in the likelihood section, it was easy to convert the likelihood factors,
p(y(i) | ϕ), into either ϕ or 1 − ϕ because we had specific values for each y(i). When we just
have Y = y(i) rather than Y = 1 or Y = 0, we need a notational trick to select the correct factor.
For this trick, we’ll use a combination of zero and one exponents and the indicator function.

For the i-th factor corresponding to the i-th data point, we can write:

P
(
Y = y(i) | ϕ

)
= ϕI(y(i)=1)(1− ϕ)I(y

(i)=0) (57)

This will then result in P
(
Y = y(i) | ϕ

)
= ϕ if y(i) = 1 and P

(
Y = y(i) | ϕ

)
= 1− ϕ if y(i) = 0.

Then, inserting this into the Bernoulli likelihood, we have:

L(θ;D) =

N∏
i=1

p(y(i) | ϕ) (58)

=

N∏
i=1

ϕI(y(i)=1)(1− ϕ)I(y
(i)=0) (59)

8

Categorical:

The trick for categorical is very similar. The main difference is that instead of ϕ and 1− ϕ, we just
have a ϕk for each of the K classes and then P (Yk = 1) = ϕk. Also, recall that each data point is a
one-hot vector of length K, y(i).

For the i-th factor corresponding to the i-th data point, we can write:

p
(
y(i) | ϕ

)
=

K∏
k=1

ϕ
I
(
y
(i)
k =1

)
k (60)

This will then result in p
(
y(i) | ϕ

)
= ϕk when the i-th data point belongs to the k-th class.

Then, inserting this into the categorical likelihood, we have:

L(θ;D =

N∏
i=1

p
(
y(i) | ϕ

)
(61)

=

N∏
i=1

K∏
k=1

ϕ
I
(
y
(i)
k =1

)
k (62)

Note: Before continuing, it’s worth taking a few minutes to connect these notation tricks to the
numerical likelihood examples that we had earlier.

For example, make sure to understand the two nested products in the context of the categorical
example for the four-sided die and dataset D = {green,magenta,magenta, red, green}:

L(θ;D) =

N∏
i=1

p
(
y(i) | ϕ

)
(63)

=

N∏
i=1

K∏
k=1

ϕ
I
(
y
(i)
k =1

)
k (64)

=

N∏
i=1

(
ϕ
I
(
y
(i)
1 =1

)
1 ϕ

I
(
y
(i)
2 =1

)
2 ϕ

I
(
y
(i)
3 =1

)
3 ϕ

I
(
y
(i)
4 =1

)
4

)
(65)

=
(
ϕ0
1 ϕ1

2 ϕ0
3 ϕ0

4

) (
ϕ0
1 ϕ0

2 ϕ0
3 ϕ1

4

) (
ϕ0
1 ϕ0

2 ϕ0
3 ϕ1

4

) (
ϕ1
1 ϕ0

2 ϕ0
3 ϕ0

4

) (
ϕ0
1 ϕ1

2 ϕ0
3 ϕ0

4

)
(66)

= ϕ2 ϕ4 ϕ4 ϕ1 ϕ2 (67)

3.5.2 Bernoulli

Suppose we are flipping a biased coin. We can consider each flip to be a Bernoulli(ϕ) random
variable, Y , where Y = 1 represents the coin coming up heads and Y = 0 represents tails, and
P (Y = 1) = ϕ and P (Y = 0) = 1− ϕ

Suppose our dataset D contains NH heads and NT tails.

Formulating the likelihood and the log-likelihood:

9

L(ϕ;D) =

N∏
i=1

ϕI(y(i)=1)(1− ϕ)I(y
(i)=0) (68)

ℓ(ϕ;D) = log

N∏
i=1

ϕI(y(i)=1)(1− ϕ)I(y
(i)=0) (69)

=

N∑
i=1

[
log ϕI(y(i)=1) + log(1− ϕ)I(y

(i)=0)
]

(70)

=

N∑
i=1

[
I(y(i) = 1) log(ϕ) + I(y(i) = 0) log(1− ϕ)

]
(71)

= log(ϕ)

N∑
i=1

I(y(i) = 1) + log(1− ϕ)

N∑
i=1

I(y(i) = 0) (72)

= NH log(ϕ) +NT log(1− ϕ) (73)

Now that we have the log-likelihood function, our ϕ̂MLE is the value that maximizes the log-
likelihood. For Bernoulli, we can take the derivative of our objective function and set it to 0.
(Note that in this closed-form case, it doesn’t really matter if negate the log-likelihood or not as
we’re just setting it to zero.)

dℓ

dϕ
= NH

1

ϕ
−NT

1

1− ϕ
(74)

=
(1− ϕ)NH − ϕNT

ϕ(1− ϕ)
(75)

(1− ϕ)NH − ϕNT

ϕ(1− ϕ)
= 0 (76)

(1− ϕ)NH − ϕNT = 0 (77)

NH − ϕ(NH +NT) = 0 (78)

ϕ =
NH

NH +NT
(79)

Therefore, ϕ̂MLE = NH

NH+NT
= NH

N , which should match our intuitive estimate of the fraction of
times heads appears in the data.

3.5.3 Categorical

Suppose we are rolling a (weighted) four-sided die with sides red, green, blue, and magenta. We
can consider each roll to be a categorical random variable Y = [Y1, Y2, Y3, Y4]

⊤ with parameters
ϕ = [ϕ1, ϕ2, ϕ3, ϕ4]

⊤ corresponding to red, green, blue, magenta, respectively.

Suppose our dataset D contains N1 red, N2 green, N3 blue, and N4 magenta values and the total
number of points is N = N1 +N2 +N3 +N4.

Formulating the likelihood and the log-likelihood:

10

L(ϕ;D) =

N∏
i=1

K∏
k=1

ϕ
I
(
y
(i)
k =1

)
k (80)

ℓ(ϕ;D) = log

N∏
i=1

K∏
k=1

ϕ
I
(
y
(i)
k =1

)
k (81)

=

N∑
i=1

log

K∏
k=1

ϕ
I
(
y
(i)
k =1

)
k (82)

=

N∑
i=1

K∑
k=1

log ϕ
I
(
y
(i)
k =1

)
k (83)

=

N∑
i=1

K∑
k=1

I
(
y
(i)
k = 1

)
log ϕk (84)

=

K∑
k=1

N∑
i=1

I
(
y
(i)
k = 1

)
log ϕk (85)

=

K∑
k=1

[
N∑
i=1

I
(
y
(i)
k = 1

)]
log ϕk (86)

=

K∑
k=1

Nk log ϕk (87)

= N1 log ϕ1 +N2 log ϕ2 +N3 log ϕ3 +N4 log ϕ4 (88)

We’re going to hold off on solving for the categorical MLE as it involves one more trick related to
the fact that

∑
k ϕk = 1. But that trick does lead us to ϕ̂k,MLE = Nk

N , which should match our
intuitive estimate of the fraction of times class k appears in the data.

3.5.4 Gaussian

Suppose we observe N samples from a Gaussian distribution, D = {x(i)}Ni=1, where x(i) ∼ N (µ, σ).
Recall, that for a 1-D Gaussian distribution, the pdf is:

p(x | µ, σ) = 1√
2πσ2

exp

(
− (x− µ)2

2σ2

)

11

The likelihood and log-likelihood are:

L(µ, σ;D) =

N∏
i=1

p(x | µ, σ) (89)

=

N∏
i=1

1√
2πσ2

exp

(
− (x(i) − µ)2

2σ2

)
(90)

ℓ(µ, σ;D) = log

N∏
i=1

p(x | µ, σ) (91)

=

N∏
i=1

1√
2πσ2

exp

(
− (x(i) − µ)2

2σ2

)
(92)

=

N∑
i=1

log
1√
2πσ2

exp

(
− (x(i) − µ)2

2σ2

)
(93)

=

N∑
i=1

− log(
√
2π)− log(σ)− (x(i) − µ)2

2σ2
(94)

= −N log(
√
2π)−N log(σ)−

N∑
i=1

(x(i) − µ)2

2σ2
(95)

We can then use the log-likelihood to determine the MLE for µ:

ℓ(µ, σ;D) = −N log(
√
2π)−N log(σ)−

N∑
i=1

(x(i) − µ)2

2σ2
(96)

∂ℓ

∂µ
=

∂

∂µ

N∑
i=1

− (x(i) − µ)2

2σ2
(97)

=

N∑
i=1

1

2σ2
2(x(i) − µ) (98)

N∑
i=1

1

2σ2
2(x(i) − µ) = 0 (99)

N∑
i=1

x(i) − µ = 0 (100)

N∑
i=1

µ =

N∑
i=1

x(i) (101)

Nµ =

N∑
i=1

x(i) (102)

µ =

∑N
i=1 x

(i)

N
(103)

Hence µ̂ =
∑N

i=1 x(i)

N , which is the average as we might expect.

4 MLE for Logistic Regression

So far, we have been working with the likelihood of data related to a random variable given its
parameters, p(D | θ), e.g. p(x(1), ..., x(N) | θ) or p(y(1), ..., y(N) | θ). However, this was just a
starting point. Let’s use what we’ve learned to help us create a probabilistic model for predicting
an output value given an input value. Specifically, we would like to determine a probability model

12

with parameters θ that can give us the probability (or density) of a random variable Y taking on
the value y given the value x or random variable X,

P (Y = y | X = x, θ) = p(y | x, θ) (104)

Once we have an estimate for this distribution, we can then use it to take a new input value x and
predict the output value y.

Our new task is to:

1. Collect supervised dataset of N i.i.d. samples D =
{
(x(i), y(i)

}N
i=1

2. Use the relationship between input data x and output data y to define a probability distribution
for p(y | x, θ)

3. Estimate the value(s) for parameter(s) θ that maximizes
∏N

i=1 p
(
y(i) | x(i), θ

)
4.1 Conditional likelihood and M(C)LE

We’re going to use all of the principles from maximum likelihood estimation but first, we need to
point out a subtle difference that can cause some confusion both here and when we get to more
complicated probabilistic models later.

The likelihood is the probability or density of data given parameters can be p(x(1), ..., x(N) | θ) or
p(y(1), ..., y(N) | θ) or even p(x(1), y(1), ..., x(N), y(N) | θ) if we are considering data from both X and
Y .

When we are working with p
(
y(1), ..., y(N) | x(1), ..., x(N), θ

)
, this is the conditional likelihood.

The confusing part is that in machine learning we use this conditional likelihood so often, we often
resort to referring to it as just the “likelihood,” dropping the “conditional.” We’ll even write things
like this when we are working with the conditional likelihood:

p(D | θ) = p
(
y(1), ..., y(N) | x(1), ..., x(N), θ

)
(105)

which is very confusing notation when we are trying to unpack D =
{
(x(i), y(i)

}N
i=1

and fit it into
this.

We do the same thing with maximum likelihood estimation and maximum conditional like-
lihood estimation. Despite estimating the parameters that maximize the conditional likelihood,
we never really use the term “MCLE” and just resort to calling it “MLE” or “maximum likelihood
estimation,” again dropping the “conditional.”

So again, pardon the reuse of p(D | θ), L, and ℓ as we define the following in the context of conditional
likelihood and maximum conditional likelihood estimation:

L(θ;D) = p(D | θ) (106)

= p
(
y(1), ..., y(N) | x(1), ..., x(N), θ

)
(107)

=

N∏
i=1

p
(
y(i) | x(i), θ

)
Assuming i.i.d. (108)

Notational note: As always, we’ll often drop the D from the likelihood function and the parameter(s)

13

θ from the probabilities/densities when it is (hopefully) clear that they are implied:

L(θ) = p(D | θ) (109)

= p
(
y(1), ..., y(N) | x(1), ..., x(N)

)
(110)

=

N∏
i=1

p
(
y(i) | x(i)

)
Assuming i.i.d. (111)

4.2 Logistic regression

4.2.1 Binary logistic regression

Let’s start with logistic regression because we’ve actually done most of the work already. Specifically,
we already decided that we wanted to model binary logistic regression for input x ∈ RM and binary
output y as:

p(y | x) = 1

1 + e−θTx
for y = 1 (112)

p(y | x) = 1− 1

1 + e−θTx
for y = 0 (113)

where θ ∈ RM is the vector of logistic regression parameters.

Rather than defining a cross-entropy loss and optimizing an empirical risk objective, we can just use
M(C)LE.

To simplify notation, let us define temporary variable ϕ(i) as follows:

ϕ(i) =
1

1 + e−θTx(i)
(114)

The likelihood is:

L(θ;D) = p(D | θ) (115)

= p
(
y(1), ..., y(N) | x(1), ..., x(N), θ

)
(116)

=

N∏
i=1

p
(
y(i) | x(i), θ

)
(117)

=

N∏
i=1

ϕ(i)I(y
(i)=1) (

1− ϕ(i)
)I(y(i)=0)

(118)

(Note the similarities with a basic Bernoulli likelihood!)

The log-likelihood is:

ℓ(θ;D) = log

N∏
i=1

ϕ(i)I(y
(i)=1) (

1− ϕ(i)
)I(y(i)=0)

(119)

=

N∑
i=1

log ϕ(i)I(y
(i)=1)

+ log
(
1− ϕ(i)

)I(y(i)=0)
(120)

=

N∑
i=1

I
(
y(i) = 1

)
log ϕ(i) + I

(
y(i) = 0

)
log
(
1− ϕ(i)

)
(121)

14

The MLE is:

θ̂MLE = argmin
θ

− ℓ(θ;D) (122)

= argmin
θ

−
N∑
i=1

I
(
y(i) = 1

)
log ϕ(i) + I

(
y(i) = 0

)
log
(
1− ϕ(i)

)
(123)

But wait, watch what happens after we make the following trivial substitutions: y(i) = I
(
y(i) = 1

)
;(

1− y(i)
)
= I

(
y(i) = 0

)
; and ŷ(i) = ϕ(i):

θ̂MLE = argmin
θ

− ℓ(θ;D) (124)

= argmin
θ

−
N∑
i=1

I
(
y(i) = 1

)
log ϕ(i) + I

(
y(i) = 0

)
log
(
1− ϕ(i)

)
(125)

= argmin
θ

−
N∑
i=1

y(i) log ŷ(i) +
(
1− y(i)

)
log
(
1− ŷ(i)

)
(126)

This is the exact same optimization as minimizing the empirical risk for binary logistic regression
with cross-entropy loss!!

4.2.2 Multi-class logistic regression

Again, we’ve already done most of the work by defining the output y to be a one-hot vector in RK

where yk = 1 when the data point belongs to the k-th of K classes and defining the model as:

P (Yk = 1 | x; Θ) =
exp

(
θ⊤
k x
)

∑K
l=1 exp

(
θ⊤
l x
) (127)

Similar to binary logistic regression above, let’s define ϕ
(i)
k to be:

ϕ
(i)
k =

exp
(
θ⊤
k x

(i)
)

∑K
l=1 exp

(
θ⊤
l x

(i)
) (128)

Just like for the categorical distribution, for the i-th factor corresponding to the i-th data point, we
can write:

p
(
y(i) | Θ

)
=

K∏
k=1

ϕ
(i)
k

I
(
y
(i)
k =1

)
(129)

The likelihood is:

L(θ;D) =

N∏
i=1

p
(
y(i) | Θ

)
(130)

=

N∏
i=1

K∏
k=1

ϕ
(i)
k

I
(
y
(i)
k =1

)
(131)

15

The log-likelihood is:

ℓ(Θ;D) = log

N∏
i=1

K∏
k=1

ϕ
(i)
k

I
(
y
(i)
k =1

)
(132)

=

N∑
i=1

log

K∏
k=1

ϕ
(i)
k

I
(
y
(i)
k =1

)
(133)

=

N∑
i=1

K∑
k=1

log ϕ
(i)
k

I
(
y
(i)
k =1

)
(134)

=

N∑
i=1

K∑
k=1

I
(
y
(i)
k = 1

)
log ϕ

(i)
k (135)

The MLE is:

Θ̂MLE = argmin
θ

− ℓ(Θ;D) (136)

= argmin
θ

−
N∑
i=1

K∑
k=1

I
(
y
(i)
k = 1

)
log ϕ

(i)
k (137)

And, like the binary case, watch what happens after we make the following trivial substitutions:

y
(i)
k = I

(
y
(i)
k = 1

)
and ŷ

(i)
k = ϕ

(i)
k :

Θ̂MLE = argmin
θ

− ℓ(Θ;D) (138)

= argmin
θ

−
N∑
i=1

K∑
k=1

I
(
y
(i)
k = 1

)
log ϕ

(i)
k (139)

= argmin
θ

−
N∑
i=1

K∑
k=1

y
(i)
k log ŷ

(i)
k (140)

This is the exact same optimization as minimizing the empirical risk for multi-class logistic regression
with cross-entropy loss!!

16

	Distributions
	Bernoulli
	Categorical
	Gaussian
	Multivariate Gaussian

	Likelihood
	Examples
	Bernoulli: Flipping a coin with sides heads and tails
	Categorical: Rolling a four-sided die with sides red, green, blue, and magenta
	Gaussian: Grades on a test

	Maximum Likelihood Estimation
	Likelihood function
	Log-likelihood
	Negative log-likelihood
	Optimization for MLE
	Examples
	Notation
	Bernoulli
	Categorical
	Gaussian

	MLE for Logistic Regression
	Conditional likelihood and M(C)LE
	Logistic regression
	Binary logistic regression
	Multi-class logistic regression

