Announcements

Assignments

- HW5
 - Due Mon, 10/26, 11:59 pm
 - Start early

Recitation

No recitation this Friday

Educational Research

See section added to the end of the website

Plan

Last Time

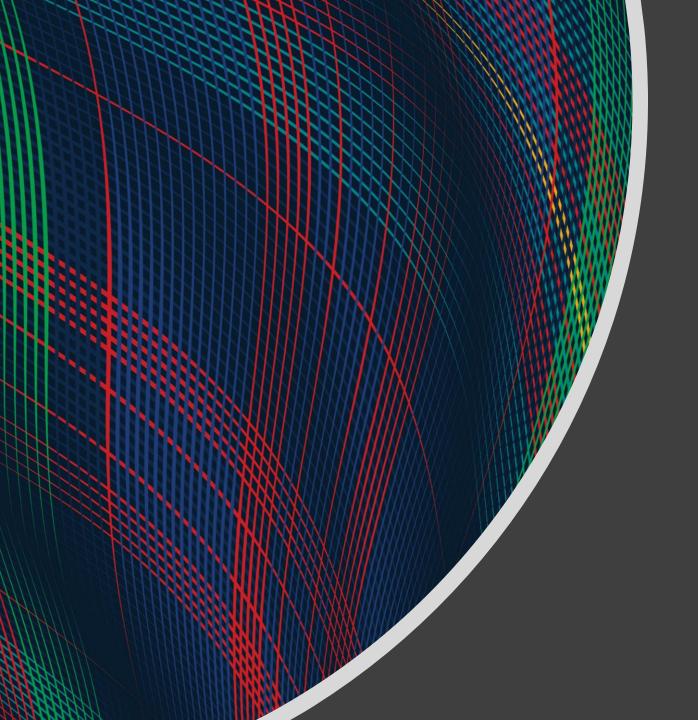
- Neural Networks
 - Calculus
 - Universal Approximation Theorem
 - Convolutional neural networks

Today

- Wrap up convolutional neural networks
- Learning Theory
 - Bias and variance
 - Learning theory model
 - Introduce PAC learning

Wrap Up Neural Networks

Neural network slides

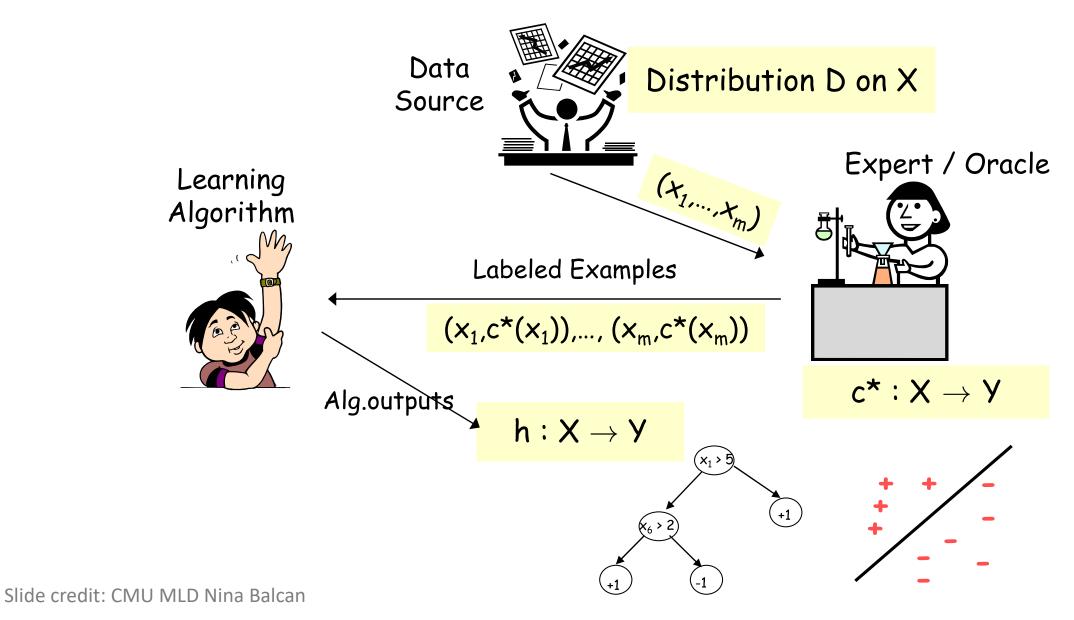


Introduction to Machine Learning

Learning Theory

Instructor: Pat Virtue

Model for Supervised Learning



Learning from Training Data

We want to learn from training data

But, we also want our hypothesis function to generalize well

- How do we characterize and quantify these properties?
- Bias and variance

Bias and Variance Examples

Slide credit: Andrew Ng, Stanford

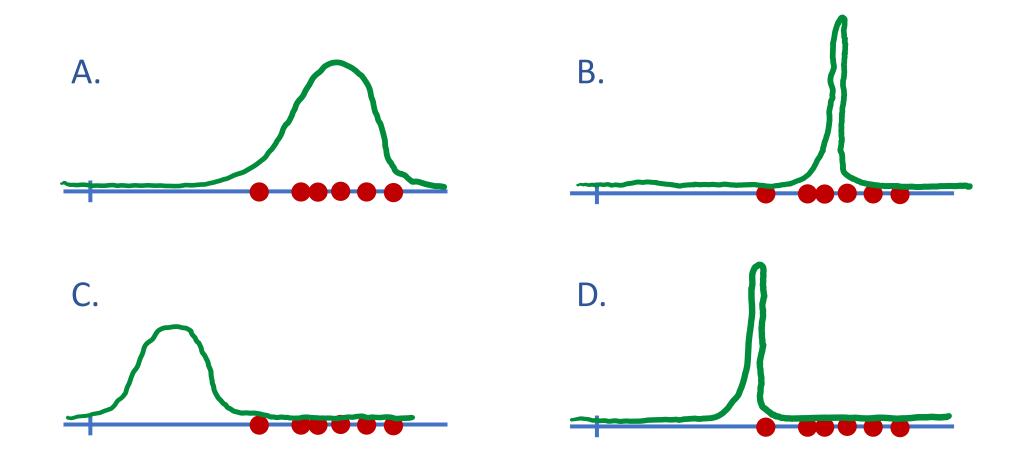
Bias and Variance Examples

Slide credit: Andrew Ng, Stanford

Piazza Polls 1 & 2

Poll 1: [SELECT TWO] Which have high variance?

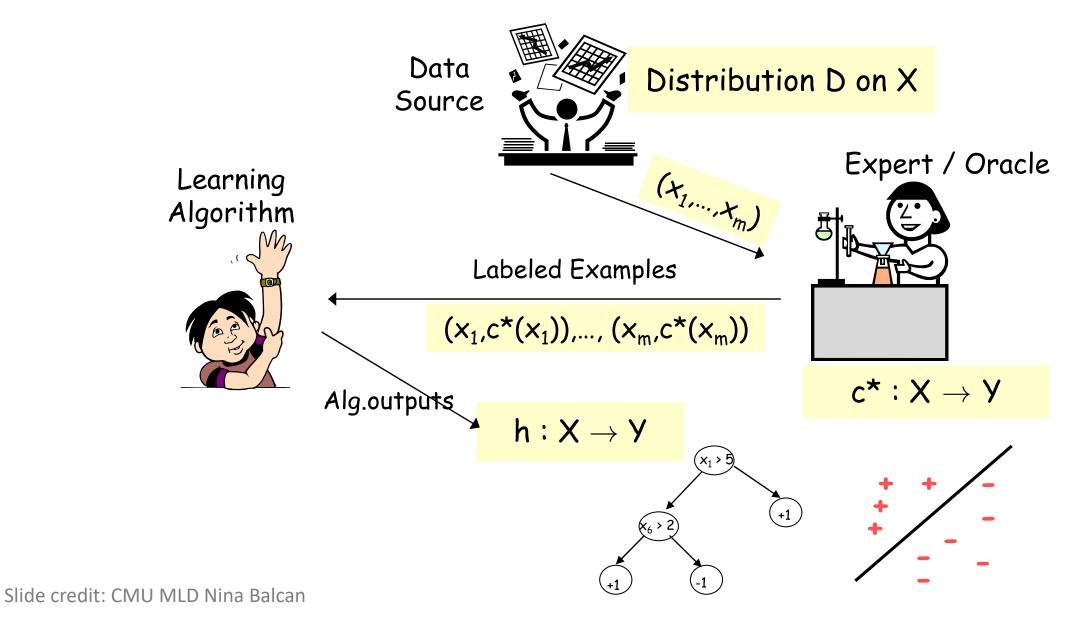
Poll 2: [SELECT TWO] Which have high bias?



Questions

- Given a classifier with zero training error, what can we say about true error (aka. generalization error)? (Sample Complexity, Realizable Case)
- Given a classifier with low training error, what can we say about true error (aka. generalization error)?
 (Sample Complexity, Agnostic Case)
- Is there a theoretical justification for regularization to avoid overfitting? (Structural Risk Minimization)

Model for Supervised Learning



Two Types of Error

1. True Error (aka. expected risk)

$$R(h) = P_{\mathbf{x} \sim p^*(\mathbf{x})}(c^*(\mathbf{x}) \neq h(\mathbf{x}))$$

2. Train Error (aka. empirical risk)

$$\hat{R}(h) = P_{\mathbf{x} \sim \mathcal{S}}(c^*(\mathbf{x}) \neq h(\mathbf{x}))$$

$$= \frac{1}{N} \sum_{i=1}^{N} \mathbb{1}(c^*(\mathbf{x}^{(i)}) \neq h(\mathbf{x}^{(i)}))$$

$$= \frac{1}{N} \sum_{i=1}^{N} \mathbb{1}(y^{(i)} \neq h(\mathbf{x}^{(i)}))$$

This quantity is always unknown

We can measure this on the training data

where $S = \{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)}\}_{i=1}^N$ is the training data set, and $\mathbf{x} \sim S$ denotes that \mathbf{x} is sampled from the empirical distribution.

PAC / SLT Model

1. Generate instances from unknown distribution p^*

$$\mathbf{x}^{(i)} \sim p^*(\mathbf{x}), \, \forall i$$
 (1)

2. Oracle labels each instance with unknown function c^{*}

$$y^{(i)} = c^*(\mathbf{x}^{(i)}), \forall i \tag{2}$$

3. Learning algorithm chooses hypothesis $h \in \mathcal{H}$ with low(est) training error, $\hat{R}(h)$

$$\hat{h} = \underset{h}{\operatorname{argmin}} \, \hat{R}(h) \tag{3}$$

4. Goal: Choose an h with low generalization error R(h)

Three Hypotheses of Interest

The **true function** c^* is the one we are trying to learn and that labeled the training data:

$$y^{(i)} = c^*(\mathbf{x}^{(i)}), \forall i \tag{1}$$

The **expected risk minimizer** has lowest true error:

$$h^* = \operatorname*{argmin}_{h \in \mathcal{H}} R(h)$$

Question:

True or False: h* and c* are always equal.

The **empirical risk minimizer** has lowest training error:

$$\hat{h} = \underset{h \in \mathcal{H}}{\operatorname{argmin}} \, \hat{R}(h) \tag{3}$$