

Announcements

Midterm 2

- Mon, 11/9, during lecture
- See Piazza for details

Schedule change

- Lecture on Friday instead of recitation
- Pre-recorded
- Suggested that you watch during your recitation timeslot
- TAs will be available during the Zoom session
- Any polls will be open all day

Plan

Last Time

- Generative models
- Naïve Bayes

$$\operatorname{argmax}_{\theta} P(y|x, \theta)$$

$$\operatorname{argmax}_{\theta} \underline{P(x, y | \theta)}$$

$$\operatorname{argmax}_{\theta} \underline{\underline{p(x | y, \theta)}} \underline{p(y | \theta)}$$

$$\operatorname{argmax}_{\theta} \underline{\underline{\prod_{m=1}^M p(x_m | y, \theta)}} \underline{p(y | \theta)}$$

Today

- Wrap up generative models and naïve Bayes
- Probability primer
- Bayes nets
- Markov chains

Wrap Up Generative Models and Naïve Bayes

Generative models and naïve Bayes slides...

Plan

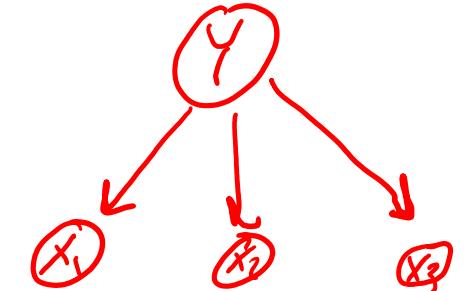
Last Time

- Generative models

$$p(x, y) = p(x | y) p(y)$$

- Naïve Bayes

$$p(x, y) = \underbrace{\prod_{m=1}^M p(x_m | y)}_{p(x | y)} p(y)$$



Today

- Bayes nets

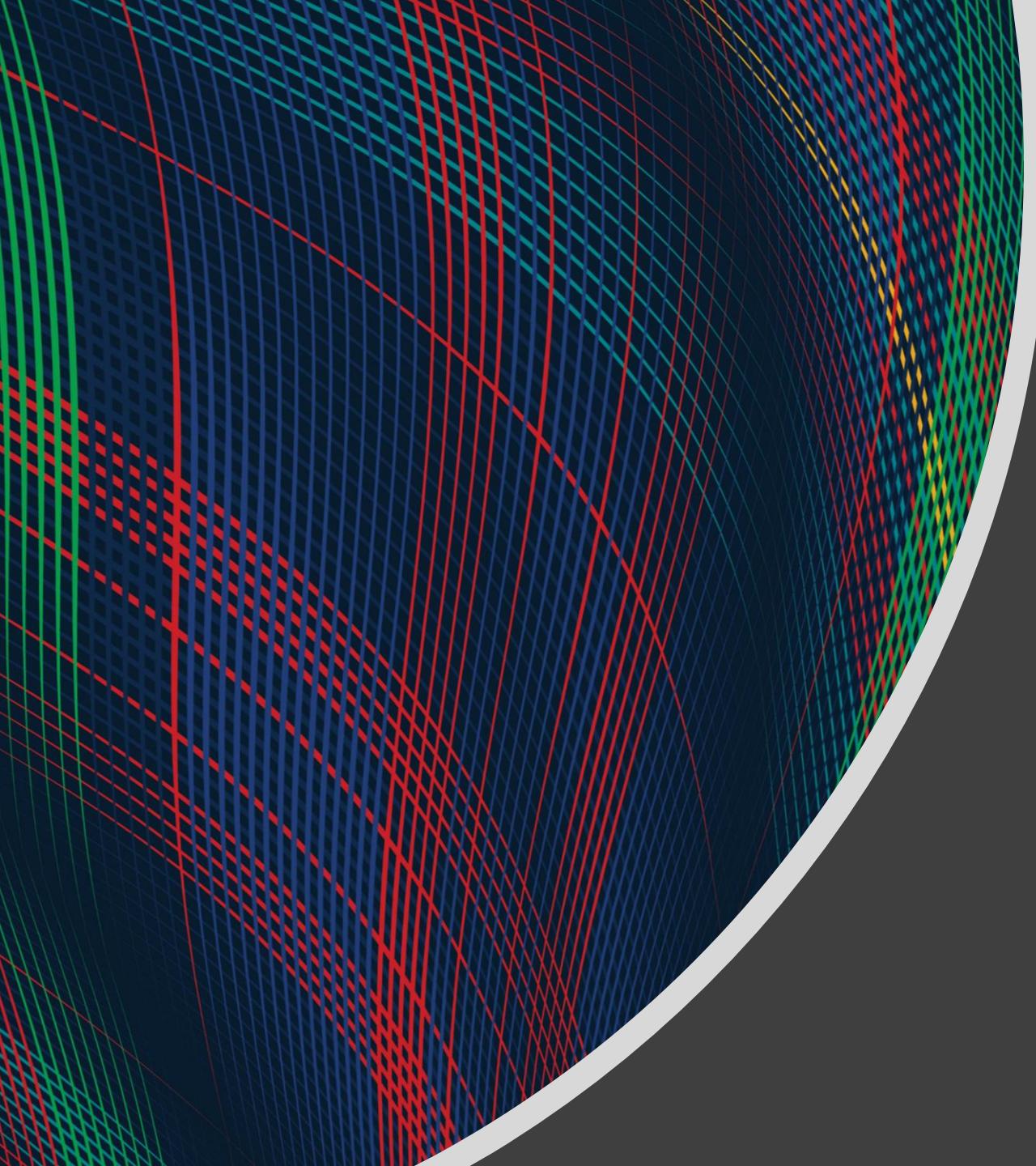
$$p(z_1, z_2, z_3, z_4, z_5) = \prod_i p(z_i | \text{parents}(z_i))$$

- Markov chains

$$p(y_1, y_2, y_3, \dots) = \underbrace{p(y_1)}_{p(y_1)} \underbrace{p(y_2 | y_1)}_{p(y_2 | y_1)} \underbrace{p(y_3 | y_2)}_{p(y_3 | y_2)} \dots$$

Next Time

- Hidden Markov models



Introduction to Machine Learning

Bayes Nets & Markov Chains

Instructor: Pat Virtue

Outline

1. Probability primer
2. Generative stories and Bayes nets
 - Bayes nets definition
 - Naïve Bayes
 - Markov chains

Probability Tools Summary

Our toolbox

- ✓ ■ Definition of conditional probability
- ✓ ■ Product Rule
- ✓ ■ Bayes' theorem

$$P(A | B) = \frac{P(A, B)}{P(B)}$$

$$P(A, B) = P(A | B)P(B)$$

$$P(B | A) = \frac{P(A | B)P(B)}{P(A)}$$

Discrete Probability Tables

$$P(Y=y | X=x)$$

Random variables, outcomes, and discrete distributions

- Capital letters/words are random variables and represent all possible discrete outcome
- Lowercase letters/words are specific outcomes of a random variable
- Example: Random variable Weather (W) with three outcomes, sun, rain, snow

Discrete probability tables

- The probability distribution for discrete random variables can be represented as a table of parameters for each outcome, i.e. a Categorical distribution

W	$P(W)$
sun	0.5
$rain$	0.4
$snow$	0.1

$\{ \quad \quad \quad \}$

\varnothing_1

\varnothing_2

\varnothing_3

Discrete Probability Tables

Joint distribution tables

- Tables contain entries of all possible combinations of outcomes for the multiple random variables
- Joint tables should sum to one
- Example: Random variables *Weather (W)* and *Traffic (T)*

$P(T = \text{light})$

.4 + .12 + .01

$P(T = \text{heavy})$

.1 + .28 + .09

$P(W, T)$

W	T	$P(W, T)$
sun	light	0.40
rain	light	0.12
snow	light	0.01
sun	heavy	0.10
rain	heavy	0.28
snow	heavy	0.09

Discrete Probability Tables

Conditional probability tables (CPT)

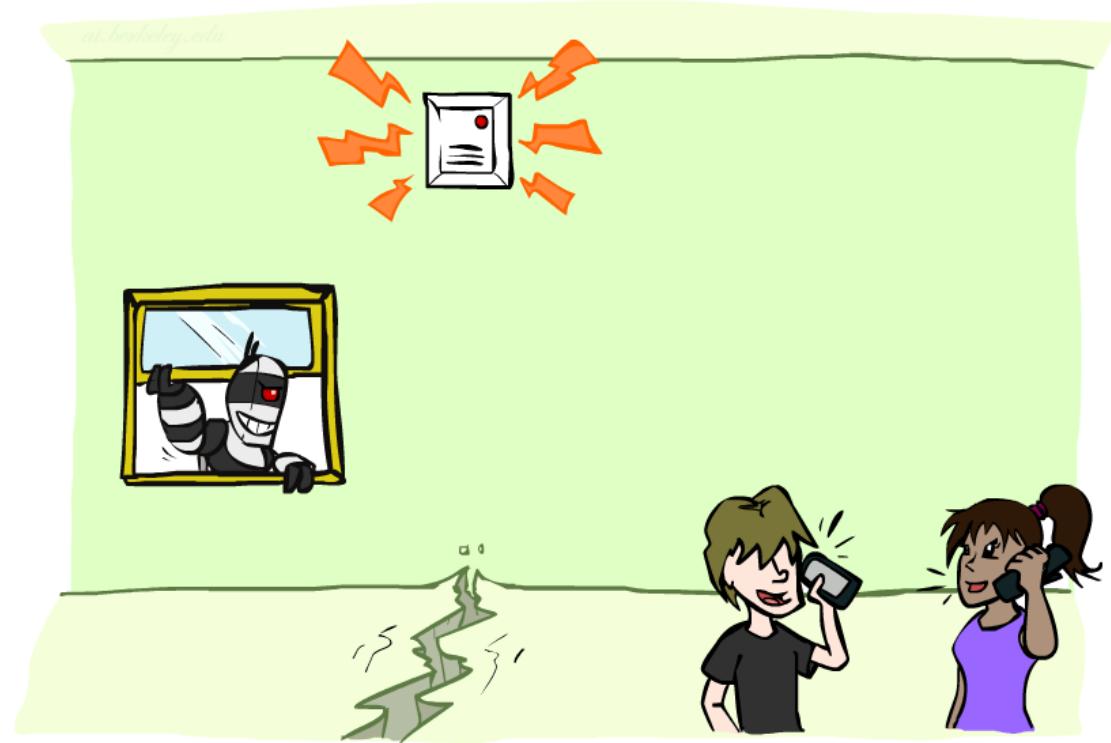
- Tables can contain entries of all possible combinations of outcomes for the multiple random variables
- Joint tables won't necessarily sum to one. Why not?
- Example: Random variables *Weather (W)* and *Traffic (T)*

W	T	$P(T W)$
sun	light	0.8
rain	light	0.3
snow	light	0.1
sun	heavy	0.2
rain	heavy	0.7
snow	heavy	0.9

Piazza Poll 2

Variables, all binary

- B: Burglary
- A: Alarm goes off
- M: Mary calls
- J: John calls
- E: Earthquake!



How many parameters are in the table $P(B, A, M, J, E)$?

- A. 1
- B. 5
- C. 10
- D. 25
- E. 2^5
- F. 5!

Image: <http://ai.berkeley.edu/>

Probability Tools Summary

Our toolbox

- Product Rule

$$P(X_1, X_2) = P(X_1 | X_2)P(X_2)$$

- Chain Rule

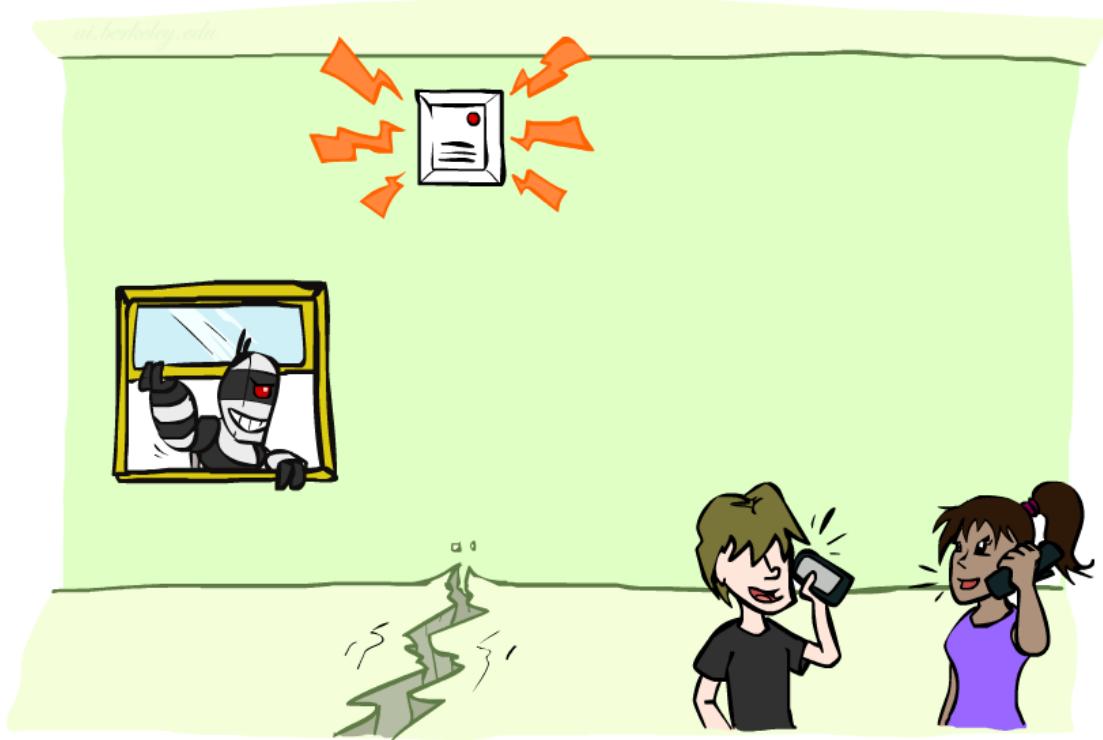
3, 2, 1 ↗
 ↓
1, 2, 3 ↗

$$\begin{aligned} P(X_1, \underline{X_2, X_3}) &= P(X_1 | \underline{X_2, X_3})P(\underline{X_2, X_3}) \\ &= P(X_1 | X_2, X_3)P(X_2 | \underline{X_3})P(\underline{X_3}) \\ P(X_1, \dots, X_N) &= \prod_{n=1}^N P(X_n | X_1, \dots, X_{n-1}) \\ &= P(X_1)P(X_2 | X_1)P(X_3 | X_1, X_2) \end{aligned}$$

Piazza Poll 3

Variables

- B: Burglary
- A: Alarm goes off
- M: Mary calls
- J: John calls
- E: Earthquake!



How many different ways can we write the chain rule for $P(B, A, M, J, E)$?

A. 1

B. 5

→ C. 5 choose 5

D. $5!$

E. 5^5

Probability Tools Summary

- Marginalization

$$P(A) = \sum_{\substack{b \in B \\ c \in C}} P(A, b, c)$$

- Normalization

$$P(B | a) = \frac{P(a, B)}{P(a)}$$

$$P(B | a) \propto P(a, B)$$

$$P(B | a) = \frac{1}{z} P(a, B)$$

$$z = P(a) = \sum_b P(a, b)$$

Probability Tools Summary

- **Independence**

If A and B are independent, then:

$$P(A, B) = P(A)P(B)$$

$$P(A | B) = P(A)$$

$$P(B | A) = P(B)$$

- **Conditional independence**

If A and B are conditionally independent given C, then:

$$P(A, B | C) = P(A | C)P(B | C)$$

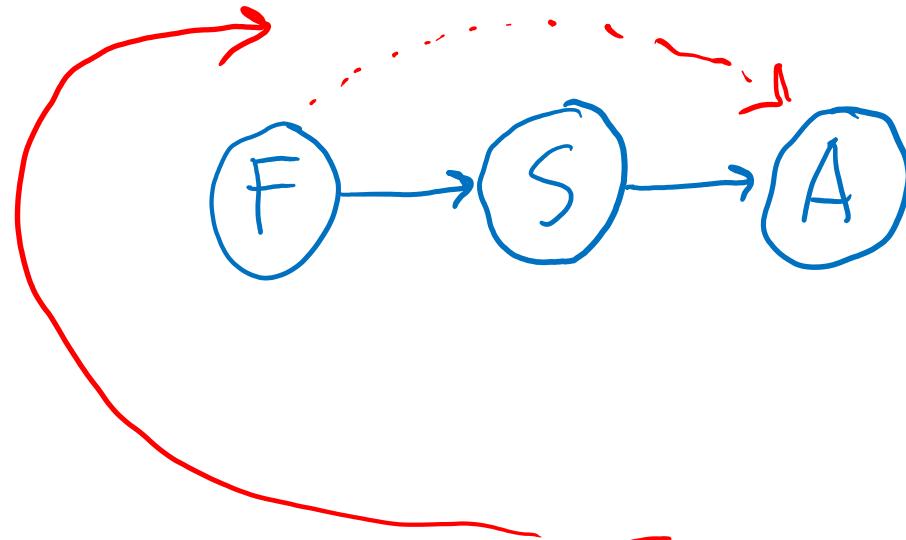
$$P(A | B, C) = P(A | C)$$

$$P(B | A, C) = P(B | C)$$

Generative Stories and Bayes Nets

Fire, Smoke, Alarm

- Generative story and Bayes net



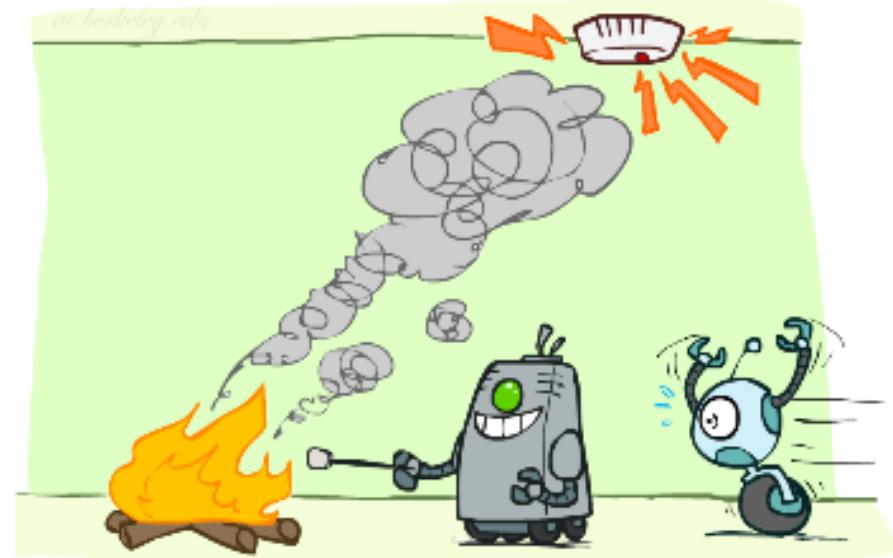
- Assumptions

$$F \perp\!\!\!\perp A \mid S$$

- Joint distribution

No assumptions: $P(F, S, A) = P(F) P(S|F) \underline{P(A|S, F)}$

With assumptions: $P(F, S, A) = P(F) P(S|F) \underline{P(A|S)}$

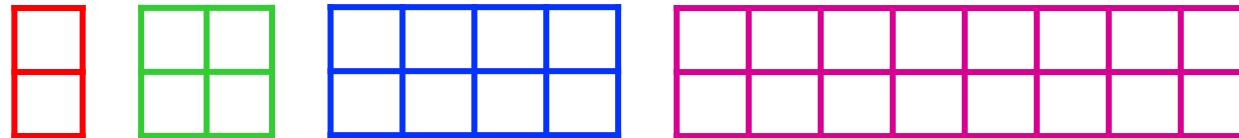


Bayesian Networks

One node per random variable

Directed-Acyclic-Graph

One CPT per node: $P(\text{node} \mid \text{Parents}(\text{node}))$

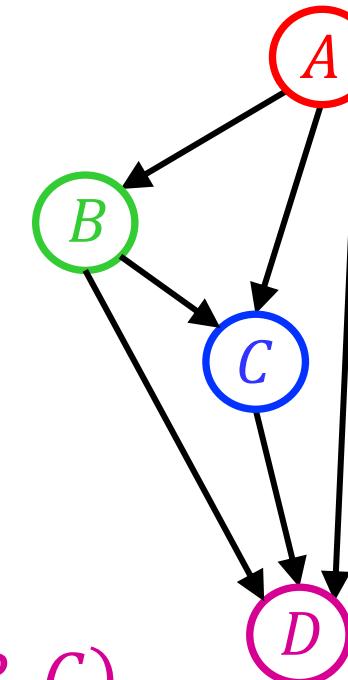


$$P(A, B, C, D) = P(A) P(B|A) P(C|A, B) P(D|A, B, C)$$

Encode joint distributions as product of conditional distributions on each variable

$$P(X_1, \dots, X_N) = \prod_i P(X_i \mid \text{Parents}(X_i)) \quad \leftarrow$$

Bayes net

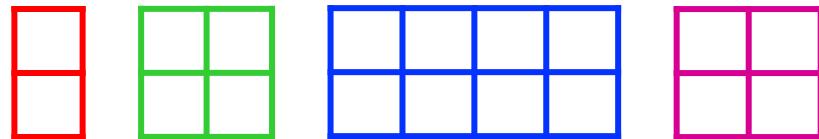


Bayesian Networks

One node per random variable

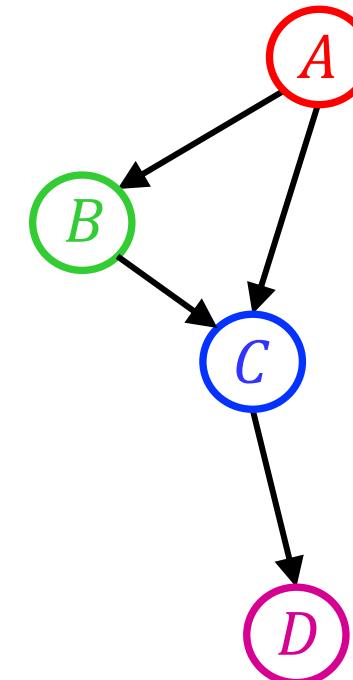
Directed-Acyclic-Graph

One CPT per node: $P(\text{node} \mid \text{Parents}(\text{node}))$



Probabilistic
Graphical
Models

Bayes net



$$P(A, B, C, D) = P(A) P(B|A) P(C|A, B) P(D|C)$$

Encode joint distributions as product of conditional distributions on each variable

$$P(X_1, \dots, X_N) = \prod_i P(X_i \mid \text{Parents}(X_i))$$