Warm-up as You Log In

Answer any query from the joint distribution

P(Weather)?

P(Weather | winter)?

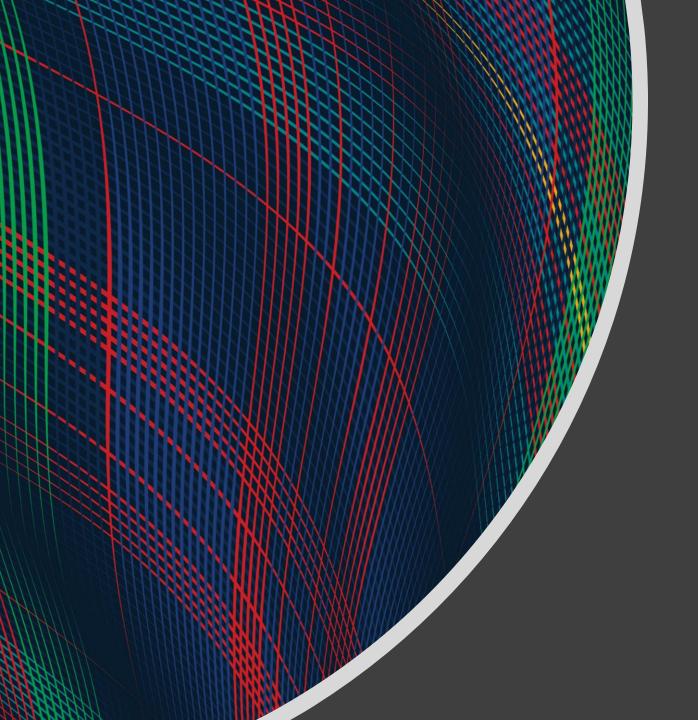
P(Weather | winter, hot)?

Season	Temp	Weather	P(S, T, W)
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

Announcements

Midterm 2

- Mon, 11/9, during lecture
- See Piazza for details



Introduction to Machine Learning

Hidden Markov Models

Instructor: Pat Virtue

Warm-up as You Log In

Answer any query from the joint distribution

P(Weather)?

P(Weather | winter)?

P(Weather | winter, hot)?

Season	Temp	Weather	P(S, T, W)
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

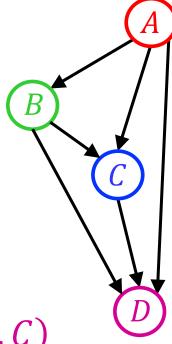
Bayesian Networks

Bayes net

One node per random variable

Directed-Acyclic-Graph

One CPT per node: P(node | Parents(node))



$$P(A,B,C,D) = P(A) P(B|A) P(C|A,B) P(D|A,B,C)$$

Encode joint distributions as product of conditional distributions on each variable

$$P(X_1, ..., X_N) = \prod_i P(X_i | Parents(X_i))$$

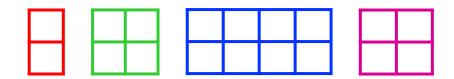
Bayesian Networks

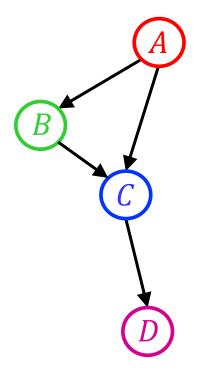
Bayes net

One node per random variable

Directed-Acyclic-Graph

One CPT per node: P(node | Parents(node))





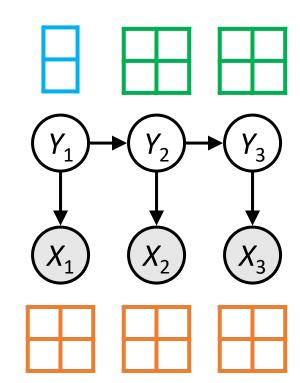
$$P(A,B,C,D) = P(A) P(B|A) P(C|A,B) P(D|C)$$

Encode joint distributions as product of conditional distributions on each variable

$$P(X_1, ..., X_N) = \prod_i P(X_i | Parents(X_i))$$

Outline

- 1. Probability primer
- 2. Generative stories and Bayes nets
 - Bayes nets definition
 - Naïve Bayes
 - Markov chains
 - Hidden Markov models
- 3. Learning HMM parameters
 - MLE for categorical distribution
- 4. Inference in Bayes Nets and HMMs



SPAM: Bag of words, naïve Bayes

Generative story and Bayes net

$$Y \sim Bern(\phi)$$

$$X_{m,y=0} \sim Bern(\theta_{m,y=0})$$

$$X_{m,y=1} \sim Bern(\theta_{m,y=1})$$

Assumptions

Joint distribution

No assumptions:

$$P(Y, X_1, X_2, X_3, X_4) = P(Y)P(X_1 \mid Y)P(X_2 \mid Y, X_1)P(X_3 \mid Y, X_1, X_2)P(X_4 \mid Y, X_1, X_2, X_3)$$

News article: Bigram

■ Generative story and Bayes net $Y \sim Categorical(\phi)$

 $X_{m,y=0} \sim Categorical(\boldsymbol{\phi}_{m,y=0})$

 $X_{m,y=1} \sim Categorical(\boldsymbol{\phi}_{m,y=1})$

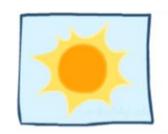
■ Joint distribution $P(Y)P(X_1 | Y)P(X_2 | Y, X_1)P(X_3 | Y, X_2)P(X_4 | Y, X_3)$

No assumptions:

 $P(Y, X_1, X_2, X_3, X_4) = P(Y)P(X_1 \mid Y)P(X_2 \mid Y, X_1)P(X_3 \mid Y, X_1, X_2)P(X_4 \mid Y, X_1, X_2, X_3)$

Weather

Generative story and Bayes net



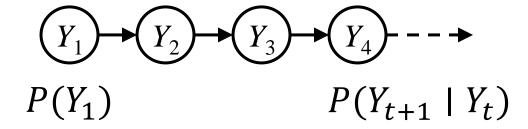
Assumptions

Joint distribution

Image: http://ai.berkeley.edu/

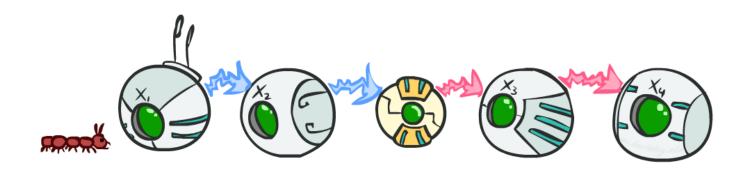
Markov Models

Value of Y at a given time is called the state



- Parameters: called transition probabilities or dynamics, specify how the state evolves over time (also, initial state probabilities)
- Stationarity assumption: transition probabilities the same at all times

Markov Model Conditional Independence



Basic conditional independence:

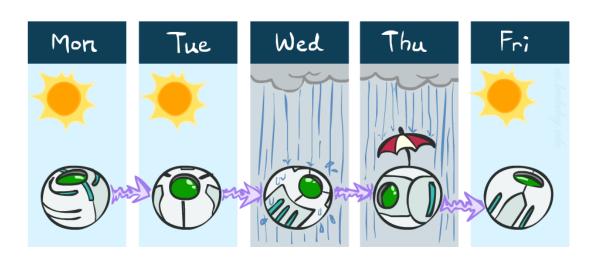
- Past and future independent given the present
- Each time step only depends on the previous
- This is called the (first order) Markov property

Image: http://ai.berkeley.edu/

States: Y = {rain, sun}

- Initial distribution: 1.0 sun
- Conditional probability table (CPT) $P(Y_t | Y_{t-1})$:

Y _{t-1}	Y _t	$P(Y_t Y_{t-1})$
sun	sun	0.9
sun	rain	0.1
rain	sun	0.3
rain	rain	0.7



Two other ways of representing the same CPT

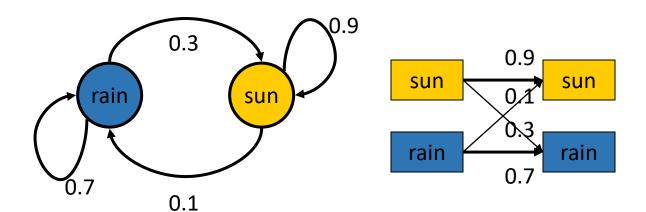
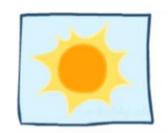


Image: http://ai.berkeley.edu/

Weather, Umbrella

Generative story and Bayes net



Assumptions

Joint distribution

Image: http://ai.berkeley.edu/

Hidden Markov Models

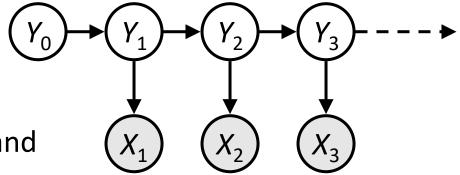
Image: http://ai.berkeley.edu/

Hidden Markov Models

Usually the true state is not observed directly

Hidden Markov models (HMMs)

- Underlying Markov chain over states Y
- You observe evidence X at each time step
- Y_t is a single discrete variable; X_t may be continuous and may consist of several variables

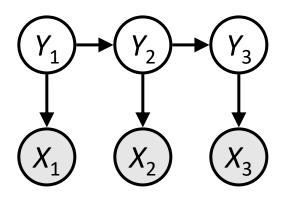


HMM conditional independence

- Past Y and future Y independent given the present Y_t
- Past X and future X independent given the present Y_t
- Past X and future Y independent given the present Y_t
- Past Y and future X independent given the present Y_t

Speech recognition

Generative story and Bayes net



- Assumptions: HMM conditional independence assumptions
- Joint distribution: $P(Y_1, \dots, Y_T, X_1, \dots X_T) = P(Y_1) \prod P(Y_{t+1} \mid Y_t) \prod P(X_t \mid Y_t)$

Image: http://ai.berkeley.edu/

Example: Weather HMM

An HMM is defined by:

■ Initial distribution: $P(W_0)$

■ Transition model: $P(W_t | W_{t-1})$

■ Emission model: $P(U_t | W_t)$

W_{t-1}	$P(W_{t} W_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

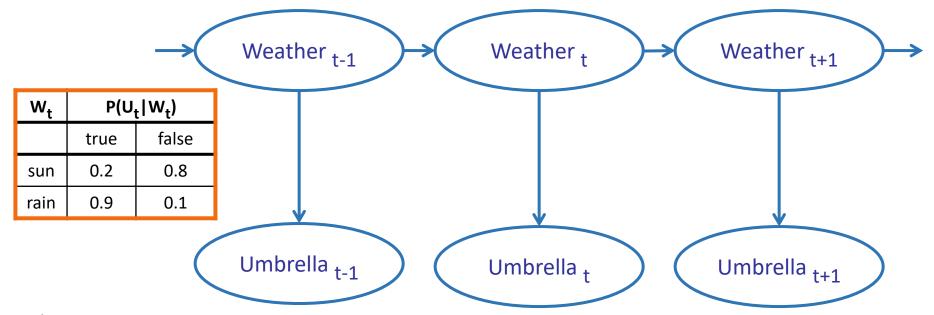
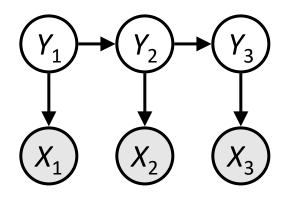
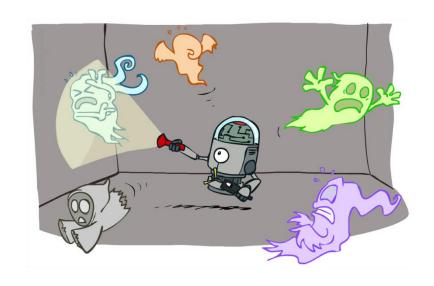


Image: http://ai.berkeley.edu/

Tracking: Ghostbusting

Generative story and Bayes net



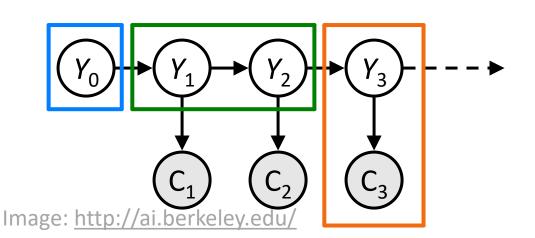


Assumptions: HMM conditional independence assumptions

■ Joint distribution: $P(Y_1, \dots, Y_T, X_1, \dots X_T) = P(Y_1) \prod P(Y_{t+1} \mid Y_t) \prod P(X_t \mid Y_t)$

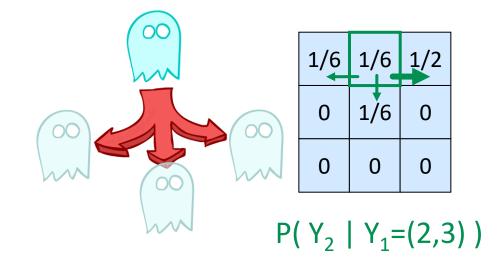
Example: Ghostbusters HMM

- State: location of moving ghost
- Observations: Color recorded by ghost sensor at clicked squares
- $P(Y_0) = uniform$
- $P(Y_t \mid Y_{t-1})$ = usually move clockwise, but sometimes move randomly or stay in place
- P($C_t \mid Y_t$) = sensor model: red means close, green means far away.



1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

 $P(Y_1)$



Outline

- 1. Probability primer
- 2. Generative stories and Bayes nets
 - Bayes nets definition
 - Naïve Bayes
 - Markov chains
 - Hidden Markov models
- 3. Learning HMM parameters
 - MLE for categorical distribution
- 4. Inference in Bayes Nets and HMMs

Assume Y is a discrete random variable taking on 7 distinct values. For example choice of fruit on a given day:

 $y \in \{apple, banana, orange, strawberry, watermelon, pear, grape\}$

How many entries are in the conditional probability table $P(Y_{t+1} \mid Y_t)$?

- A. 7
- B. 14
- C. 49
- D. 2⁷
- E. 7!

Which of the following expressions always equal one? Select ALL that apply

A.
$$P(y_{t+1} | y_t)$$

B. $\sum_{y_t \in \mathcal{Y}} P(y_{t+1} | y_t)$
C. $\sum_{y_{t+1} \in \mathcal{Y}} P(y_{t+1} | y_t)$
D. $\sum_{y_{t+1} \in \mathcal{Y}} \sum_{y_t \in \mathcal{Y}} P(y_{t+1} | y_t)$

If it's helpful, consider the fruit example: $y \in \{apple, banana, orange, strawberry, watermelon, pear, grape\}$

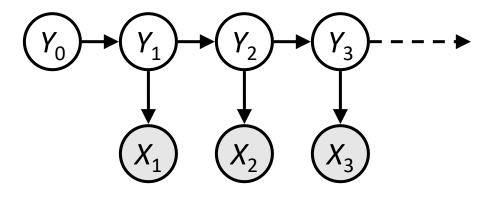
How do could we estimate $P(Y_{t+1} = b | Y_t = a)$ from data?

- A. #(start in state a, end in state b) / #(start in state a)
- B. #(start in state a, end in state b) / #(end in state b)
- C. I have no idea

#() notation is the count of occurrences

HMM MLE

Estimate probabilities of categorical distributions



Parameters for:

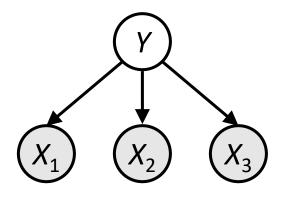
Initial: $P(Y_0)$

Transition: $P(Y_t | Y_{t-1})$

Emission: $P(X_t | Y_t)$

Reminder: Naïve Bayes MLE

SPAM: Bag of words, naïve Bayes



Parameters for:

Class prior: P(Y)

Class conditional: $P(X_m \mid Y)$

Reminder: Naïve Bayes MLE

$$L(\phi, \mathbf{\Theta}) = p(\mathcal{D} \mid \phi, \mathbf{\Theta}) \qquad \qquad y^{(n)} \in \{0, 1\} \\ x^{(n)} \in \{0, 1\}^{M} \\ = \prod_{n=1}^{N} p(\mathcal{D}^{(n)} \mid \phi, \mathbf{\Theta}) \qquad \text{i.i.d assumption} \qquad \phi \in [0, 1]^{M} \\ = \prod_{n=1}^{N} p(\mathbf{y}^{(n)}, \mathbf{x}^{(n)} \mid \phi, \mathbf{\Theta}) \qquad \qquad \Theta \in [0, 1]^{M \times 2} \\ = \prod_{n=1}^{N} p(\mathbf{y}^{(n)} \mid \phi) p(\mathbf{x}^{(n)} \mid \mathbf{y}^{(n)}, \mathbf{\Theta}) \qquad \text{Generative model} \\ = \prod_{n=1}^{N} p(\mathbf{y}^{(n)} \mid \phi) p(\mathbf{x}^{(n)}, \mathbf{x}^{(n)}_{2}, \dots, \mathbf{x}^{(n)}_{M} \mid \mathbf{y}^{(n)}, \mathbf{\Theta}) \\ = \prod_{n=1}^{N} p(\mathbf{y}^{(n)} \mid \phi) p(\mathbf{x}^{(n)}_{1}, \mathbf{x}^{(n)}_{2}, \dots, \mathbf{x}^{(n)}_{M} \mid \mathbf{y}^{(n)}, \mathbf{\Theta}) \\ = \prod_{n=1}^{N} p(\mathbf{y}^{(n)} \mid \phi) p(\mathbf{x}^{(n)}_{1}, \mathbf{x}^{(n)}_{2}, \dots, \mathbf{x}^{(n)}_{M} \mid \mathbf{y}^{(n)}, \mathbf{\Theta}) \qquad \text{Na\"{ive Bayes}} \\ = \prod_{n=1}^{N} p(\mathbf{y}^{(n)} \mid \phi) p(\mathbf{x}^{(n)}_{1} \mid \mathbf{y}^{(n)}, \mathbf{\theta}_{m,1}) p(\mathbf{y}^{(n)}_{1} \mid \mathbf{\theta}^{(n)}_{m,1} p(\mathbf{y}^{(n)}_{1} \mid \mathbf{\theta}^{(n)}_{m,1}) p(\mathbf{y}^{(n)}_{1} \mid \mathbf{\theta}^{(n)}_{m,1} p(\mathbf{y}^{(n)}_{1} \mid \mathbf{\theta}^{(n)}_{m,1}) p(\mathbf{y}^{(n)}_{1} \mid \mathbf{\theta}^{(n)}_{m,1} p(\mathbf{y}^{(n)}_{1} \mid \mathbf{\theta}^{(n)}_{m,1}) p(\mathbf{y}^{(n)}_{1} \mid \mathbf{\theta}^{(n)}_{m,1} p(\mathbf{y}^{(n)}_{1} \mid \mathbf{\theta}^{(n)}_{m,1} p(\mathbf{y}^{(n)}_{1} \mid \mathbf{\theta}^{(n)}_{m,1}) p(\mathbf{y}^{(n)}_{1} \mid \mathbf{\theta}^{(n)}_{m,1} p(\mathbf{y}^{(n)}_{1} \mid \mathbf{\theta}^{(n)}_{1} p(\mathbf{y}^{(n)}_{1} p(\mathbf{y}^{(n)}_{1} \mid \mathbf{\theta}^{(n)}_{1} p(\mathbf{y}^{(n)}_{1} p(\mathbf{y}^{(n)}_{1} p(\mathbf{y}^{(n)}_{1} p(\mathbf{y}^{(n)}_{1} p(\mathbf{y}^{(n)}_{1} p(\mathbf{y}^{(n)}_{1} p(\mathbf{y}^{(n)}_{1}$$

 $\mathcal{D} = \left\{ y^{(n)}, \boldsymbol{x}^{(n)} \right\}_{n=1}^{N}$

Reminder: Naïve Bayes MLE

$$\begin{split} L(\phi, \mathbf{\Theta}) &= p(\mathcal{D} \mid \phi, \mathbf{\Theta}) \\ &= \phi^{N_{y=1}} (1 - \phi)^{N_{y=0}} \, \Pi_{m=1}^{M} \, \theta_{m,1}^{N_{y=1,x_{m=1}}} \left(1 - \theta_{m,1} \right)^{N_{y=1,x_{m=0}}} \theta_{m,0}^{N_{y=0,x_{m=1}}} \left(1 - \theta_{m,0} \right)^{N_{y=0,x_{m=0}}} \\ \ell(\phi, \mathbf{\Theta}) &= \log p(\mathcal{D} \mid \phi, \mathbf{\Theta}) \\ &= N_{y=1} \log \phi + N_{y=0} \log (1 - \phi) \\ &+ \sum_{m=1}^{M} \, N_{y=1,x_{m=1}} \, \log \theta_{m,1} + N_{y=1,x_{m=0}} \log \left(1 - \theta_{m,1} \right) \\ &+ \sum_{m=1}^{M} \, N_{y=0,x_{m=1}} \, \log \theta_{m,0} + N_{y=0,x_{m=0}} \log \left(1 - \theta_{m,0} \right) \end{split}$$

Optimization breaks down for each parameter:

• Set
$$\frac{\partial \ell}{\partial \phi}$$
 equal to zero and solve: $\phi = \frac{N_{y=1}}{N_{y=1} + N_{y=0}} = \frac{N_{y=1}}{N}$

■ Set
$$\frac{\partial \ell}{\partial \theta_{m,1}}$$
 equal to zero and solve: $\theta_{m,1} = \frac{N_{y=1,x_{m}=1}}{N_{y=1,x_{m}=1}+N_{y=1,x_{m}=0}} = \frac{N_{y=1,x_{m}=1}}{N_{y=1}}$

HMM MLE

Categorical distributions

- Initial: $Y_0 \sim Categorical(\phi_{initial}), y_0 \in \{1 \dots J\}$
- Transition (given $Y_t = y_t$): $Y_{t+1} \sim Categorical(\phi_{trans,y_t})$, $y_{t+1} \in \{1 ... J\}$
- Emission (given $Y_t = y_t$): $X_t \sim Categorical(\phi_{emiss,y_t})$, $x_t \in \{1 ... K\}$

Optimization breaks down for each parameter:

(With Lagrange multiplier trick on constraint that each $m{\phi}$ vector sum to 1, $\sum_i \phi_i = 1$)

- Set $\frac{\partial \ell}{\partial \phi_{initial,j}}$ equal to zero and solve: $\phi_{initial,j} = \frac{\#(Y_0 = j)}{\sum_{i=1}^J \#(Y_0 = i)} = \frac{\#(Y_0 = j)}{N}$
- $\blacksquare \text{ Set } \frac{\partial \ell}{\partial \phi_{emiss,y_t,k}} \text{ equal to zero and solve: } \phi_{emiss,y_t,k} = \frac{\#(X_t = k,Y_t = y_t)}{\sum_{i=1}^K \#(X_t = i,Y_t = y_t)} = \frac{\#(X_t = k,Y_t = y_t)}{\#(Y_t = y_t)}$

Outline

- 1. Probability primer
- 2. Generative stories and Bayes nets
 - Bayes nets definition
 - Naïve Bayes
 - Markov chains
 - Hidden Markov models
- 3. Learning HMM parameters
 - MLE for categorical distribution
- 4. Inference in Bayes Nets and HMMs

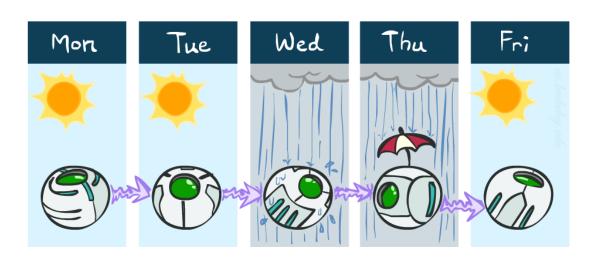
Outline

- 1. Probability primer
- 2. Generative stories and Bayes nets
 - Bayes nets definition
 - Naïve Bayes
 - Markov chains
 - Hidden Markov models
- 3. Learning HMM parameters
 - MLE for categorical distribution
- 4. Inference in Bayes Nets and HMMs

States: Y = {rain, sun}

- Initial distribution: 1.0 sun
- Conditional probability table (CPT) $P(Y_t | Y_{t-1})$:

Y _{t-1}	Y _t	$P(Y_t Y_{t-1})$
sun	sun	0.9
sun	rain	0.1
rain	sun	0.3
rain	rain	0.7



Two other ways of representing the same CPT

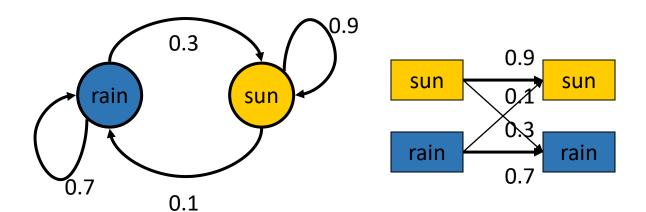
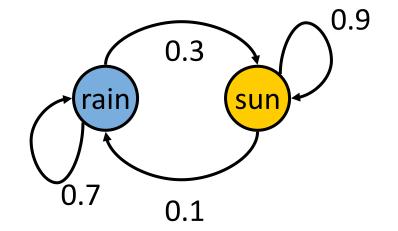


Image: http://ai.berkeley.edu/

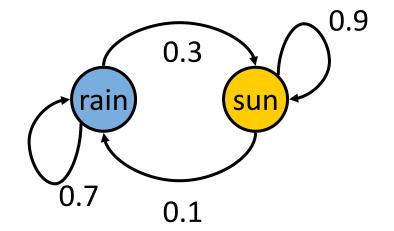
Initial distribution: $P(Y_1 = sun) = 1.0$

What is the probability distribution after one step?

$$P(Y_2 = sun) = ?$$



Initial distribution: $P(Y_1 = sun) = 1.0$



What is the probability distribution after one step?

$$P(Y_2 = sun) = ?$$

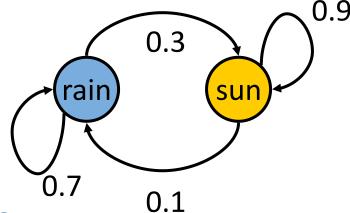
$$P(Y_2 = sun) = \sum_{y_1} P(Y_1 = y_1, Y_2 = sun)$$

$$= \sum_{y_1} P(Y_2 = sun \mid Y_1 = y_1) P(Y_1 = y_1)$$

$$= P(Y_2 = sun \mid Y_1 = sun) P(Y_1 = sun) + P(Y_2 = sun \mid Y_1 = rain) P(Y_1 = rain)$$

$$= 0.9 \cdot 1.0 + 0.3 \cdot 0.0 = 0.9$$

Initial distribution: $P(Y_2 = sun) = 0.9$

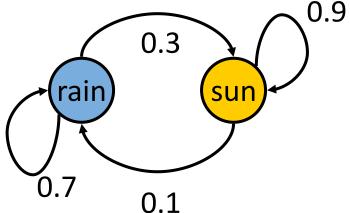


What is the probability distribution after the next step?

$$P(Y_3 = sun) = ?$$

- A) 0.81
- B) 0.84
- C) 0.9
- D) 1.0
- E) 1.2

Initial distribution: $P(Y_2 = sun) = 0.9$



What is the probability distribution after the next step?

$$P(Y_3 = sun) = ?$$

A) 0.81
$$P(Y_3 = sun) = \sum_{y_2} P(Y_2 = y_2, Y_3 = sun)$$

$$= \sum_{y_2} P(Y_3 = sun \mid Y_2 = y_2) P(Y_2 = y_2)$$

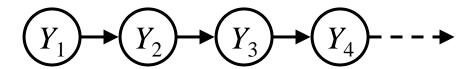
$$= P(Y_3 = sun \mid Y_2 = sun) P(Y_2 = sun) + P(Y_3 = sun \mid Y_2 = rain) P(Y_2 = rain)$$

$$= 0.9 \cdot 0.9 + 0.3 \cdot 0.1$$

$$= 0.81 + 0.3$$

= 0.84

Markov Chain Inference



If you know the transition probabilities, $P(Y_t \mid Y_{t-1})$, and you know $P(Y_4)$, write an equation to compute $P(Y_5)$.

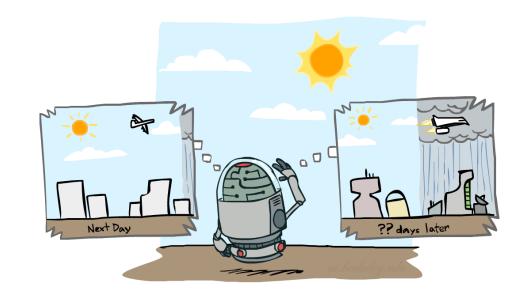


Image: http://ai.berkeley.edu/

Markov Chain Inference

$$Y_1 \rightarrow Y_2 \rightarrow Y_3 \rightarrow Y_4 - - - \rightarrow$$

If you know the transition probabilities, $P(Y_t \mid Y_{t-1})$, and you know $P(Y_4)$, write an equation to compute $P(Y_5)$.

$$P(Y_5) = \sum_{y_4} P(y_4, Y_5)$$
$$= \sum_{y_4} P(Y_5 \mid y_4) P(y_4)$$

Markov Chain Inference

$$Y_1 \rightarrow Y_2 \rightarrow Y_3 \rightarrow Y_4 - - \rightarrow$$

If you know the transition probabilities, $P(Y_t \mid Y_{t-1})$, and you know $P(Y_4)$, write an equation to compute $P(Y_5)$.

$$P(Y_5) = \sum_{y_1, y_2, y_3, y_4} P(y_1, y_2, y_3, y_4, Y_5)$$

$$= \sum_{y_1, y_2, y_3, y_4} P(Y_5 \mid y_4) P(y_4 \mid y_3) P(y_3 \mid y_2) P(y_2 \mid y_1) P(y_1)$$

$$= \sum_{y_4} P(Y_5 \mid y_4) \sum_{y_1, y_2, y_3} P(y_4 \mid y_3) P(y_3 \mid y_2) P(y_2 \mid y_1) P(y_1)$$

$$= \sum_{y_4} P(Y_5 \mid y_4) \sum_{y_1, y_2, y_3} P(y_1, y_2, y_3, y_4)$$

$$= \sum_{y_4} P(Y_5 \mid y_4) P(y_4)$$

States {rain, sun}

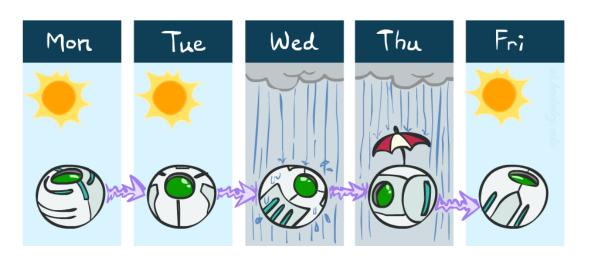
• Initial distribution $P(Y_0)$

P(Y _o)		
sun rain		
0.5	0.5	

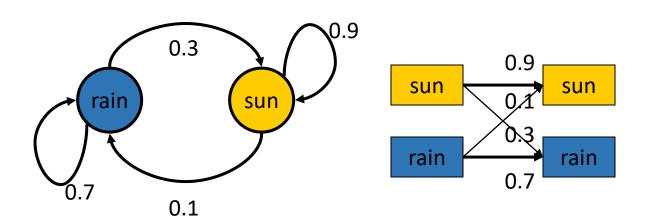
• Transition model $P(X_t \mid X_{t-1})$

Y _{t-1}	$P(Y_t Y_{t-1})$	
	sun rain	
sun	0.9	0.1
rain	0.3	0.7

Image: http://ai.berkeley.edu/



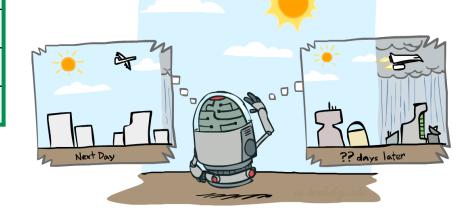
Two other ways of representing the same CPT



Weather prediction

Time 0:
$$P(Y_0) = <0.5, 0.5>$$

Y _{t-1}	$P(Y_{t} Y_{t-1})$	
	sun rain	
sun	0.9	0.1
rain	0.3	0.7



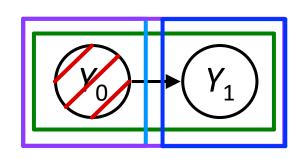
What is the weather like at time 1?

$$P(Y_1) = \sum_{y_0} P(Y_0 = y_0, Y_1)$$

$$= \sum_{y_0} P(Y_1 | Y_0 = y_0) P(Y_0 = y_0)$$

$$= 0.5 < 0.9, 0.1 > + 0.5 < 0.3, 0.7 >$$

$$= < 0.6, 0.4 >$$



Weather prediction, contd.

Time 1:
$$P(Y_1) = <0.6, 0.4>$$

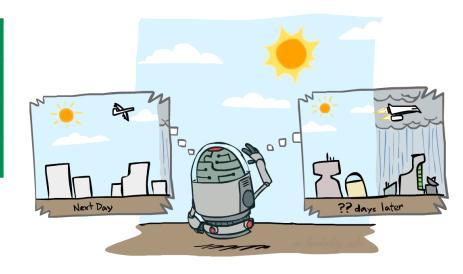
Y _{t-1}	$P(Y_{t} Y_{t-1})$	
	sun rain	
sun	0.9	0.1
rain	0.3	0.7

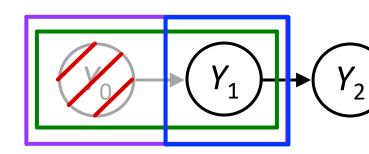
$$P(Y_2) = \sum_{y_1} P(Y_1 = y_1, Y_2)$$

$$= \sum_{y_1} P(Y_2 | Y_1 = y_1) P(Y_1 = y_1)$$

$$= 0.6 < 0.9, 0.1 > + 0.4 < 0.3, 0.7 >$$

$$= < 0.66, 0.34 >$$

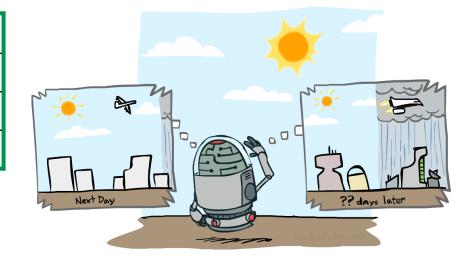




Weather prediction, contd.

Time 2:
$$P(Y_2) = <0.66, 0.34>$$

Y _{t-1}	$P(Y_{t} Y_{t-1})$	
	sun rain	
sun	0.9	0.1
rain	0.3	0.7



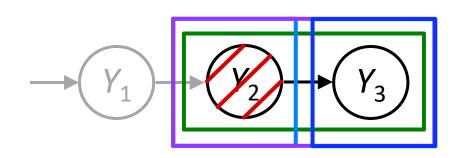
What is the weather like at time 3?

$$P(Y_3) = \sum_{y_2} P(Y_2 = y_2, Y_3)$$

$$= \sum_{y_2} P(Y_3 | Y_2 = y_2) P(Y_2 = y_2)$$

$$= 0.66 < 0.9, 0.1 > + 0.34 < 0.3, 0.7 >$$

$$= < 0.696, 0.304 >$$



Forward algorithm (simple form)

Transition model

Probability from previous iteration

What is the state at time *t*?

$$P(Y_t) = \sum_{y_{t-1}} P(Y_{t-1} = y_{t-1}, Y_t)$$

$$= \sum_{y_{t-1}} P(Y_t | Y_{t-1} = y_{t-1}) P(Y_{t-1} = y_{t-1})$$

Iterate this update starting at t=1

Inference: Hidden Markov Models

Image: http://ai.berkeley.edu/

HMM as Probability Model

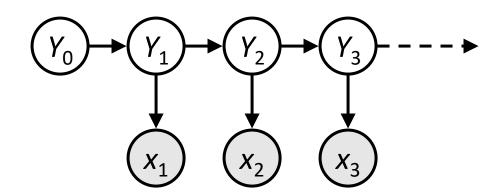
Joint distribution for Markov model:

$$P(Y_0,...,Y_T) = P(Y_0) \prod_{t=1:T} P(Y_t \mid Y_{t-1})$$

Joint distribution for hidden Markov model:

$$P(Y_0, Y_1, X_1, ..., Y_T, X_T) = P(Y_0) \prod_{t=1:T} P(Y_t \mid Y_{t-1}) P(X_t \mid Y_t)$$

- Future states are independent of the past given the present
- Current evidence is independent of everything else given the current state
- Are evidence variables independent of each other?



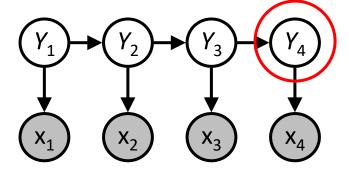
Notation alert!

Useful notation: $Y_{a:b} = Y_a$, Y_{a+1} , ..., Y_b

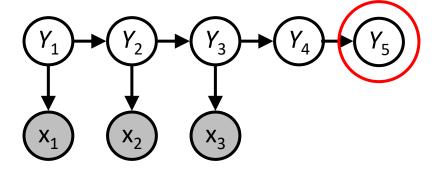
For example: $P(Y_{1:2} \mid x_{1:3}) = P(Y_1, Y_2, | x_1, x_2, x_3)$

HMM Queries

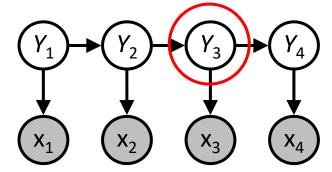
Filtering: $P(Y_t|X_{1:t})$



Prediction: $P(Y_{t+k}|X_{1:t})$



Smoothing: $P(Y_k|x_{1:t})$, k < t



Explanation: $P(Y_{1:t}|X_{1:t})$

