Announcements

Assignments

HWS8: due Thu, 12/3, 11:59 pm
HW9

= Qut Friday

= Due Wed, 12/9, 11:59 pm

* The two slip days are free (last possible submission
Fri, 12/11, 11:59 pm)

Final Exam

Mon, 12/14
Stay tuned to Piazza for more details



Introduction to
Machine Learning

Support Vector
Machines

Instructor: Pat Virtue




Support Vector Machines

Find linear separator with maximum margin




Previous Piazza Poll

As the magnitude of w increases, will the distance between the contour
lines of y = w!x + b increase or decrease?
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Support Vector Machines

Find linear separator with maximum margin
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Linear Separability
Data
D={x®,y0}"  xeRM, ye{-1+1}

S—

Linearly separable iff:
Iw,b  s.t. wax®W+pb>0 if yO =+1 and
| wix® 4 b <0 if y© = -1




Linear Separability

Data
D={x®,y0}"  xeRM, ye{-1+1}

Linearly separable iff:
Iw,b  s.t. wax®W+pb>0 if yO =+1 and
wix®W+h<0 if yO =-1
< 3awb  s.t. yOWwTx® +p) >0
< 3w,b,c s.t. y(i)(wa(i) + b) > c and c>0




| \/ MaX  Widdk
Piazza Poll 1 (€% st

Are these two statements equivalent?
—>3w,b,c s.t. yD(wl'x® +b)> ¢
—3w,b s.t. yW® (/v;Tx(i) + /\5) >1
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Linear Separability

Data
D={x®,y0}"  xeRM, ye{-1+1}

Linearly separable iff:
Iw,b  s.t. wax®W+pb>0 if yO =+1 and
wix®W+h<0 if yO =-1
< 3awb  s.t. yOWwTx® +p) >0
< 3w,b,c s.t. y(i)(wa(i) + b) > c and c>0
o 3awb st yOWxO +p)>1<




. _P/o'\ed ron
Support Vector Machines %
Find linear separator with maximum margin 4= Wi, \lw((
Let x,and x_ be hypothetical points on the +/- margin
from the decision boundary

Jw,b  s.t. yO(wlxW +ph)>1
< dw,b s.t. wix, +b>+1 and
wix_+b< -1

2

Consider the vector from x_ to x, and its
projection onto the vector w:
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Support Vector Machines width = 2

Find linear separator with maximum margin

max "width" wT
w,b Ktf_
st. yO(wlx® + p) (1) Vi
T W7
W\'O‘H‘s = (X-L—— XVB X*b:‘
- (I[ul (.L_’;’SV %})
_ 1 _{.
= vl (0'55 N 4’5} WIXAb=l Wy e ]
= 2 Wix=l-b wTx_=-1-b



Support Vector Machines width = ol
2

Find linear separator with maximum margin

argmax width
w,b




Support Vector Machines —>| width =

Find linear separator with maximum margin

[wll,

argmax width

w,b
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w,b 2
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w,b 2
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SVM Optimization

Quadratic program!
i 1 T /
min  w'w [\

W,

st. yO(wlx® +p) >1
o) =)
B >’m <0TKMB < —|
y(iBXC‘\T H < -

-

Quadratic Program
min  x'Qx+c'x
X
s.t. Ax=<b




SVM Optimization

How did we go from maximizing margin to minimizing ||w||,?



SVM Optimization

How did we go from maximizing margin to minimizing ||w||,?
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Y= —1 RN %,
Saa A y=-1 e Tty =1
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Linear Separability

Data
D={x®,y0}"  xeRM, ye{-1+1}

Linearly separable iff:
Iw,b  s.t. wax®W+pb>0 if yO =+1 and

wix®W +p<0 if y®=-1



Support Vector Machines width = ”W: (x,-x_)
w
Find linear separator with maximum margin
max "width"
w,b

st. yOwlxW +p)>1 vi




S\/I\/I Opt|m|zat|on Quadratic Program

min x'Qx + c'x
X

Quadratic program! s.t. Ax < b
. 1 2

min - [lw

nin - lwl|3

st. yOwix® +b)>1 vi




Constrained Optimization

Linear Program

min clx
X

S.t. Ax<b

Solvers

= Simplex
" [nterior point methods

Quadratic Program

min  x'Qx + c'x
X

Solvers

S.t. Ax < b

Conjugate gradient
Ellipsoid method
Interior point methods




Constrained Optimization

Linear Program Quadratic Program
min  c¢'x min  x'Qx+c'x
X X
S.t. Ax=<b S.t. Ax < b
Solvers Special Case
= Simplex " |f Q is positive-definite, the

= Interior point methods problem is convex

" (@ is positive-definite if:
vI'Qv >0 VvveR"\0
= Asymmetric Q is positive-
definite if all of its eigenvalues
are positive



Support Vector Machines
Next steps

= Different optimization formulation
_Primal -2 dual <——
@ ”Support vectors”
= Support non-linear classification

" Feature maps
@ Kernel trick

= Support non-separable data
o _I-_I_a_Ld—margin SVM - soft-margin SVM




Method of Lagrange Multipliers

Goal
mxin f(x)

S.t. @G@ - C) £ 0

Step 1: Construct Lagrangian ﬁ(KB X ?\ (@(x\- C\

L(x, 1) = f(x) + A(g(x) —¢) T Jual variable
Step 2: Solve Find saddle point:

min  max  L(x,4) VL(x,A) st. A=>0

'f ‘ l Equivalent to solving:

Vf(x) =AVg(x) st. A=0



, Lagrange Multipliers
—
SVM Primal vs Dual min f(0) st g s

Construct Lagrangian

Construct Lagrangian

’_% — S
| L(x,2) = f(x) +A(g(x) — o
Primal
: 1 ~ | Solve: min L(x, A
min > Iwll3 ) W

st. yO(wlx® +p)=>1 Vi
Y(Q(WTXC;X\ 10\:__\__30
/-6/630/\)1’*({) ‘\_\DB__\\Q._ D

i(\f‘!)b>§3 — —é:\\u“z\“"
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SVM Dual Optimization

L(w,b,a) = lw w — >N, [yP(wlx® + b) — 1] &—
Min mMmax ] (W, bX , |

Wb  ®EO > S\aters Candition \
max rain L (3,b.&

& &0 V)b ] —]
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SVM Dual Optimization

Dual .
max YVa; — %Z{-V >V a;a;y® yu{x(m x(f)\

(44

st. ;=0 Vi

Q y(k) wTx () for any k where aj, > 0

Prediction ww

\/_\ g‘ﬂl\ <1,J X 'hb




Violate

Dual SVM: Sparsity of dual solution I Constraist
min max L(w,b, a) ;
wb a=0 N
min max -wlw — YN a;[ y® (wa(i) +b) —1]
w,b a=0 s :
\L ﬁeyd\\/ﬁ
0 T <+
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Dual SVM: Sparsity of dual solution I o margin
mln max L(w,b,a) ;
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Dual SVM: Sparsity of dual solution

Only few oys can be
non-zero : where
constraint is active and
tight

(w.x; + by, = 1

Support vectors —
training points j whose
oyS are non-zero



Support Vector Machines

Next steps

= Different optimization formulation
= Primal = dual
= “Support vectors”

= Support non-linear classification
" Feature maps
= Kernel trick

= Support non-separable data
= Hard-margin SVM -2 soft-margin SVM



Kernels: Motivation

Most real-world problems exhibit data that is
not linearly separable. 5

Q: When your data is not linearly separabl

A:

| | | y Y. g
Example: pixel representation for Facial Recognition: % 6

NOW can you stil

Preprocess the ¢
features

B0 P

use a linear classifier?

ata to produce nonline

b



Example: Polynomial Kernel

Original space

A
X X X
X __L X
X X/,, o) \\\ X
,' (0] o X1
\ 0, X
N o v
X \\\\ -
X X X
X
X X
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https://www.youtube.com/watch?v=3liCbRZPrZA

@ T 3y
Kernels: Motivation X~/ x = »"~

* Motivation #1: Inefficient Features

— Non-linearly separable data requires high dimensional
representation

— Might be prohibitively expensive to compute or store <—

* Motivation #2: Memory-based Methods

— k-Nearest Neighbors (KNN) for facial recognition allows a distance
metric between images - no need to worry about linearity
restriction at all

RS F
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X

Kernel Methods 5 W’Y

¢ (x9")

* Key idea: (, k(X x%)

1. Rewrite the algorithm so that we only work with dot products x'z of feature

—

vectors
2. Replace the dot products x'z with a kernel function k(x, z)

* The kernel k(x,z) can be any legal definition of a dot product:
k(x, z) = @(x) T(z) for any function ¢p: X = RP

So we only compute the ¢ dot product implicitly

* This “kernel trick” can be applied to many algorithms:
— classification: perceptron, SV, ...
— regression: ridge regression, ...
— clustering: k-means, ...

34



SVM: Kernel Trick

Hard-margin SVM (Primal) Hard-margin SVM (Lagrangian Dual)
.1
min §HWH§ max Zaz — = ZZCM oy )y(J} x(7) J
’ : : ) i=1 j=1
s.t. y(z) (WTX(%) -+ b) > 1, i) s.t. «; > 0’ i — 1’ o ,N
* Suppose we do some = .
PP 3 iy =

feature engineering — ’
e Our feature functionis ¢
@ «  We apply ¢ to each input @ “C@O\’\V\( < v
vector x Mayp \)‘ (\3

%1})1 %HWII% max Zaz — = ZZ& ;Y @) (J)E<X(i)) X (x(ﬂ

2131

sty (wl'g (x(i)) +b)>1, Vi st.o; >0, Yi=1,..., N




SVM: Kernel Trick

Hard-margin SVM (Lagrangian Dual)

max Zo:@— —ZZ& QU y("’) (9)

1=1 9=1
S.t.OfZ'ZO, VZ:].,,N

N
> iy =0
1=1

& (X@)) & (X(j))

where k(x(®, x()) = ¢ (x®) . ¢ (x©))

We could replace the dot product of the two feature vectors
in the transformed space with a function k(x,z)




SVM: Kernel Trick

Hard-margin SVM (Lagrangian Dual)

N N

max Z ; — — Tozzaij 2)y(le(.:(:x:(i), x(9))

Z].j].

st.a; >0, Vi=1,...,N

N
Dl =0
=1

We could replace the dot product of the two feature vectors
in the transformed space with a function k(x,z)

where k(x(®, x()) = ¢ (x®) . ¢ (x©))




Kernel Methods

* Keyidea:
1. Rewrite the algorithm so that we only work with dot products x'z of feature
vectors =

2. Replace the dot products x'z with a kernel functioneli(ﬁzl

* The kernel k(x,z) can be any legal definition of a dot product:
k(x, z) = @(x) T(z) for any function ¢p: X = RP

So we only compute the ¢ dot product implicitly

* This “kernel trick” can be applied to many algorithms:
— classification: perceptron, SV, ...
— regression: ridge regression, ...
— clustering: k-means, ...

38



Kernel Methods

Q: These are just non-linear features, right?
A: Yes, but...

Q: Can’t we just compute the feature
transformation ¢ explicitly?

A: That depends...

Q: So, why all the hype about the kernel trick?

A: Because the explicit features might either
be prohibitively expensive to compute or
infinite length vectors



Example: Polynomial Kernel
J

For n=2, d=2, the kernel K(x,z) = (x- z)9 corresponds to
$:R* = R3, (x,%2) = P(x) = (x§,%3,V2x:%;)
~ 2 2 PR
Px) - P(2) = 9(1»X2r\/§X1X2) ' (Z1»er‘/52122) &

= (X121 + X22)? = (x- 2)? = K(%, 2)

——

40



Kernel Examples

Side Note: The feature space might not be unique!

Explicit representation #1: @
$:R? - R3, (x4,%,) = O(x) = (x7,%5,V2x,X,)

(I)(X) | (I)(Z) = (X%'X%' \/iX1X2) ) (212’222, \/52122)

= (X121 + X22,)* = (x- 2)? = K(x,2)

Explicit representation #2:

/
q): RZ - R4, (XerZ) - (D(X) — (X%'X%'X1X2'X2X1) O

o

dx) - d(2) = (X%rX%;X1X2»X2X1) . (Z%:Z§»Z1ZZJZZZ1)

= (x-2)? = K(x,2)

These two different feature representations correspond to the same

kernel function!
41



/3 Linear

Polynomial (v1)

Polynomial (v2)

Gaussian (RBF
"> (RBF)

Hyperbolic
Tangent
(Sigmoid)
Kernel

Kernel Examples

Kernel Function Feature Space
(implicit dot product) (explicit dot product)

K(x,z) = x1z Same as original input
space

All polynomials of degree

d
Kix.z) = XTZ +1 d All polynomials up to
( ’ ) ( "“) degree d

|x — z||5, Infinite dimensional space

202 )
K(x,z) = tanh(ax'z + ¢)

K(x,z) = exp(— |

(With SVM, this is
equivalent to a 2-layer
neural network)

42

Slide credit: CMU MLD Matt Gormley



Kernels: Mercer’s Theorem

What functions are valid kernels that correspond to feature
vectors ¢(x)?

Answer: Mercer kernels for k(x, z) and
matrix K, where K; ;= k(x', &J))
* k(x, z) is continuous
* Kis symmetric
* Kis positive semi-definite, i.e. z'Kz >0 for all z

43



SVMs with Kernels

e Choose a set of features and kernel function

* Solve dual problem to obtain support vectors a.

* At classification time, compute:

XT')((

woP(x) =) oy K(x%,x;)

[

b=yr— > oy K(xp,x;)

) ™
for any k where C > a; > 0

oo

\

J

sign (w - P(x) + b)

i)

44



RBF Kernel Example

Classification with SVM (kernel=rbf, gamma=0.010000)

I I I I I
—4 -2 0 2 4

RBF Kernel: K(X(i),x(j)) = exp(—'y||x(i) — XU)H%)

Slide credit: CMU MLD Matt Gormley
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RBF Kernel Example

Classification with SVM (kernel=rbf, gamma=0.010000)

I I I I I
—4 -2 0 2 4

RBF Kernel: K(X(i),x(j)) = exp(—'y||x(i) — XU)H%)

Slide credit: CMU MLD Matt Gormley
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RBF Kernel Example

Classification with SVM (kernel=rbf, gamma=0.020000)

I I I I I
—4 -2 0 2 4

RBF Kernel: K(X(i),x(j)) = exp(—'y||x(i) — XU)H%)

Slide credit: CMU MLD Matt Gormley
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RBF Kernel Example

Classification with SVM (kernel=rbf, gamma=0.040000)

I I I I I
—4 -2 0 2 4

RBF Kernel: K(X(i),x(j)) = exp(—'y||x(i) — XU)H%)

Slide credit: CMU MLD Matt Gormley
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RBF Kernel Example

Classification with SVM (kernel=rbf, gamma=0.080000)

I I I I I
—4 -2 0 2 4

RBF Kernel: K(X(i),x(j)) = exp(—'y||x(i) — XU)H%)

Slide credit: CMU MLD Matt Gormley
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RBF Kernel Example

Classification with SVM (kernel=rbf, gamma=0.160000)

I I I I I
—4 -2 0 2 4

RBF Kernel: K(X(i),x(j)) = exp(—'y||x(i) — XU)H%)

Slide credit: CMU MLD Matt Gormley
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RBF Kernel Example

Classification with SVM (kernel=rbf, gamma=0.320000)

I I I I I
—4 -2 0 2 4

RBF Kernel: K(X(i),x(j)) = exp(—'y||x(i) — XU)H%)

Slide credit: CMU MLD Matt Gormley



RBF Kernel Example

Classification with SVM (kernel=rbf, gamma=0.640000)

I I I I I
—4 -2 0 2 4

RBF Kernel: K(X(i),x(j)) = exp(—'y||x(i) — XU)H%)

Slide credit: CMU MLD Matt Gormley
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RBF Kernel Example

Classification with SVM (kernel=rbf, gamma=1.280000)

I I I I I
—4 -2 0 2 4

RBF Kernel: K(X(i),x(j)) = exp(—'y||x(i) — XU)H%)

Slide credit: CMU MLD Matt Gormley
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RBF Kernel Example

Classification with SVM (kernel=rbf, gamma=2.560000)

I I I I I
—4 -2 0 2 4

RBF Kernel: K(X(i),x(j)) = exp(—'y||x(i) — XU)H%)

Slide credit: CMU MLD Matt Gormley
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RBF Kernel Example

Classification with SVM (kernel=rbf, gamma=5.120000),

I I I I I
—4 -2 0 2 4

RBF Kernel: K(X(i),x(j)) = exp(—'y||x(i) — XU)H%)

Slide credit: CMU MLD Matt Gormley
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RBF Kernel Example

Classification with SVM (kernel=rbf, gamma=10.000000)

4 -

I I I I I
—4 -2 0 2 4

RBF Kernel: K(X(i),x(j)) = exp(—'y||x(i) — XU)H%)

Slide credit: CMU MLD Matt Gormley
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RBF Kernel Example

KNN vs. SVM

Classification with KNN (k = 100, weights = 'uniform’) |

4 -

RBF Kernel: K(X(i),x(j)) = exp(—'y||x(i) — XU)H%)

Classification with SVM (kernel=rbf, gamma=0.001000)

Slide credit: CMU MLD Matt Gormley
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RBF Kernel Example

KNN vs. SVM

Classification with KNN (k = 16, weights = 'uniform')

4 -

RBF Kernel: K(X(i),x(j)) = exp(—'y||x(i) — XU)H%)

Classification with SVM (kernel=rbf, gamma=0.040000)

Slide credit: CMU MLD Matt Gormley
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RBF Kernel Example

KNN vs. SVM

 Classification with KNN (k = 4, weights = 'uniform')

4 -

RBF Kernel: K(X(i),x(j)) = exp(—'y||x(i) — XU)H%)

Classification with SVM (kernel=rbf, gamma=1.280000)

Slide credit: CMU MLD Matt Gormley
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RBF Kernel Example

KNN vs. SVM

 Classification with KNN (k = 1, weights = 'uniform') Classification with SVM (kernel=rbf, gamma=10.000000)

4 -

RBF Kernel: K(X(i),x(j)) = exp(—'y||x(i) — XU)H%)

Slide credit: CMU MLD Matt Gormley
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Kernel Methods

* Keyidea:
1. Rewrite the algorithm so that we only work with dot products x'z of feature
vectors

2. Replace the dot products x'z with a kernel function k(x, z)

* The kernel k(x,z) can be any legal definition of a dot product:
k(x, z) = @(x) T(z) for any function ¢p: X = RP

So we only compute the ¢ dot product implicitly

* This “kernel trick” can be applied to many algorithms:
— classification: perceptron, SV, ...
— regression: ridge regression, ...
— clustering: k-means, ...

61


https://en.wikipedia.org/wiki/File:Greek_Phi_normal.svg

SVM + Kernels: Takeaways

Maximizing the margin of a linear separator is a good training
criteria

Support Vector Machines (SVMs) learn a max-margin linear
classifier

The SVM optimization problem can be solved with black-box
Quadratic Programming (QP) solvers

Learned decision boundary is defined by its support vectors

Kernel methods allow us to work in a transformed feature space
without explicitly representing that space

The kernel-trick can be applied to SVMs, as well as many other
algorithms



Support Vector Machines

Next steps

= Different optimization formulation
= Primal = dual
= “Support vectors”

= Support non-linear classification
" Feature maps
= Kernel trick

= Support non-separable data
= Hard-margin SVM -2 soft-margin SVM



Support Vector Machines (SVMs)

Hard-margin SVM (Primal) Hard-margin SVM (Lagrangian Dual)
1 N 1 X NI .
e _ i=1 i=1 j=1
s.t. y(z)(WTX(z)—Fb) > 1, V'L:l,,N s.t. o 20, VZ=1,,N

N
Z sz'y(i) =0
=

Slide credit: CMU MLD Matt Gormley
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Soft-Margin SVM

Hard-margin SVM (Primal)
1
min o [[wl;

sty (wix® +p)>1, Vi=1,...,N

Soft-margin SVM (Primal)

N Al /
min _[|w[|3 £C)| > e
’ i=1

sty (wix® +p) >1— e, Vi=1,...,N

6@20, V’LZ]_,,N

2= +

65



Soft-Margin SVM

Hard-margin SVM (Primal) Hard-margin SVM (Lagrangian Dual)

1 N 1 N N |
mi(I)l §HWH§ max Zai — 3 Z Zaiajy(“)ymx(“) - x(9)
ke ¢ = i=1 j=1

st yO(wix® 4+ >1, Vi=1,...,N st.o; >0, Vi=1,....N

N .
i=1

Soft-margin SVM (Primal) Soft-margin SVM (Lagrangian Dual)
1 N » N 1 N N ( ( (
i §||W||2 +C (2:1 e@-) max Z;a%- — 5 Z; Z;aiajy )W x (@) . x0)
= 1= 1=1 3=

st.yO(wix® +b)>1—¢;, Vi=1,...,N s.t.oga Vi=1,....N

61'20, V’Lzl,,N N ‘
>0 ~0
i=1

We can also work with the dual of the soft-margin SVM



