
Announcements
Assignments

▪ HW8: due Thu, 12/3, 11:59 pm

▪ HW9

▪ Out Friday

▪ Due Wed, 12/9, 11:59 pm

▪ The two slip days are free (last possible submission
Fri, 12/11, 11:59 pm)

Final Exam

▪ Mon, 12/14

▪ Stay tuned to Piazza for more details

Introduction to
Machine Learning

Support Vector
Machines

Instructor: Pat Virtue

Support Vector Machines
Find linear separator with maximum margin

Previous Piazza Poll
As the magnitude of w increases, will the distance between the contour
lines of 𝑦 = 𝒘𝑇𝒙 + 𝑏 increase or decrease?

Support Vector Machines
Find linear separator with maximum margin

x1

x2

x1

x2

x1

x2

𝑦 = 1

𝑦 = −1

𝑦 = 1

𝑦 = −1 𝑦 = 1

𝑦 = −1

Linear Separability
Data

𝒟 = 𝒙 𝑖 , 𝑦 𝑖
𝑖=1

𝑁
𝒙 ∈ ℝ𝑀 , 𝑦 ∈ {−1,+1}

Linearly separable iff:

∃ 𝒘, 𝑏 𝑠. 𝑡. 𝒘𝑇𝒙(𝑖) + 𝑏 > 0 if 𝑦(𝑖) = +1 and

𝒘𝑇𝒙(𝑖) + 𝑏 < 0 if 𝑦(𝑖) = −1

Slide credit: CMU MLD Matt Gormley

Linear Separability
Data

𝒟 = 𝒙 𝑖 , 𝑦 𝑖
𝑖=1

𝑁
𝒙 ∈ ℝ𝑀 , 𝑦 ∈ {−1,+1}

Linearly separable iff:

∃ 𝒘, 𝑏 𝑠. 𝑡. 𝒘𝑇𝒙(𝑖) + 𝑏 > 0 if 𝑦(𝑖) = +1 and

𝒘𝑇𝒙(𝑖) + 𝑏 < 0 if 𝑦(𝑖) = −1

⇔ ∃𝒘, 𝑏 𝑠. 𝑡. 𝑦(𝑖) 𝒘𝑇𝒙(𝑖) + 𝑏 > 0

⇔ ∃𝒘, 𝑏, 𝑐 𝑠. 𝑡. 𝑦 𝑖 𝒘𝑇𝒙 𝑖 + 𝑏 ≥ 𝑐 and 𝑐 > 0

Slide credit: CMU MLD Matt Gormley

Piazza Poll 1
Are these two statements equivalent?

∃ 𝒘, 𝑏, 𝑐 𝑠. 𝑡. 𝑦 𝑖 𝒘𝑇𝒙 𝑖 + 𝑏 ≥ 𝑐 and 𝑐 > 0

∃ 𝒘, 𝑏 𝑠. 𝑡. 𝑦 𝑖 𝒘𝑇𝒙 𝑖 + 𝑏 ≥ 1

Linear Separability
Data

𝒟 = 𝒙 𝑖 , 𝑦 𝑖
𝑖=1

𝑁
𝒙 ∈ ℝ𝑀 , 𝑦 ∈ {−1,+1}

Linearly separable iff:

∃ 𝒘, 𝑏 𝑠. 𝑡. 𝒘𝑇𝒙(𝑖) + 𝑏 > 0 if 𝑦(𝑖) = +1 and

𝒘𝑇𝒙(𝑖) + 𝑏 < 0 if 𝑦(𝑖) = −1

⇔ ∃𝒘, 𝑏 𝑠. 𝑡. 𝑦(𝑖) 𝒘𝑇𝒙(𝑖) + 𝑏 > 0

⇔ ∃𝒘, 𝑏, 𝑐 𝑠. 𝑡. 𝑦 𝑖 𝒘𝑇𝒙 𝑖 + 𝑏 ≥ 𝑐 and 𝑐 > 0

⇔ ∃𝒘, 𝑏 𝑠. 𝑡. 𝑦 𝑖 𝒘𝑇𝒙 𝑖 + 𝑏 ≥ 1

Slide credit: CMU MLD Matt Gormley

Support Vector Machines
Find linear separator with maximum margin

Let 𝒙+and 𝒙− be hypothetical points on the +/- margin
from the decision boundary

∃ 𝒘, 𝑏 𝑠. 𝑡. 𝑦 𝑖 𝒘𝑇𝒙 𝑖 + 𝑏 ≥ 1

⇔ ∃𝒘, 𝑏 𝑠. 𝑡. 𝒘𝑇𝒙+ + 𝑏 ≥ +1 and

𝒘𝑇𝒙− + 𝑏 ≤ −1

Consider the vector from 𝒙− to 𝒙+ and its
projection onto the vector 𝒘:

Support Vector Machines
Find linear separator with maximum margin

max
𝒘,𝒃

"width"

s.t. 𝑦 𝑖 𝒘𝑇𝒙 𝑖 + 𝑏 ≥ 1 ∀ 𝑖

𝑤𝑖𝑑𝑡ℎ =
𝒘𝑇

𝒘 2
(𝒙+- 𝒙−)

Support Vector Machines
Find linear separator with maximum margin

argmax
𝒘,𝒃

width

width =
2

𝑤 2

Support Vector Machines
Find linear separator with maximum margin

argmax
𝒘,𝒃

width

⇔ argmax
𝒘,𝒃

2

𝒘 2

⇔ argmin
𝒘,𝒃

1

2
𝒘 2

⇔ argmin
𝒘,𝒃

1

2
𝒘 2

2

⇔ argmin
𝒘,𝒃

1

2
𝒘𝑇𝒘

width =
2

𝒘 2

SVM Optimization
Quadratic program!

min
𝒘,𝒃

1

2
𝒘𝑇𝒘

s.t. 𝑦 𝑖 𝒘𝑇𝒙 𝑖 + 𝑏 ≥ 1 ∀ 𝑖

Quadratic Program
min
𝒙

𝒙𝑇𝑸𝒙 + 𝒄𝑇𝒙

s.t. 𝐴𝒙 ⪯ 𝒃

SVM Optimization
How did we go from maximizing margin to minimizing 𝒘 2?

SVM Optimization
How did we go from maximizing margin to minimizing 𝒘 2?

x1

x2

x1

x2

x1

x2

𝑦 = 1

𝑦 = −1

𝑦 = 1

𝑦 = −1 𝑦 = 1

𝑦 = −1

𝒘 2 = 2

1

𝒘 2
=
1

2

𝒘 2 = 1

1

𝒘 2
= 1

𝒘 2 =
1

2
1

𝒘 2
= 2

Linear Separability
Data

𝒟 = 𝒙 𝑖 , 𝑦 𝑖
𝑖=1

𝑁
𝒙 ∈ ℝ𝑀 , 𝑦 ∈ {−1,+1}

Linearly separable iff:

∃ 𝒘, 𝑏 𝑠. 𝑡. 𝒘𝑇𝒙(𝑖) + 𝑏 > 0 if 𝑦(𝑖) = +1 and

𝒘𝑇𝒙(𝑖) + 𝑏 < 0 if 𝑦(𝑖) = −1

Slide credit: CMU MLD Matt Gormley

Support Vector Machines
Find linear separator with maximum margin

max
𝒘,𝒃

"width"

s.t. 𝑦 𝑖 𝒘𝑇𝒙 𝑖 + 𝑏 ≥ 1 ∀ 𝑖

𝑤𝑖𝑑𝑡ℎ =
𝒘𝑇

𝒘 2
(𝒙+- 𝒙−)

SVM Optimization
Quadratic program!

min
𝒘,𝒃

1

2
𝒘 2

2

s.t. 𝑦 𝑖 𝒘𝑇𝒙 𝑖 + 𝑏 ≥ 1 ∀ 𝑖

Quadratic Program
min
𝒙

𝒙𝑇𝑸𝒙 + 𝒄𝑇𝒙

s.t. 𝐴𝒙 ⪯ 𝒃

Constrained Optimization
Linear Program

min
𝒙

𝒄𝑇𝒙

s.t. 𝑨𝒙 ⪯ 𝒃

Solvers

▪ Simplex

▪ Interior point methods

Quadratic Program

min
𝒙

𝒙𝑇𝑸𝒙 + 𝒄𝑇𝒙

s.t. 𝐴𝒙 ⪯ 𝒃

Solvers

▪ Conjugate gradient

▪ Ellipsoid method

▪ Interior point methods

Constrained Optimization
Linear Program

min
𝒙

𝒄𝑇𝒙

s.t. 𝑨𝒙 ⪯ 𝒃

Solvers

▪ Simplex

▪ Interior point methods

Quadratic Program

min
𝒙

𝒙𝑇𝑸𝒙 + 𝒄𝑇𝒙

s.t. 𝐴𝒙 ⪯ 𝒃

Special Case

▪ If 𝑸 is positive-definite, the
problem is convex

▪ 𝑸 is positive-definite if:
𝒗𝑇𝑸𝒗 > 0 ∀ 𝒗 ∈ ℝ𝑀\𝟎

▪ A symmetric 𝑸 is positive-
definite if all of its eigenvalues
are positive

Support Vector Machines
Next steps

▪ Different optimization formulation

▪ Primal → dual

▪ “Support vectors”

▪ Support non-linear classification

▪ Feature maps

▪ Kernel trick

▪ Support non-separable data

▪ Hard-margin SVM → soft-margin SVM

Method of Lagrange Multipliers
Goal

min
𝒙

𝑓(𝒙)

s.t. 𝑔 𝒙 ≤ 𝑐

Step 1: Construct Lagrangian

ℒ 𝒙, 𝜆 = 𝑓 𝒙 + 𝜆 𝑔 𝒙 − 𝑐

Step 2: Solve

min
𝒙

max
𝜆≥0

ℒ 𝒙, 𝜆

Slide credit: CMU MLD Matt Gormley

Find saddle point:

∇ℒ 𝒙, 𝜆 s.t. 𝜆 ≥ 0

Equivalent to solving:

∇𝑓 𝑥 = 𝜆∇𝑔(𝑥) s.t. 𝜆 ≥ 0

SVM Primal vs Dual
Construct Lagrangian

Primal

min
𝒘,𝒃

1

2
𝒘 2

2

s.t. 𝑦 𝑖 𝒘𝑇𝒙 𝑖 + 𝑏 ≥ 1 ∀ 𝑖

Lagrange Multipliers

min
𝒙

𝑓(𝒙) s.t. 𝑔 𝒙 ≤ 𝑐

Construct Lagrangian

ℒ 𝒙, 𝜆 = 𝑓 𝒙 + 𝜆 𝑔 𝒙 − 𝑐

Solve: min
𝒙

max
𝜆≥0

ℒ 𝒙, 𝜆

SVM Dual Optimization

ℒ 𝑤, 𝑏, 𝜶 =
1

2
𝒘𝑇𝒘 − σ𝑖

𝑁 𝛼𝑖[𝑦
𝑖 𝒘𝑇𝒙 𝑖 + 𝑏 − 1]

SVM Dual Optimization
Dual

max
𝜶

σ𝑖
𝑁 𝛼𝑖 −

1

2
σ𝑖
𝑁σ𝑗

𝑁 𝛼𝑖𝛼𝑗𝑦
(𝑖)𝑦(𝑗)𝒙 𝑖 𝑇𝒙(𝑗)

s.t. 𝛼𝑖 ≥ 0 ∀ 𝑖

𝒘 = σ𝑖
𝑁 𝛼𝑖𝑦

(𝑖)𝒙 𝑖

𝑏 = 𝑦(𝑘) − 𝑤𝑇𝑥(𝑘) for any 𝑘 where 𝛼𝑘 > 0

Prediction

Dual SVM: Sparsity of dual solution
min
𝒘,𝑏

max
𝜶≥0

ℒ 𝒘, 𝑏, 𝜶

min
𝒘,𝑏

max
𝜶≥0

1

2
𝒘𝑇𝒘 − σ𝑖

𝑁 𝛼𝑖[𝑦
𝑖 𝒘𝑇𝒙 𝑖 + 𝑏 − 1]

Dual SVM: Sparsity of dual solution
min
𝒘,𝑏

max
𝜶≥0

ℒ 𝒘, 𝑏, 𝜶

min
𝒘,𝑏

max
𝜶≥0

1

2
𝒘𝑇𝒘 − σ𝑖

𝑁 𝛼𝑖[𝑦
𝑖 𝒘𝑇𝒙 𝑖 + 𝑏 − 1]

Dual SVM: Sparsity of dual solution

29

Only few ajs can be
non-zero : where
constraint is active and
tight

(w.xj + b)yj = 1

Support vectors –
training points j whose
ajs are non-zero

aj > 0

aj > 0

aj > 0

aj = 0

aj = 0

aj = 0

Slide credit: CMU MLD Aarti Singh

Support Vector Machines
Next steps

▪ Different optimization formulation

▪ Primal → dual

▪ “Support vectors”

▪ Support non-linear classification

▪ Feature maps

▪ Kernel trick

▪ Support non-separable data

▪ Hard-margin SVM → soft-margin SVM

Kernels: Motivation

Most real-world problems exhibit data that is
not linearly separable.

31

Q: When your data is not linearly separable,
how can you still use a linear classifier?

A: Preprocess the data to produce nonlinear
features

Example: pixel representation for Facial Recognition:

Example: Polynomial Kernel

32

https://www.youtube.com/watch?v=3liCbRZPrZA

Slide credit: CMU MLD Nina Balcan

https://www.youtube.com/watch?v=3liCbRZPrZA

Kernels: Motivation

• Motivation #1: Inefficient Features

– Non-linearly separable data requires high dimensional
representation

– Might be prohibitively expensive to compute or store

• Motivation #2: Memory-based Methods

– k-Nearest Neighbors (KNN) for facial recognition allows a distance
metric between images -- no need to worry about linearity
restriction at all

33

Kernel Methods

• Key idea:
1. Rewrite the algorithm so that we only work with dot products xTz of feature

vectors
2. Replace the dot products xTz with a kernel function k(x, z)

• The kernel k(x,z) can be any legal definition of a dot product:

k(x, z) = φ(x) Tφ(z) for any function φ: X → RD

So we only compute the φ dot product implicitly

• This “kernel trick” can be applied to many algorithms:
– classification: perceptron, SVM, …
– regression: ridge regression, …
– clustering: k-means, …

34

Hard-margin SVM (Primal) Hard-margin SVM (Lagrangian Dual)

SVM: Kernel Trick

35

• Suppose we do some
feature engineering

• Our feature function is ɸ

• We apply ɸ to each input
vector x

S
lid

e
 c

re
d

it
: C

M
U

 M
LD

 M
at

t
G

o
rm

le
y

Hard-margin SVM (Lagrangian Dual)

SVM: Kernel Trick

36

We could replace the dot product of the two feature vectors
in the transformed space with a function k(x,z)

S
lid

e
 c

re
d

it
: C

M
U

 M
LD

 M
at

t
G

o
rm

le
y

Hard-margin SVM (Lagrangian Dual)

SVM: Kernel Trick

37

We could replace the dot product of the two feature vectors
in the transformed space with a function k(x,z)

S
lid

e
 c

re
d

it
: C

M
U

 M
LD

 M
at

t
G

o
rm

le
y

Kernel Methods

• Key idea:
1. Rewrite the algorithm so that we only work with dot products xTz of feature

vectors
2. Replace the dot products xTz with a kernel function k(x, z)

• The kernel k(x,z) can be any legal definition of a dot product:

k(x, z) = φ(x) Tφ(z) for any function φ: X → RD

So we only compute the φ dot product implicitly

• This “kernel trick” can be applied to many algorithms:
– classification: perceptron, SVM, …
– regression: ridge regression, …
– clustering: k-means, …

38

Kernel Methods

39

Q: These are just non-linear features, right?

A: Yes, but…

Q: Can’t we just compute the feature
transformation φ explicitly?

A: That depends...

Q: So, why all the hype about the kernel trick?

A: Because the explicit features might either
be prohibitively expensive to compute or
infinite length vectors

S
lid

e
 c

re
d

it
: C

M
U

 M
LD

 M
at

t
G

o
rm

le
y

Example: Polynomial Kernel

40Slide credit: CMU MLD Nina Balcan

Kernel Examples

Side Note: The feature space might not be unique!

41

Explicit representation #1:

Explicit representation #2:

These two different feature representations correspond to the same
kernel function!

Slide credit: CMU MLD Nina Balcan

Kernel Examples

42

Name Kernel Function
(implicit dot product)

Feature Space
(explicit dot product)

Linear Same as original input
space

Polynomial (v1) All polynomials of degree
d

Polynomial (v2) All polynomials up to
degree d

Gaussian (RBF) Infinite dimensional space

Hyperbolic
Tangent
(Sigmoid)
Kernel

(With SVM, this is
equivalent to a 2-layer
neural network)

S
lid

e
 c

re
d

it
: C

M
U

 M
LD

 M
at

t
G

o
rm

le
y

Kernels: Mercer’s Theorem

43

What functions are valid kernels that correspond to feature
vectors j(x)?

Answer: Mercer kernels for k(x, z) and

matrix K, where Ki,j = k(x(i), x(j))

• k(x, z) is continuous

• K is symmetric

• K is positive semi-definite, i.e. zTKz ≥ 0 for all z

Slide credit: CMU MLD Aarti Singh

SVMs with Kernels

44

• Choose a set of features and kernel function

• Solve dual problem to obtain support vectors ai

• At classification time, compute:

Classify as

Slide credit: CMU MLD Aarti Singh

RBF Kernel Example

45
RBF Kernel:

S
lid

e
 c

re
d

it
: C

M
U

 M
LD

 M
at

t
G

o
rm

le
y

RBF Kernel Example

46
RBF Kernel:

S
lid

e
 c

re
d

it
: C

M
U

 M
LD

 M
at

t
G

o
rm

le
y

RBF Kernel Example

47
RBF Kernel:

S
lid

e
 c

re
d

it
: C

M
U

 M
LD

 M
at

t
G

o
rm

le
y

RBF Kernel Example

48
RBF Kernel:

S
lid

e
 c

re
d

it
: C

M
U

 M
LD

 M
at

t
G

o
rm

le
y

RBF Kernel Example

49
RBF Kernel:

S
lid

e
 c

re
d

it
: C

M
U

 M
LD

 M
at

t
G

o
rm

le
y

RBF Kernel Example

50
RBF Kernel:

S
lid

e
 c

re
d

it
: C

M
U

 M
LD

 M
at

t
G

o
rm

le
y

RBF Kernel Example

51
RBF Kernel:

S
lid

e
 c

re
d

it
: C

M
U

 M
LD

 M
at

t
G

o
rm

le
y

RBF Kernel Example

52
RBF Kernel:

S
lid

e
 c

re
d

it
: C

M
U

 M
LD

 M
at

t
G

o
rm

le
y

RBF Kernel Example

53
RBF Kernel:

S
lid

e
 c

re
d

it
: C

M
U

 M
LD

 M
at

t
G

o
rm

le
y

RBF Kernel Example

54
RBF Kernel:

S
lid

e
 c

re
d

it
: C

M
U

 M
LD

 M
at

t
G

o
rm

le
y

RBF Kernel Example

55
RBF Kernel:

S
lid

e
 c

re
d

it
: C

M
U

 M
LD

 M
at

t
G

o
rm

le
y

RBF Kernel Example

56
RBF Kernel:

S
lid

e
 c

re
d

it
: C

M
U

 M
LD

 M
at

t
G

o
rm

le
y

RBF Kernel Example

57
RBF Kernel:

KNN vs. SVM

S
lid

e
 c

re
d

it
: C

M
U

 M
LD

 M
at

t
G

o
rm

le
y

RBF Kernel Example

58
RBF Kernel:

KNN vs. SVM

S
lid

e
 c

re
d

it
: C

M
U

 M
LD

 M
at

t
G

o
rm

le
y

RBF Kernel Example

59
RBF Kernel:

KNN vs. SVM

S
lid

e
 c

re
d

it
: C

M
U

 M
LD

 M
at

t
G

o
rm

le
y

RBF Kernel Example

60
RBF Kernel:

KNN vs. SVM

S
lid

e
 c

re
d

it
: C

M
U

 M
LD

 M
at

t
G

o
rm

le
y

Kernel Methods

• Key idea:
1. Rewrite the algorithm so that we only work with dot products xTz of feature

vectors
2. Replace the dot products xTz with a kernel function k(x, z)

• The kernel k(x,z) can be any legal definition of a dot product:

k(x, z) = φ(x) Tφ(z) for any function φ: X → RD

So we only compute the φ dot product implicitly

• This “kernel trick” can be applied to many algorithms:
– classification: perceptron, SVM, …
– regression: ridge regression, …
– clustering: k-means, …

61Slide credit: CMU MLD Matt Gormley

https://en.wikipedia.org/wiki/File:Greek_Phi_normal.svg

SVM + Kernels: Takeaways

▪ Maximizing the margin of a linear separator is a good training
criteria

▪ Support Vector Machines (SVMs) learn a max-margin linear
classifier

▪ The SVM optimization problem can be solved with black-box
Quadratic Programming (QP) solvers

▪ Learned decision boundary is defined by its support vectors

▪ Kernel methods allow us to work in a transformed feature space
without explicitly representing that space

▪ The kernel-trick can be applied to SVMs, as well as many other
algorithms

62Slide credit: CMU MLD Matt Gormley

Support Vector Machines
Next steps

▪ Different optimization formulation

▪ Primal → dual

▪ “Support vectors”

▪ Support non-linear classification

▪ Feature maps

▪ Kernel trick

▪ Support non-separable data

▪ Hard-margin SVM → soft-margin SVM

Hard-margin SVM (Primal) Hard-margin SVM (Lagrangian Dual)

Support Vector Machines (SVMs)

64

• Instead of minimizing the primal, we can maximize the
dual problem

• For the SVM, these two problems give the same
answer (i.e. the minimum of one is the maximum of the
other)

• Definition: support vectors are those points x(i) for
which α(i) ≠ 0

S
lid

e
 c

re
d

it
: C

M
U

 M
LD

 M
at

t
G

o
rm

le
y

Soft-Margin SVM

65

Hard-margin SVM (Primal)

Soft-margin SVM (Primal)

S
lid

e
 c

re
d

it
: C

M
U

 M
LD

 M
at

t
G

o
rm

le
y

Hard-margin SVM (Primal)

Soft-margin SVM (Primal) Soft-margin SVM (Lagrangian Dual)

Hard-margin SVM (Lagrangian Dual)

Soft-Margin SVM

66

We can also work with the dual of the soft-margin SVM

S
lid

e
 c

re
d

it
: C

M
U

 M
LD

 M
at

t
G

o
rm

le
y

