

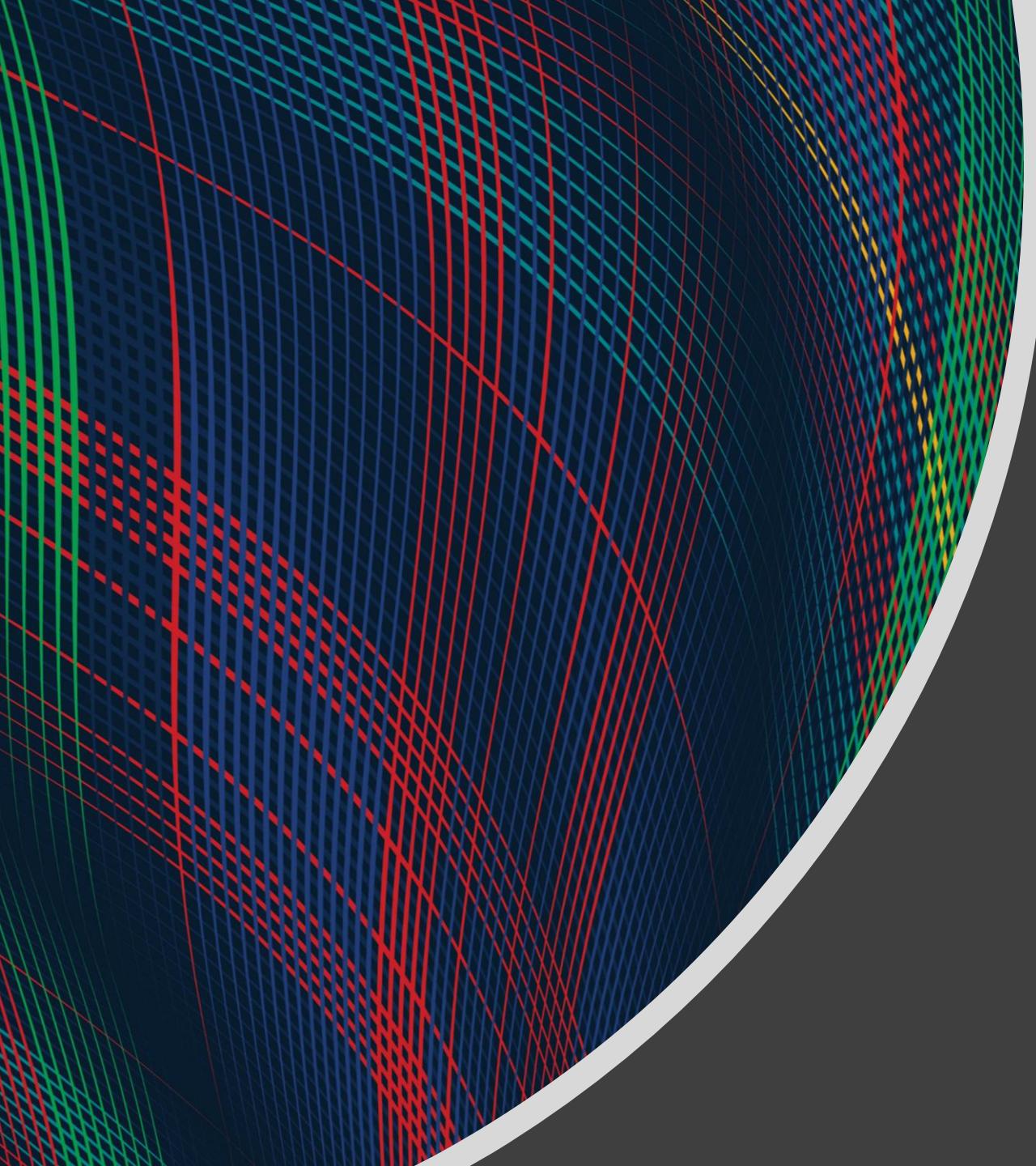
Announcements

Assignments

- HW9
 - Out Friday
 - Due Wed, 12/9, 11:59 pm
 - The two slip days are free (last possible submission Fri, 12/11, 11:59 pm)

Final Exam

- Mon, 12/14
- Stay tuned to Piazza for more details



Introduction to
Machine Learning

Clustering

Instructor: Pat Virtue

Learning Paradigms

Paradigm	Data
Supervised	$\mathcal{D} = \{\mathbf{x}^{(i)}, y^{(i)}\}_{i=1}^N \quad \mathbf{x} \sim p^*(\cdot) \text{ and } y = c^*(\cdot)$
	$y^{(i)} \in \mathbb{R}$
	$y^{(i)} \in \{1, \dots, K\}$
	$y^{(i)} \in \{+1, -1\}$
	$\mathbf{y}^{(i)}$ is a vector
Unsupervised	$\mathcal{D} = \{\mathbf{x}^{(i)}\}_{i=1}^N \quad \mathbf{x} \sim p^*(\cdot)$
Semi-supervised	$\mathcal{D} = \{\mathbf{x}^{(i)}, y^{(i)}\}_{i=1}^{N_1} \cup \{\mathbf{x}^{(j)}\}_{j=1}^{N_2}$
Online	$\mathcal{D} = \{(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), (\mathbf{x}^{(3)}, y^{(3)}), \dots\}$
Active Learning	$\mathcal{D} = \{\mathbf{x}^{(i)}\}_{i=1}^N$ and can query $y^{(i)} = c^*(\cdot)$ at a cost
Imitation Learning	$\mathcal{D} = \{(s^{(1)}, a^{(1)}), (s^{(2)}, a^{(2)}), \dots\}$
Reinforcement Learning	$\mathcal{D} = \{(s^{(1)}, a^{(1)}, r^{(1)}), (s^{(2)}, a^{(2)}, r^{(2)}), \dots\}$

Clustering, Informal Goals

Goal: Automatically partition **unlabeled** data into groups of similar datapoints.

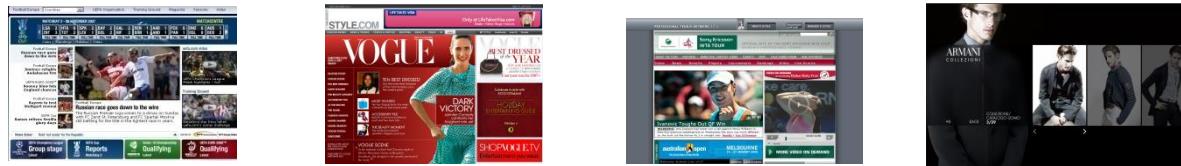
Question: When and why would we want to do this?

Useful for:

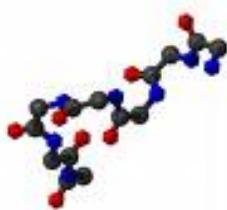
- Automatically organizing data.
- Understanding hidden structure in data.
- Preprocessing for further analysis.
 - Representing high-dimensional data in a low-dimensional space (e.g., for visualization purposes).

Applications (Clustering comes up everywhere...)

Cluster news articles or web pages or search results by topic.

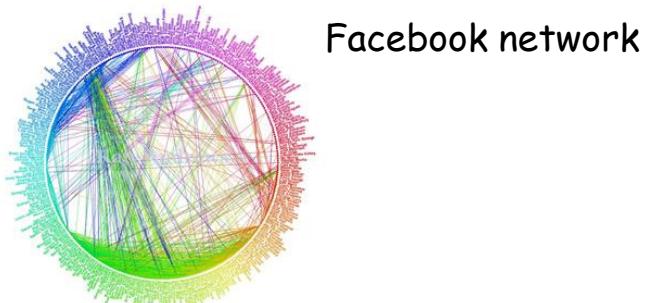


- Cluster protein sequences by function or genes according to expression profile.

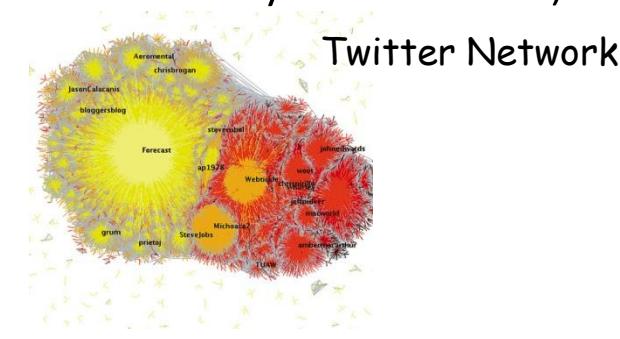


A grid of protein sequence alignments. The sequences are color-coded by function or gene expression profile. The grid shows multiple rows of sequences, each with a color bar at the top indicating the profile. The sequences are in a standard PDB-like format.

- Cluster users of social networks by interest (community detection).



Facebook network



Twitter Network

Applications (Clustering comes up everywhere...)

Cluster customers according to purchase history.

- Cluster galaxies or nearby stars (e.g. Sloan Digital Sky Survey)

- And many many more applications....

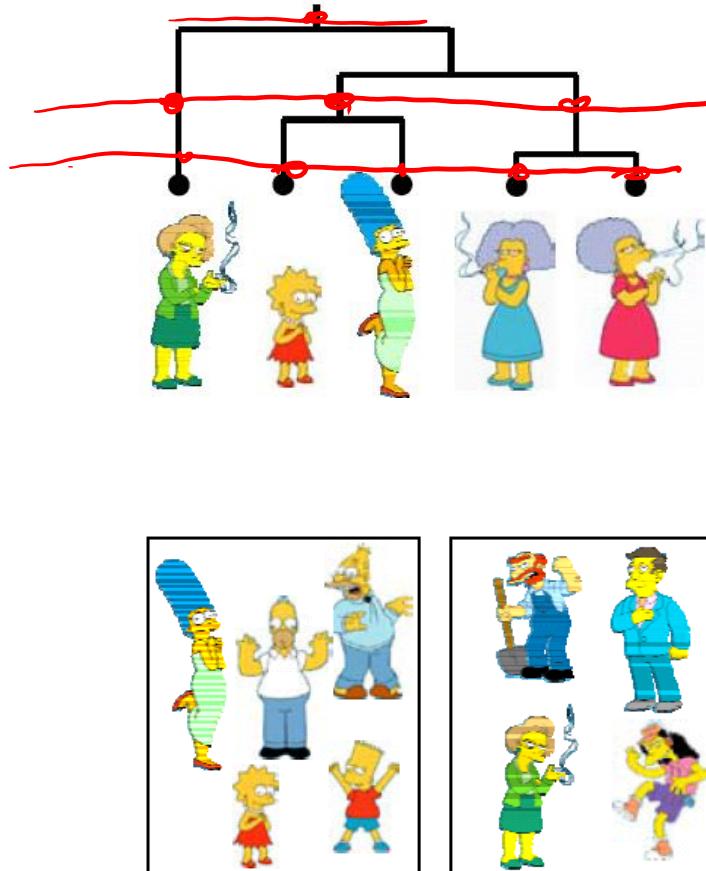
Clustering Applications

Jigsaw puzzles!



Clustering Algorithms

- Hierarchical algorithms
 - Bottom-up: Agglomerative Clustering
 - Top-down: Divisive
- Partition algorithms
 - K means clustering
 - Mixture-Model based clustering
 - probabilistic



Hierarchical Clustering

- Bottom-Up Agglomerative Clustering

Starts with each object in a separate cluster, and repeat:

- Joins the most similar pair of clusters,
- Update the similarity of the new cluster to others until there is only one cluster.

Greedy - less accurate but simple to implement

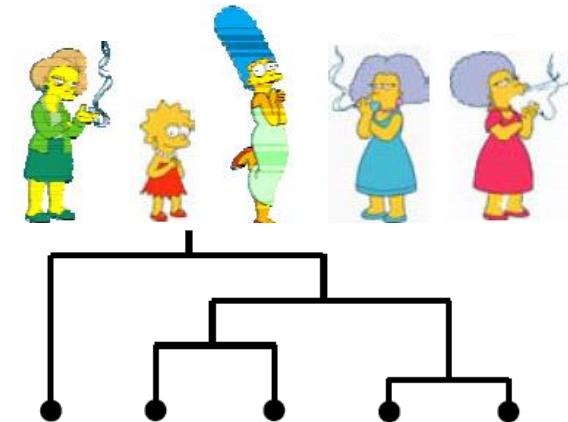
- Top-Down divisive

Starts with all the data in a single cluster, and repeat:

- Split each cluster into two using a partition algorithm

Until each object is a separate cluster.

More accurate but complex to implement



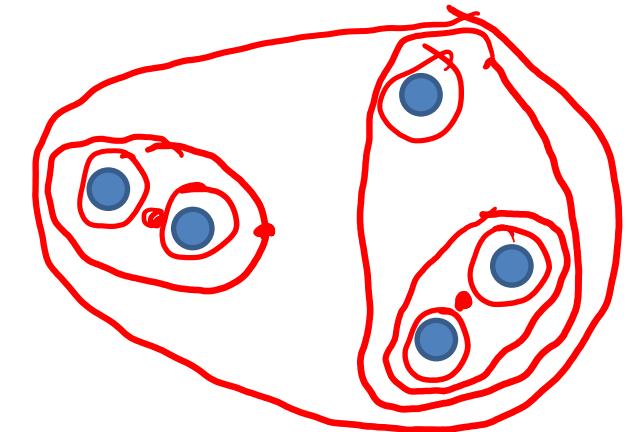
Hierarchical Clustering

- **Bottom-Up Agglomerative Clustering**

Starts with each object in a separate cluster, and repeat:

- Joins the most similar pair of clusters,
- Update the similarity of the new cluster to others until there is only one cluster.

Greedy - less accurate but simple to implement



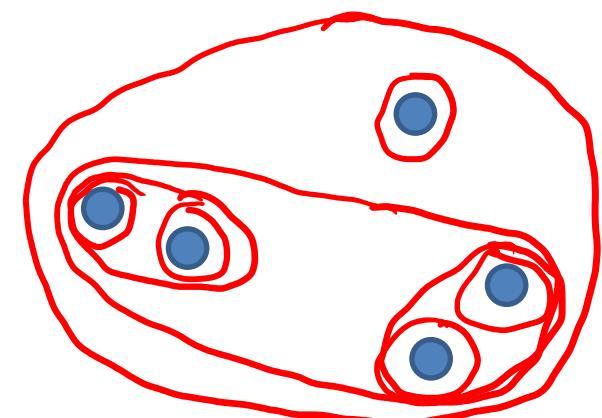
- **Top-Down divisive**

Starts with all the data in a single cluster, and repeat:

- Split each cluster into two using a partition algorithm

Until each object is a separate cluster.

More accurate but complex to implement



Partitioning Algorithms

- Partitioning method: Construct a partition of N objects into a set of K clusters
- Given: a set of objects and the number K
- Find: a partition of K clusters that optimizes the chosen partitioning criterion
 - Globally optimal: exhaustively enumerate all partitions
 - Effective heuristic method: K-means algorithm

Course Feedback

See Piazza for two surveys

- FCE (Faculty Course Evaluation)
- TA survey
 - Fill out once for each TA that you can provide feedback for

K-Means

Algorithm

Input – Data, $x^{(i)}$, Desired number of clusters, K $x^{(i)} \in \mathbb{R}^2$

Initialize – the K cluster centers (randomly if necessary) $\hat{u}_j \in \mathbb{R}^2$

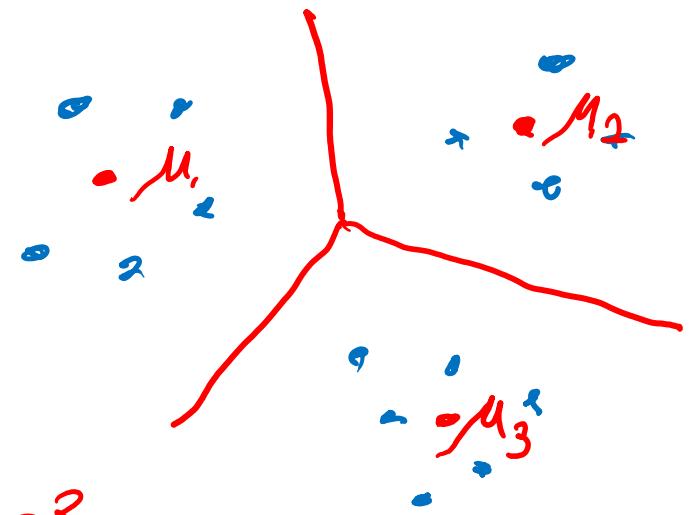
Iterate –

1. Assign points to the nearest cluster centers
2. Re-estimate the K cluster centers (aka the **centroid** or **mean**), by assuming the memberships found above are correct.

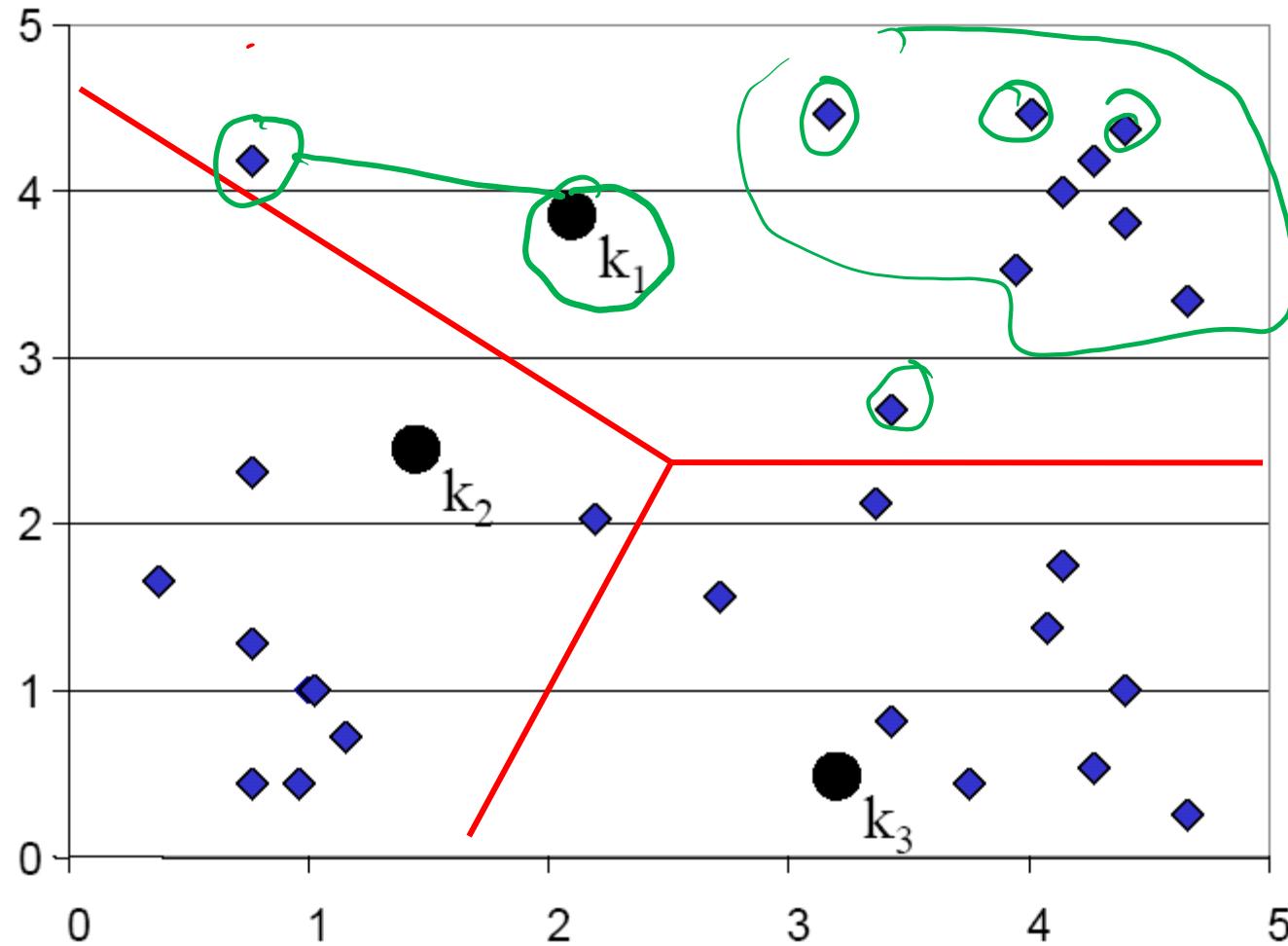
Termination –

If none of the objects changed membership in the last iteration, exit.

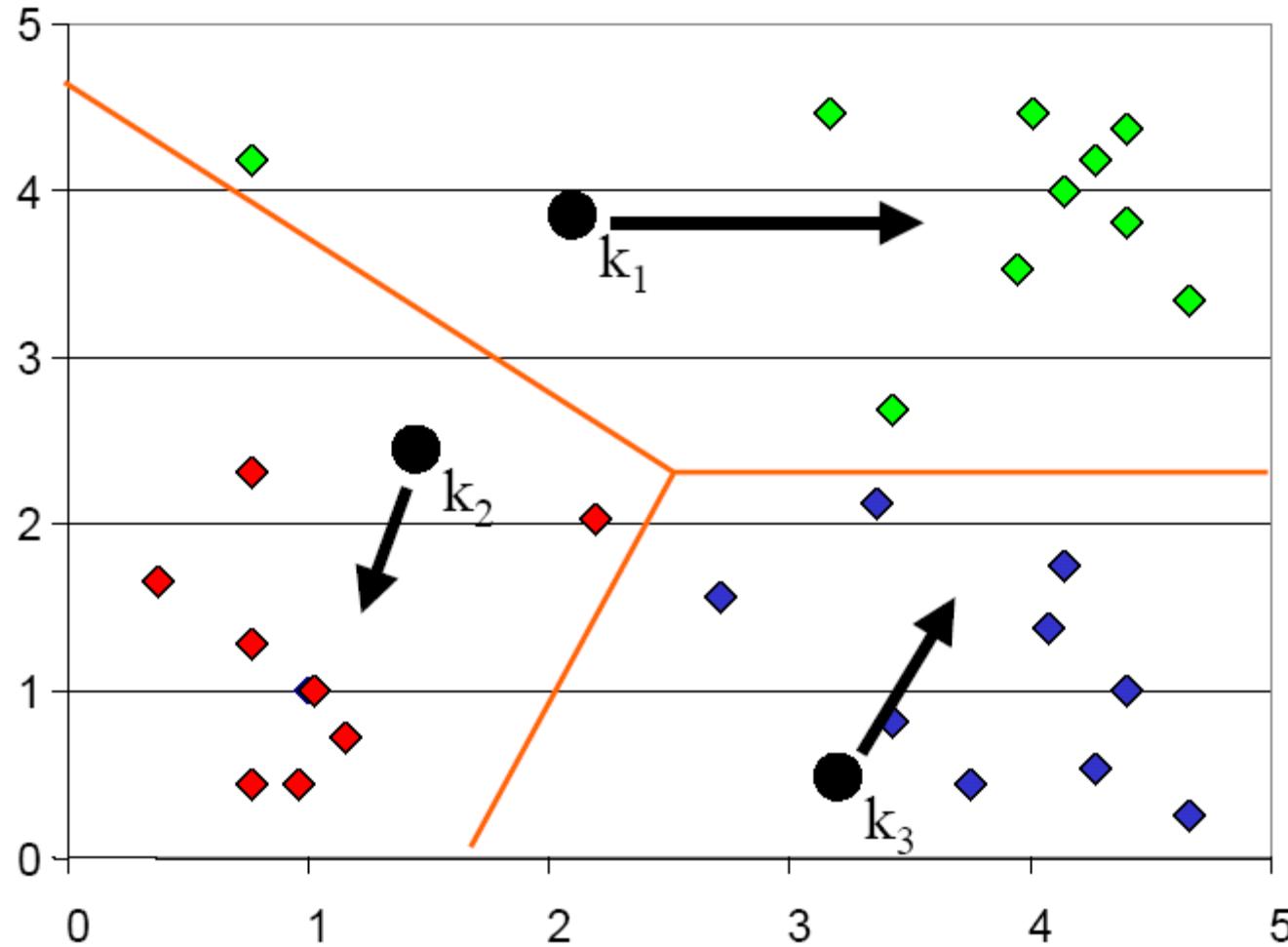
Otherwise go to 1.



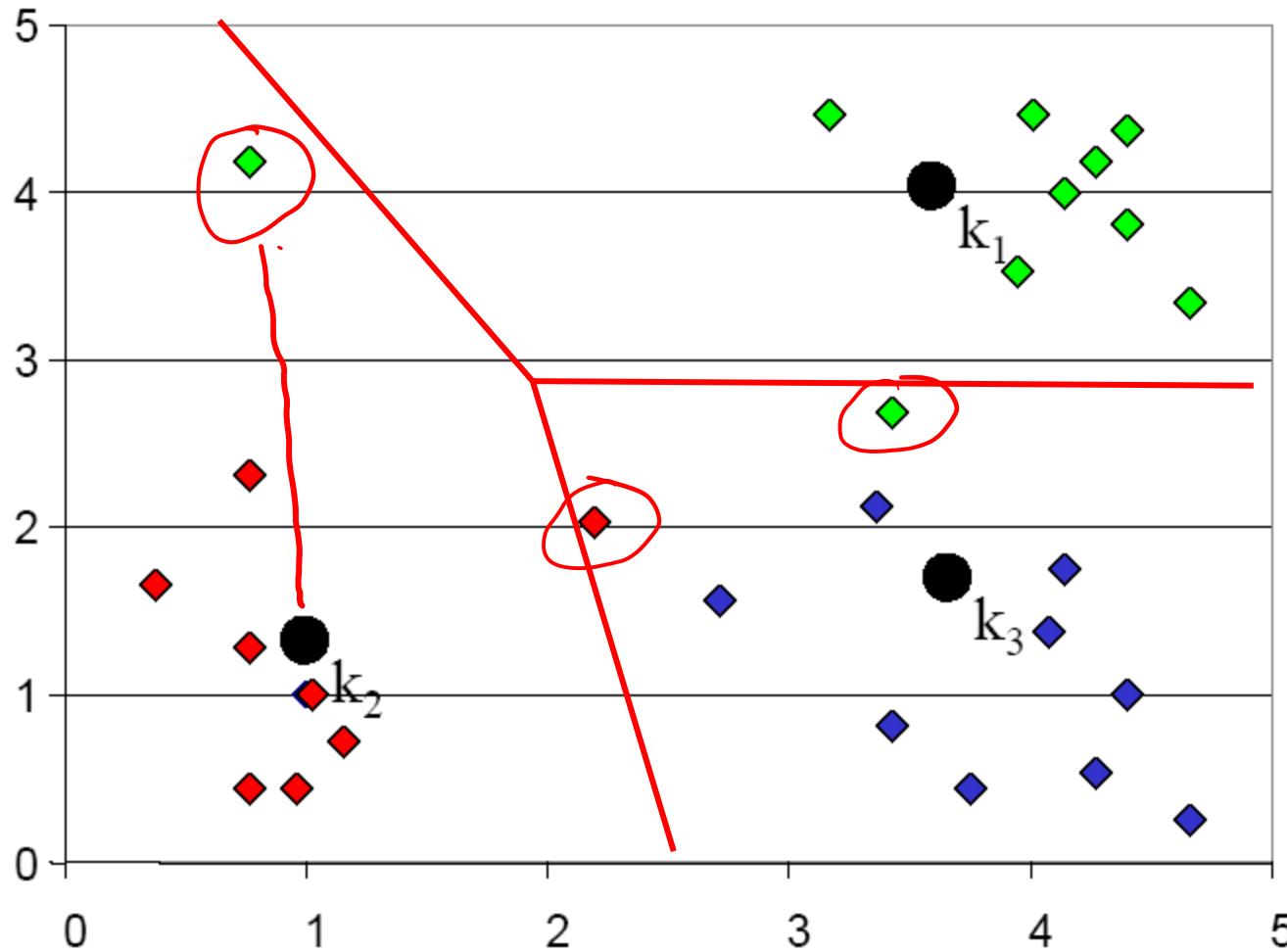
K-means Clustering: Assign points



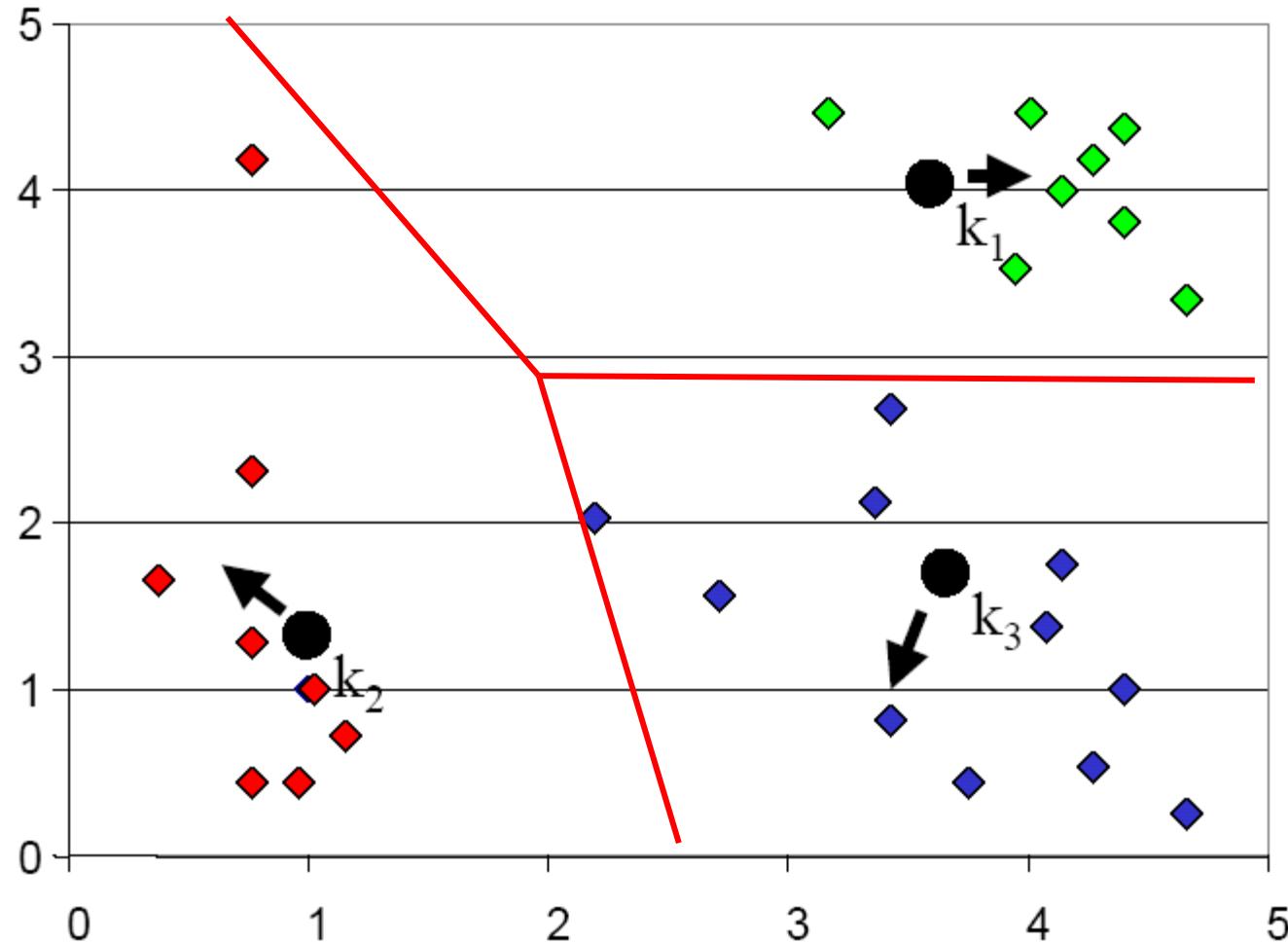
K-means Clustering: Update centers



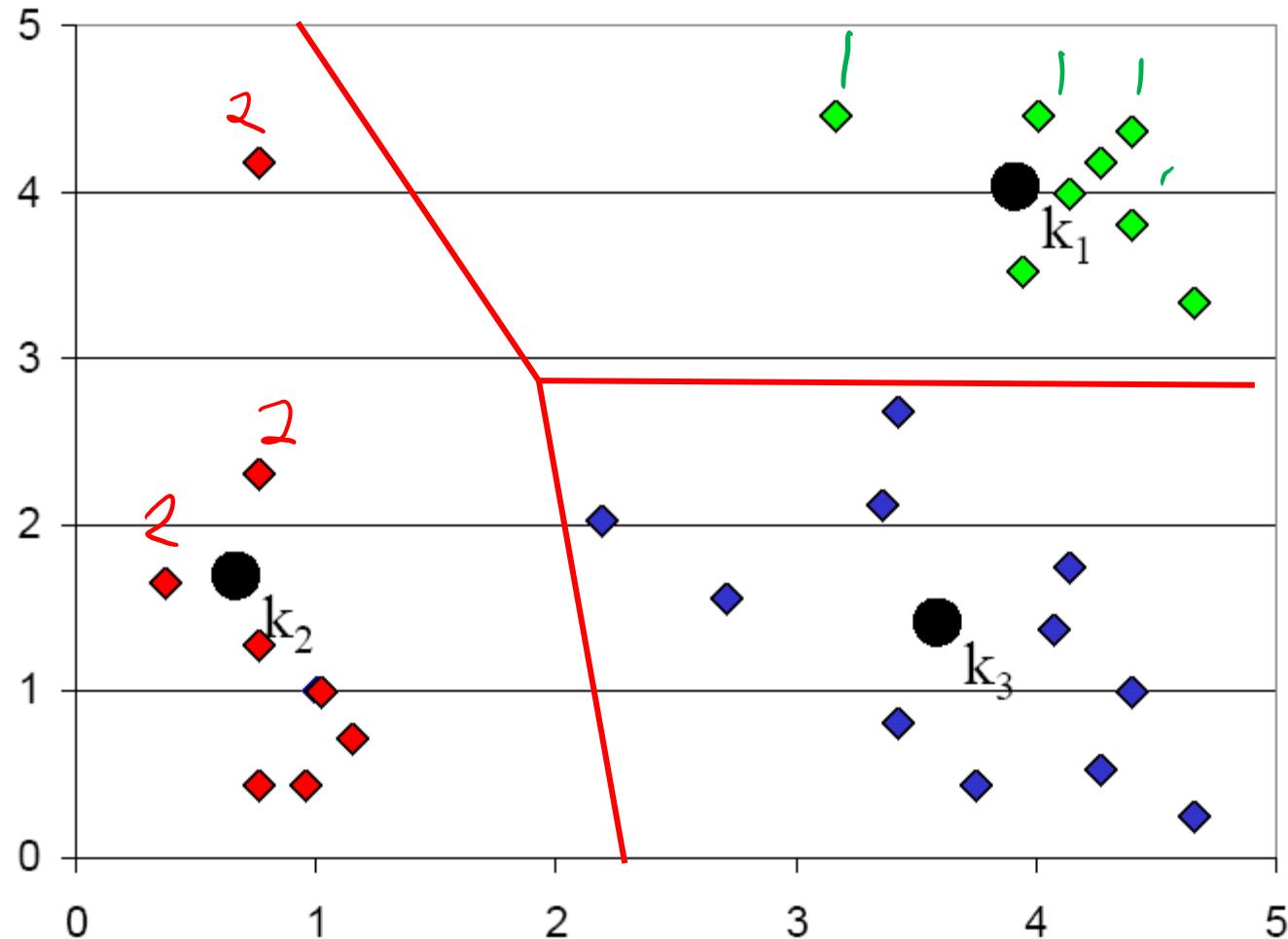
K-means Clustering: Assign points



K-means Clustering: Update centers



K-means Clustering: Assign points



K-means Optimization

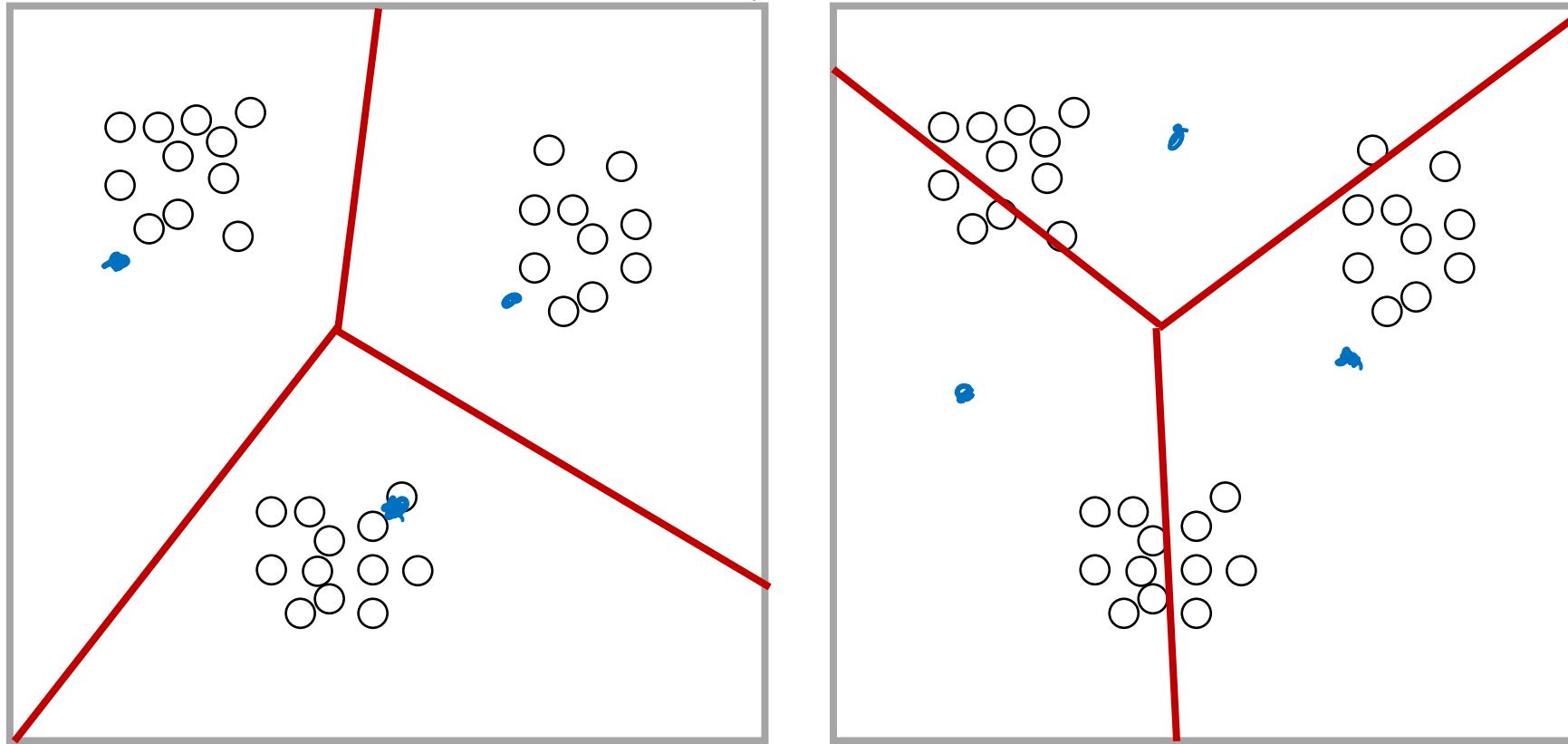
Optimization recipe

1. Formulate objective
2. Minimize objective

K-means Optimization

Question: Which of these partitions is “better”?

$$J(\mu_1, \mu_2, \mu_3)$$



K-means Optimization

Input: $K, \mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)}, \mathbf{x}^{(i)} \in \mathbb{R}^M$

Num clusters, unlabeled data

→ Output: $z^{(1)}, \dots, z^{(N)}, z^{(i)} \in \{1 \dots K\}$

Cluster assignments per point

→ Output: $\mu_1, \dots, \mu_K, \mu_k \in \mathbb{R}^M$

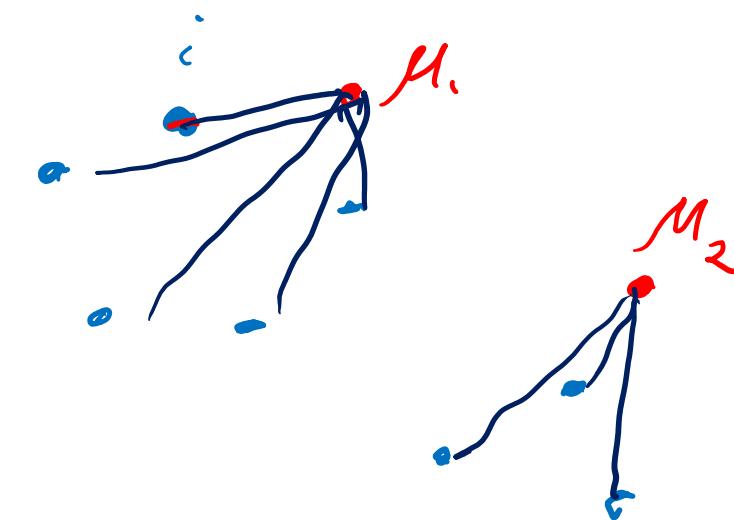
Cluster centers

$$\arg \min_{\mu_1, \dots, \mu_K} \sum_{i=1}^N \min_{j \in \{1 \dots K\}} \|\mathbf{x}^{(i)} - \mu_j\|_2^2$$

$$\arg \min_{\mu_1, \dots, \mu_K} \sum_{i=1}^N \min_{z^{(i)} \in \{1 \dots K\}} \|\mathbf{x}^{(i)} - \mu_{z^{(i)}}\|_2^2$$

$$\arg \min_{\mu_1, \dots, \mu_K, z^{(1)}, \dots, z^{(N)}} \sum_{i=1}^N \|\mathbf{x}^{(i)} - \mu_{z^{(i)}}\|_2^2$$

$$\|\mathbf{v}_1 - \mathbf{v}_2\|_2^2$$



K-means Optimization

$\vec{x}, \vec{\mu} \in \mathbb{R}^n$
 K

Computational complexity

$$\mu_1, \dots, \mu_K, z = \underset{\mu_1, \dots, \mu_K, z}{\operatorname{argmin}} \sum_{i=1}^N \left\| \vec{x}^{(i)} - \underline{\mu}_{z^{(i)}} \right\|_2^2$$

if $M \geq 2$ and $K \geq 2$, NP-hard \leftarrow not convex

Easy $K=1$ $\mu_1 = \underset{\mu_1}{\operatorname{argmin}} \sum_{i=1}^N \left\| \vec{x}^{(i)} - \mu_1 \right\|_2^2$

$$= \frac{1}{N} \sum_{i=1}^N \vec{x}^{(i)}$$

K-means Optimization

Alternating minimization

a) $\mathbf{z} = \operatorname{argmin}_{\mathbf{z}} \sum_{i=1}^N \|\mathbf{x}^{(i)} - \boldsymbol{\mu}_{z^{(i)}}\|_2^2$ fix $\boldsymbol{\mu}$

b) $\boldsymbol{\mu}_1, \dots, \boldsymbol{\mu}_K = \operatorname{argmin}_{\boldsymbol{\mu}_1, \dots, \boldsymbol{\mu}_K} \sum_{i=1}^N \|\mathbf{x}^{(i)} - \boldsymbol{\mu}_{z^{(i)}}\|_2^2$ fix \mathbf{z}

a) $\left\{ \begin{array}{l} \mathbf{z}^{(1)} = \operatorname{argmin}_{z^{(1)} \in \{1..K\}} \|\mathbf{x}^{(1)} - \boldsymbol{\mu}_{z^{(1)}}\|_2 \\ \vdots \\ \vdots \\ \mathbf{z}^{(n)} \end{array} \right. \quad \left. \begin{array}{l} b) \boldsymbol{\mu}_1 = \operatorname{argmin}_{\boldsymbol{\mu}_1} \sum_{i: z^{(i)}=1} \|\mathbf{x}^{(i)} - \boldsymbol{\mu}_1\|_2^2 \\ \vdots \\ \vdots \\ \boldsymbol{\mu}_K = \end{array} \right.$

Alternating minimization

Coordinate descent

Two different approaches

$$\min_{\theta_1, \theta_2} J(\theta_1, \theta_2)$$

1. Step based on derivative for one parameter

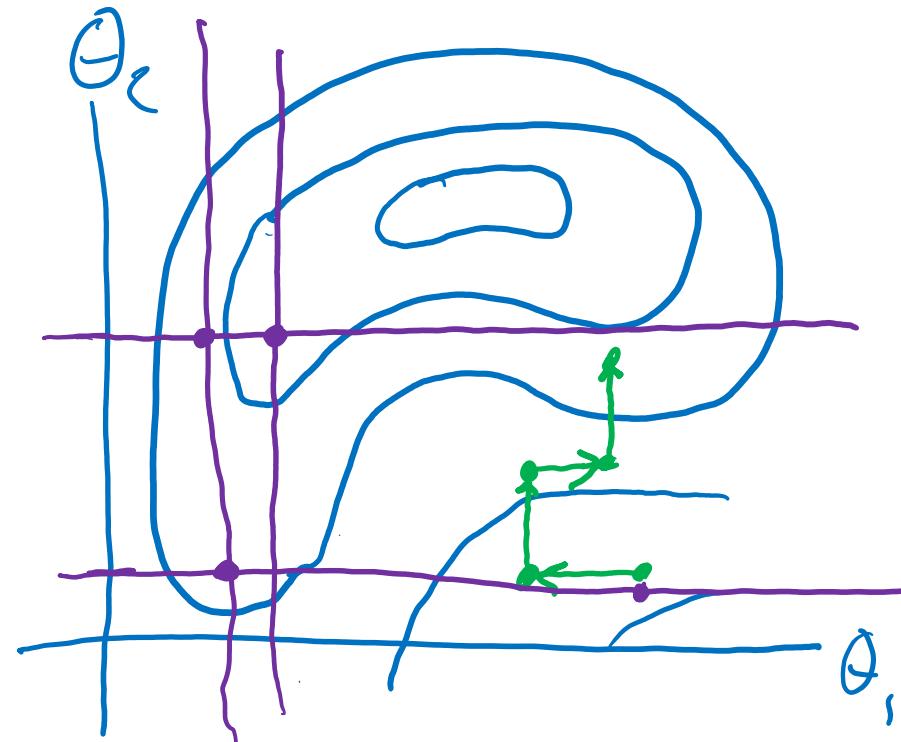
a. $\theta_1 \leftarrow \theta_1 - \eta \partial J / \partial \theta_1$ fix θ_2

b. $\theta_2 \leftarrow \theta_2 - \eta \partial J / \partial \theta_2$ fix θ_1

2. Find minimum for one parameter

a. $\theta_1 \leftarrow \operatorname{argmin}_{\theta_1} J(\theta_1, \theta_2)$ fix θ_2

b. $\theta_2 \leftarrow \operatorname{argmin}_{\theta_2} J(\theta_1, \theta_2)$ fix θ_1



Alternating minimization

Block coordinate descent

Two different approaches

$$\min_{\alpha, \beta} J(\alpha, \beta)$$

N *K*

1. Step based on gradient for one set of parameters (step size η)

a. $\alpha \leftarrow \alpha - \eta \nabla_{\alpha} J$

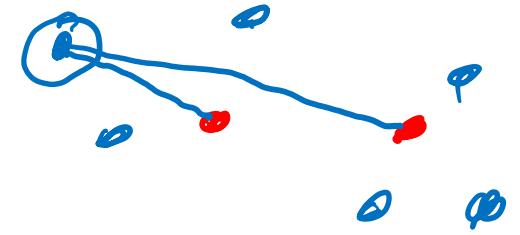
b. $\beta \leftarrow \beta - \eta \nabla_{\beta} J$

2. Find minimum for one set of parameter (no hyperparameters!)

a. $\alpha \leftarrow \underset{\alpha}{\operatorname{argmin}} J(\alpha, \beta)$

b. $\beta \leftarrow \underset{\beta}{\operatorname{argmin}} J(\alpha, \beta)$

Computational Complexity



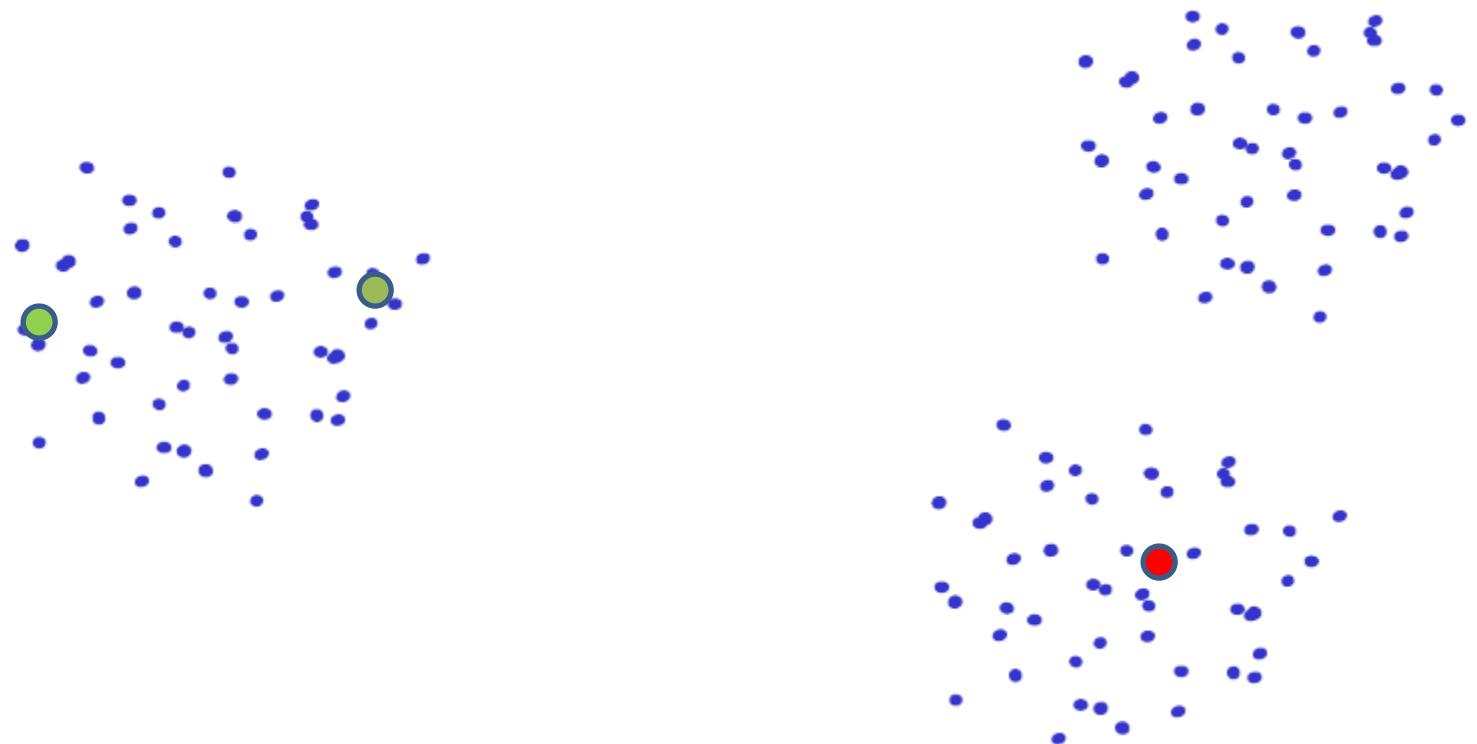
- At each iteration,
 - Computing cluster centers: Each object gets added once to some cluster: $O(N)$
 - Computing distance between each of the N objects and the K cluster centers is $O(KN)$
- Assume these two steps are each done once for l iterations: $O(lKN)$

Issues: Seed Choice

- Results are quite sensitive to seed selection.

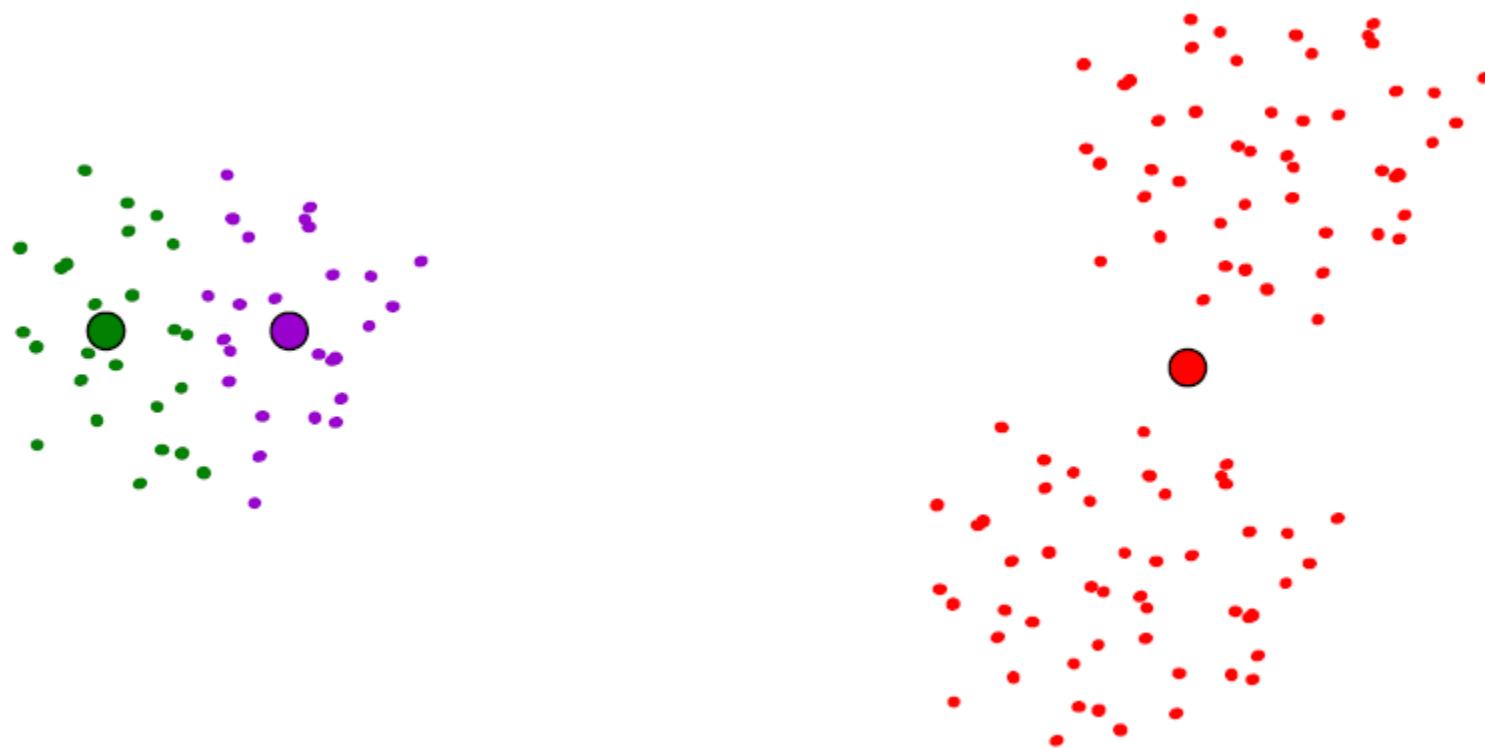
Issues: Seed Choice

- Results are quite sensitive to seed selection.

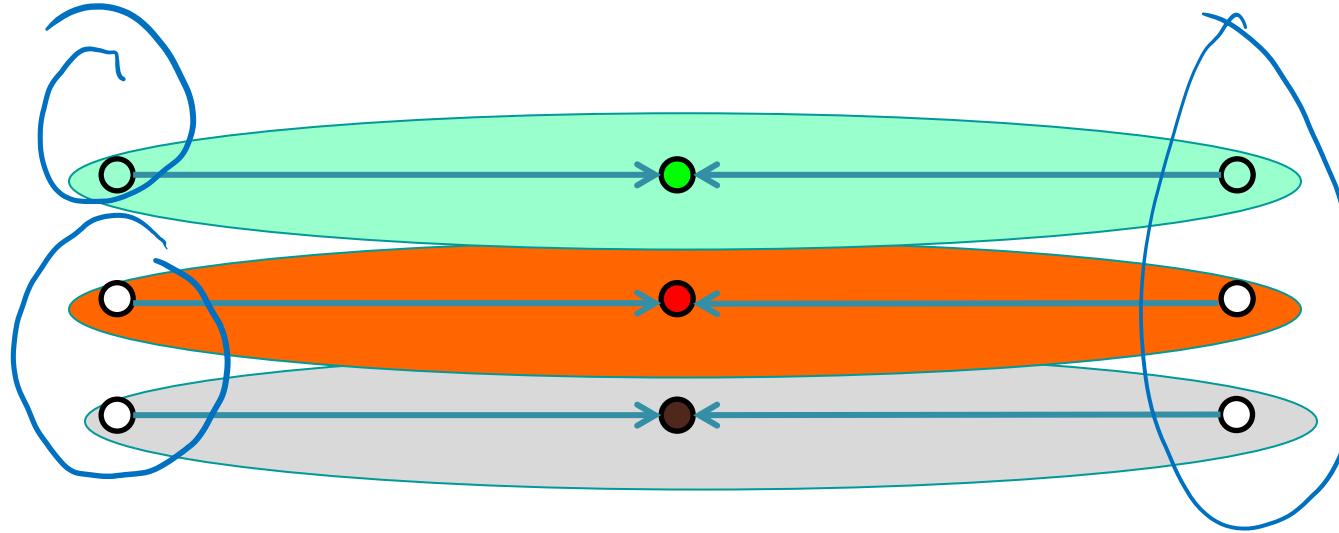


Issues: Seed Choice

- Results are quite sensitive to seed selection.



Issues: Seed Choice



K-means always converges, but it may converge at a local optimum that is different from the global optimum, and in fact could be arbitrarily worse in terms of its objective.

Issues: Seed Choice

- Results can vary based on random seed selection.
- Some seeds can result in poor convergence rate, or convergence to sub-optimal clustering.
 - Try out multiple starting points (very important!!!)
 - k-means ++ algorithm of Arthur and Vassilvitskii
 - key idea: choose centers that are far apart
(probability of picking a point as cluster center \propto distance from nearest center picked so far)

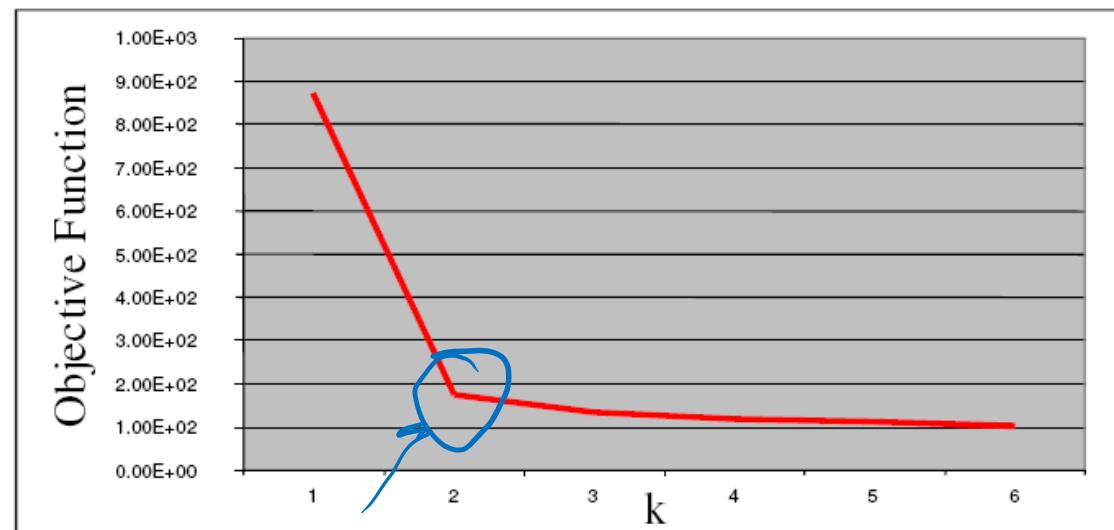
Other Issues

- Number of clusters K

- Objective function

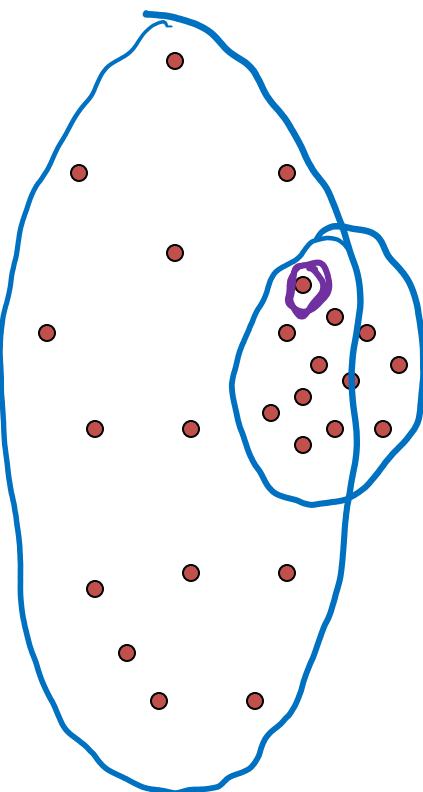
$$\sum_{j=1}^m \|\mu_{C(j)} - x_j\|^2$$

- Look for “Knee” in objective function



- Can you pick K by minimizing the objective over K ?

(One) bad case for K-means



- Clusters may overlap
- Some clusters may be “wider” than others
- Clusters may not be linearly separable