As you login \”/

1. Rename yourself in Zoom to *pre*-pend your house number
= e.g. “0-Pat Virtue”
2. Open Piazza (getting ready for polls)

3. Download preview slides from course website

4. Grab something to write with/on ©



Announcements

Assignments

e
= HW1 Feedback
= HW?2
= Due Mon, 9/21, 11:59 pm
" Mostly programming e

= Written component in LaTeX

= Don’t delay on this on. OH will be *super* crowded as the
deadline gets closer

Feeling behind already?
= Ask for help now
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Plan

Last time
= Decision trees
= Recursive algorithm
= Better splitting criteria (entropy, mutual information)

Today

= Decision trees
= Continuous features =—
=  Qverfitting

= Nearest neighbor methods

Next time
" More nearest neighbor and model selection



Building a Decision Tree

Function BuildTree (D, A)

# D: dataset at current node, A: current set of attributes
If empty(A) or all labels in D are the same
# Leaf node

class = most common class 1in D

else

# Internal node

a < bestAttribute(S?%Z)

LeftNode = BuildTree(D(a=1), A \ {a})
RightNode = BuildTree (D(a=0), A \ {a}) w"f’)/\d/\*' fqo\acmer\f

end

end



Entropy

* Quantifies the amount of uncertainty associated
with a specific probability distribution

" The higher the entropy, the less confident we are in
the outcome S(pC €

= Definition - / e |

H(X) = z X = x)llo A AN/

H&X) p(X = x) gzg( =) S\ e
8 ) q= ﬂ.“/i

H(X) =€>z p(X = x)log, p(X = x)

Claude Shannon (1916 — 2001),
most of the work was done in
Bell [abs



Mutual Information

Slide credit: CMU MLD Matt Gormley



Mutual Information

Let X be arandom variable with X € X.
Let Y be arandom variable withY € ).

Entropy: H(Y) = — Z P(Y =y)logy P(Y =y)

yey

Specific Conditional Entropy: H(Y | X =z) = — z PY=y|X=2x)logo PY =y | X =1z)

yey

Conditional Entropy: H(Y | X) = Y P(X =xz)H(Y | X = 1)

reX

Mutual Information: I(Y; X) = H(Y) —

For a decision tree, we can use
mutual information of the output
class Y and some attribute X on
which to split as a splitting criterion

Given a dataset D of training
examples, we can estimate the
required probabilities as...

H(Y|X)

PV =y) = Nyoy /N
P(X =z) = Nx_,/N /
P(Y — y|X — 'T) — NY:y,Xza:/NX:;E

where Ny _, is the number of examples
forwhichY = yand so on.



Mutual Information

Let X be arandom variable with X € X.
Let Y be arandom variable withY € ).

Entropy: H(Y) = — ) _ P(Y =y)log, P(Y =)
yey

{

Specific Conditional Entropy: H(Y | X =z) = — Z PY=y|X=x)logg P(Y =y | X =x)
yeY
Conditional Entropy: H(Y | X) = Y P(X =xz)H(Y | X = 1)
TeEX
Mutual Information: I(Y; X) = H(Y) — H(Y|X)

Ul

* Entropy measures the expected # of bits to code one random draw from X.

* For a decision tree, we want to reduce the entropy of the random variable we
are trying to predict!

Conditional entropy is the expected value of specific conditional entropy
EpxolH(Y | X = X)

Informally, we say that mutual information is a measure of the following:
If we know X, how much does this reduce our uncertainty about Y?




Splitting with Mutual Information

Which attribute {A, B} would mutual
information select for the next split?
1) A

2) B

3) AorB (tie)

4) |don’t know




Decision Tree Learning Example

Entropy: H(Y) = — Z P(Y =y)log, P(Y =y)

yey
Specific Conditional Entropy: H(Y | X =z)=—) P(Y =y |X =z)log, P(Y =y | X =)
ycy
Conditional Entropy: H(Y | X) =Y P(X =2)H(Y | X =)
v | A B
rEX

_ 1 0 Mutual Information: I(Y; X) = H(Y) — H(Y |X)

1 0]
+ 1 0]
+ 1 0]
+ 1 1
+ 1 1
+ 1 1

1



Decision Tree Learning Example

Entropy: H(Y) = — Z P(Y =y)log, P(Y =y)
ycy

Specific Conditional Entropy: H(Y | X =z)=—) P(Y =y |X =z)log, P(Y =y | X =)

yey

Conditional Entropy: H(Y | X) =Y P(X =2)H(Y | X =)

+

1

1

1

0

0

0

Mutual Information: I(Y; X) = H(Y) — H(Y |X)

2 2 6 6
H(Y) = — lglngg + glng g]

H(Y | A=0)=undefined

[2-, 6+]
H(YIA:1)=—Elog2§+§log2§]=H(Y) A
H(YIA)=PA=0H(YIA=0)+PA=1)HY |A=1) A=0 A=1
= H(Y)
I(Y;A)=H(Y)—H(Y|A)=0 [0-, 0+] [2-, 6+]

P(A=0)=0 P(A=1)=1

12



Decision Tree Learning Example

Entropy: H(Y) = — Z P(Y =y)log, P(Y =y)

yey
Specific Conditional Entropy: H(Y | X =z)=—) P(Y =y |X =z)log, P(Y =y | X =)
ycy
Conditional Entropy: H(Y | X) =Y P(X =2)H(Y | X =)

- 1 o)
- 1 o)
+ 1 0)
+ 1 )
+ 1 1
+ 1 1
+ 1 1
+ 1 1

Mutual Information: I(Y; X) = H(Y) — H(Y |X)
2 2, 6 6
H(Y) = — [glogz g + glng g]

2 2 2 2
H(Y | B=0) =~ |2log, 5+ log, 7| 2-, 6+)
H(Y|B=1)=—]|0log, 0+ 1log,1] =0 3

H(YIB)=P(B=0H(YIB=0)+P(B=1DH{Y |B=1) B=0 B=1
=2H(Y|1B=0)+>-0

25,24]  ([0)a+]
I(Y;B)=H(Y)—H(YIB)>0 P(B=0)=4/8 P(B=1)=4/8
[(Y; B) ends up being greater than I/(Y; A) = 0, so we spliton B 13




Mutual Information Notation

We use mutual information in the context of before and after a split,

regardless of where that split is in the tree.
I(V;X)=HY)—-H{Y | X)




How to learn a decision tree

* Top-down induction [ID3]

//\’\.T/.

Main loop:

1. X+ the|“best”|decision feature for next node &

2. Assign X as decision feature for node

3. For each value of X, create new descendant of
node (Discrete features)

—

4. Sort training examples to leaf nodes

5. If training examples perfectly classified, Then

STOP, Else iterate over new leaf nodes )
(steps 1-5) after removing current feature &—— L/r)f)\obd' «fCP[&Cf o~ T

6. When all features exhausted, assign majority label to the leaf node

15



How to learn a decision tree

* Top-down induction [ID3, C4.5, C5, ...]

———

N4

Main looP; C45/ /V\~I‘

1.
2.

3.

X + the|“best” |decision feature for next node

Assign X as decision feature for node

For |“best”|split of X, create new descendants of

node Conrinwowns feakees

. Sort training examples to leaf nodes

. If training examples perfectly classified, Then

STOP, Else iterate over new leaf nodes

.|Prune back tree|to reduce overfitting

. Assign majority label to the leaf node

&

|

SWL );l/\ (e lacemer\‘\"

16



Continuous Features Y, X
|

'

Consider input features X € R2 95
Xa —
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X, %5
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Generalization

Generalization: Ability to perform well on unseen data

10 7 h




Piazza Poll 1

Decision tree generalization
Which of the following generalize best to unseen examples?

A. Small tree with low training accuracy
Large tree with low training accuracy

@ Small tree with high training accuracq 50% — /57,
D. Large tree with high training accuracy




Piazza Poll 1

Decision tree generalization
Which of the following generalize best to unseen examples?

C. Small tree with high training accuracy



Overtfitting and Underfitting

Underfitting

 The model...
— is too simple
— is unable captures the trends in the data
— exhibits too much bias
* Example: majority-vote classifier (i.e.
depth-zero decision tree)
* Example: a toddler (that has not

attended medical school) attempting to
carry out medical diagnosis

Overfitting

The model...
— is too complex
— is fitting the noise in the data

— or fitting random statistical fluctuations
inherent in the “sample” of training data

Example: our “memorizer” algorithm
responding to an “orange shirt”
attribute

Example: medical student who simply
memorizes patient case studies, but does
not understand how to apply knowledge
to new patients




K
Overfitting O\

* Consider a hypothesis h its... \O
...error rate over all training data: ~ error(h, Dy5,))  / \, [}D
)

...error rate over all test data: error(h, D,...)




Overfitting

* Consider a hypothesis h its...

..error rate over all training data:  error(h, D,,...)

..error rate over all test data: error(h, D )
... true error over all data: error,. .(h)
* We say h overtits the training data if... “ b In practice,

error,..(h) is

error,. .(h) > error(h, D,...) unknown

* Amount of overtfitting =

errortrue(h) - error(h, Dtrain)




Overtfitting in Decision Tree Learning

09 T u

0.85

0.3

0.75

0.7

Accurac

0.65
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0.55 |

On training data ——
On test data ——--

0.5 :
D}\ \J\D ‘,\ZD

Figure from Tom Mitchell

e e

Size of tree (number of nodes)
——m
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How to Avoid Overfitting?

Many strategies for picking simpler trees:
" Fixed depth (e.g. ID3)

" Fixed number of leaves

* Mutual information threshold

" Grow entire tree then prune



Reduced-Error Pruning

Split data into training and validation set

Create tree that classifies training set correctly
Do until further pruning is harmful:

1. Evaluate impact on validation set of pruning
each possible node (plus those below it)

2. Greedily remove the one that most improves
validation set accuracy

e produces smallest version of most accurate
subtree

e What if data is limited?

Slide from Tom Mitchell

Ta N

Validation

Tegt

26



Effect of Reduced-Error Pruning
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Slide from Tom Mitchell
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Effect of Reduced-Error Pruning

D.g I I I | 1 I I 1
0.85 - f____f__}f_———f——”’—
P—
0.8 | J
IMPORTANT! [ - |
Later, we’ll learnthaty S |
doing pruning on
test data is the On training data :
. I es ara ———~
Wrong thlng to dO. :> On test data (during pruning) ----- i
Instead, use athird fo 1 s e 70 s 9 100

‘““validation’”’ dataset.

Size of tree (number of nodes)

Slide from Tom Mitchell



ID3 = Decision Tree

|ﬂC|UCtiV€ BiaS Learning with Mutual

Information and
choosing attributes

Question: How does an ID3 tree generalize? without replacement

Definition:
We say that the inductive bias of a machine learning
algorithm is the principal by which it generalizes to unseen
examples

Inductive Bias of ID3:
Smallest tree that matches the data with high mutual
information attributes near the top

Occam’s Razor: (restated for ML)
Prefer the simplest hypothesis that explains the data



Decision Trees (DTs) in the Wild

DTs are one of the most popular classification methods for practical
applications

— Reason #1: The learned representation is easy to explain a non-ML person

— Reason #2: They are efficient in both computation and memory

DTs can be applied to a wide variety of problems including classification,
regression, density estimation, etc.
Applications of DTs include...

— medicine, molecular biology, text classification, manufacturing, astronomy,
agriculture, and many others

Decision Forests learn many DTs from random subsets of features; the

result is a very powerful example of an ensemble method (discussed

later in the course)



DT Learning Objectives

You should be able to...

1.
2.

Ve W

0o N o

Implement Decision Tree training and prediction

Use effective splitting criteria for Decision Trees and be able to define
entropy, conditional entropy, and mutual information

Explain the difference between memorization and generalization
Describe the inductive bias of a decision tree

Formalize a learning problem by identifying the input space, output
space, hypothesis space

Explain the difference between true error and training error
Judge whether a decision tree is "underfitting" or "overfitting"

Implement a pruning or early stopping method to combat overfitting
in Decision Tree learning



Nearest Neighbor Classifier

X

Test subject

D
X Yeot

@® Whales

O Seals
® Sharks

— X

(



Nearest Neighbor Classifier

Test subject

@
O
@
@

¢ @® Whales
O Seals
® Sharks

®




+ain (DY
Nearest Neighbor Classification store D
Given a training dataset D = {y("),x(")}gzl, y€{1,..,C}, xe RM

and a test input X;.¢, predict the class label, V;oq: k(f \csf\
1) Find the closest point in the training data to x4

n'ia/ _I_'grrlnin_ d(Xtest » x(n))
2) Return the class label of that closest point
j;t — y(n)
est

Need distance function! What should d(x, z) be?
RN, JG?DEZQB: Wﬁ?ll
M 2\/2 |
Ly :(Z -2 ) L, =



Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers from
3 different species: Iris setosa (0), Iris virginica (1), Iris
versicolor (2) collected by Anderson (1936)

Sepal Sepal Petal Petal
Length Width Length Width
4.3 3.0 1.1 0.1

0

0 4.9 3.6 1.4 0.1
0 5.3 3.7 1.5 0.2
1 4.9 2.4 3.3 1.0
1 5.7 2.8 4.1 1.3
1 6.3 3.3 4.7 1.6
1 6.7 3.0 5.0 1.7

Full dataset: https://en.wikipedia.org/wiki/lris_flower data_set



Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers from
3 different species: Iris setosa (0), Iris virginica (1), Iris
versicolor (2) collected by Anderson (1936)

RN

Length Width

0 4.3 3.0

0 4.9 3.6

0 5.3 3.7

1 4.9 2.4 ‘
1 5.7 2.8

1 6.3 33

1 6.7 3.0

Full dataset: https://en.wikipedia.org/wiki/lris_flower data_set



Nearest Neighbor on Fisher Iris Data
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Nearest Neighbor on Fisher Iris Data

Slide credit: CMU MLD Matt Gormley

38



Nearest Neighbor on Gaussian Data

39



Nearest Neighbor on Gaussian Data

Slide credit: CMU MLD Matt Gormley

40



kNN classifier (k=5)

Test document

@® Whales

O Seals

® Sharks
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Nearest Neighbor Classification

Given a training dataset D = {y("),x(")}zzl, y€{1,..,C}, xe RM

and a test input Xx;.¢¢, predict the class label, V;oq:

1) Find the closest point in the training data to X,
n = argmin d(X;pg , x™)

n
2) Return the class label of that closest point
5} — y(n)
test

Need distance function! What should d(x, z) be?



k-Nearest Neighbor Classification

Given a training dataset D = {y("),x(")}zzl, y€{1,..,C}, x e RM

and a test input X;.¢, predict the class label, V;oq:

1) Find the closest k points in the training data to x;.¢;
Nk (xtestrD)

2) Return the class label of that closest point
ytest — argmaxp(Y = C | xtest; D; k)
C

1 .
= argmax - z H(y(‘) = c)
: L € Ng(Xtest,D)

K¢

= argmax—,
.k

where k. is the number of the k-neighbors with class label ¢



1-Nearest Neighbor (kNN) classifier
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2-Nearest Neighbor (kNN) classifier
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3-Nearest Neighbor (kNN) classifier
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5-Nearest Neighbor (kNN) classifier
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What is the best k?

How do we choose a learner that is accurate and also generalizes to
unseen data?

* Larger k = predicted label is more stable
* Smaller k = predicted label is more affected by individual training

points

But how to choose k?



