As you login

1. Rename yourself in Zoom to *pre*-pend your house number
= e.g. “0-Pat Virtue”

2. Open Piazza (getting ready for polls)

3. Download preview slides from course website

4. Grab something to write with/on ©



Announcements

Assignments
= HWI1 Feedback

= HW?2
= Due Mon, 9/21, 11:59 pm

= Start now! OH will be *super* crowded as the deadline gets
closer

Breakout rooms
= \ideo on
= Unmute

" |Introduce yourself if you haven’t already met
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Instructor: Pat Virtue



Plan

Last time
= Decision trees

= Continuous features, Overfitting
= Nearest neighbor methods

Today

=  K-nearest neighbor

= Nearest neighbor remarks

= Model selection / hyperparameter optimization
= \Validation methods



Nearest Neighbor Classifier

Test subject
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Nearest Neighbor on Fisher Iris Data

Slide credit: CMU MLD Matt Gormley



Piazza Poll 1

Which methods can achieve zero training error on this dataset?

A. Decision trees

B. 1-Nearest Neighbor

C. Both

D. Neither

If zero error, draw the decision boundary.
Otherwise, why not?




Piazza Poll 1

Which methods can achieve zero training error on this dataset?

C. Both

If zero error, draw the decision boundary.
Otherwise, why not?
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Piazza Poll 1

Which methods can achieve zero training error on this dataset?
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Nearest Neighbor Decision Boundary

1-nearest neighbor classifier decision boundary

Voronoi Diagram




Piazza Poll 2

1-nearest neighbor will likely:

A. Overfit

B. Underfit

C. Neither (it’s a great learner!)



Piazza Poll 2

1-Nearest neighbor will likely:
A. Overfit



Nearest Neighbor on Fisher Iris Data

Slide credit: CMU MLD Matt Gormley
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Nearest Neighbor on Gaussian Data
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Nearest Neighbor on Gaussian Data

Slide credit: CMU MLD Matt Gormley
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kNN classifier (k=5)

Test document
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+ain (DY
Nearest Neighbor Classification store D
Given a training dataset D = {y("),x(")}gzl, y€{1,..,C}, xe RM

and a test input X;.¢, predict the class label, V;oq: k(f \csf\
1) Find the closest point in the training data to x4

n'ia/ _I_'grrlnin_ d(Xtest » x(n))
2) Return the class label of that closest point
j;t — y(n)
est

Need distance function! What should d(x, z) be?
RN, JG?DEZQB: Wﬁ?ll
M 2\/2 |
Ly :(Z -2 ) L, =



k-Nearest Neighbor Classification

Given a training dataset D = {y("),x(")}zzl, y€{1,..,C}, x e RM

and a test input X;.¢, predict the class label, V;oq:

1) Find the closest k points in the training data to x;.¢;
Nk (xtestrD)

2) Return the class label of that closest point
ytest — argmaxp(Y = C | xtest; D; k)
C

1 .
= argmax - z H(y(‘) = c)
: L € Ng(Xtest,D)

K¢

= argmax—,
.k

where k. is the number of the k-neighbors with class label ¢



1-Nearest Neighbor (kNN) classifier
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2-Nearest Neighbor (kNN) classifier
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3-Nearest Neighbor (kNN) classifier

@ Sports

O Science

® Arts




5-Nearest Neighbor (kNN) classifier
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What is the best k?

How do we choose a learner that is accurate and also generalizes to
unseen data?

* Larger k = predicted label is more stable
* Smaller k = predicted label is more affected by individual training

points

But how to choose k?



k-NN on Fisher Iris Data

Special Case: Nearest Neighbor

3-Class classification (k = 1, weights = ‘uniform')
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Slide credit: CMU MLD Matt Gormley
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k-NN on Fisher Iris Data

3-Class classification (k = 2, weights
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Slide credit: CMU MLD Matt Gormley

= 'uniform’)
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k-NN on Fisher Iris Data

3-Class classification (k = 3, weights = ‘uniform')
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Slide credit: CMU MLD Matt Gormley
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k-NN on Fisher Iris Data

3-Class classification (k = 4, weights = ‘uniform')
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Slide credit: CMU MLD Matt Gormley
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k-NN on Fisher Iris Data

3-Class classification (k = 5, weights = ‘uniform')
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Slide credit: CMU MLD Matt Gormley
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k-NN on Fisher Iris Data

3-Class classification (k = 10,

weights = 'uniform’)

Slide credit: CMU MLD Matt Gormley
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k-NN on Fisher Iris Data

Special Case: Majority Vote

3-Class classification (k = 150, weights = 'uniform’)
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Slide credit: CMU MLD Matt Gormley
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k-NN: Remarks

Inductive Bias:
1. Close points should have similar labels
2. All dimensions are created equally!



k-NN: Remarks

Inductive Bias:
1. Close points should have similar labels
2. All dimensions are created equally!

3

Slide credit: CMU MLD Matt Gormley
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k-NN: Remarks

Computational Efficiency:
* Suppose we have N training examples, and each one has M features
* Computational complexity for the special case where k=1:



Piazza Poll 3 (train) and Poll 4 (test)

Suppose we have N training examples, and each one has M features
Computational complexity for the special case where k=1

A. O(1)
O(log N)
O(log M)
. O(log NM)
O(N)
O(M)

. O(NM)

. O(N~2)
O(NA2M)

— I 6 mMmoO0Ow



Piazza Poll 3 (train) and Poll 4 (test)

Suppose we have N training examples, and each one has M features
Computational complexity for the special case where k=1

A. O(1)

G. O(NM)



k-NN: Remarks

Computational Efficiency:
* Suppose we have N training examples, and each one has M features
* Computational complexity for the special case where k=1:

— ]~

N~ —

Train 0(1) ~O(M N log N)
Predict O(MN) ~0(2Mlog N) on average

(one test example) @

Problem: Very fast for small M, but
very slow for large M

In practice: use stochastic
approximations (very fast, and
empirically often as good)

36



K-NN Learning Objectives

You should be able to...
* Describe a dataset as points in a high dimensional space
* Implement k-Nearest Neighbors with O(N) prediction

 Describe the inductive bias of a k-NN classifier and relate it
to feature scale

* Sketch the decision boundary for a learning algorithm
(compare k-NN and DT)



MODEL SELECTION



Model Selection

WARNING:

* |n some sense, our discussion of model selection is
premature.

* The models we have considered thus far are fairly simple.

* The models and the many decisions available to the data
scientist wielding them will grow to be much more complex
than what we’ve seen so far.



Model Selection

Statistics

Def: a model defines the data generation
process (i.e. a set or family of parametric
probability distributions)

Def: model parameters are the values that
give rise to a particular probability
distribution in the model family

Def: learning (aka. estimation) is the process
of finding the parameters that best fit the
data

Def: hyperparameters are the parameters of
a prior distribution over parameters

Machine Learning

Def: (loosely) a model defines the hypothesis
space over which learning performs its
search

Def: model parameters are the numeric
values or structure selected by the learning
algorithm that give rise to a hypothesis

Def: the learning algorithm defines the data-
driven search over the hypothesis space (i.e.
search for good parameters)

Def: hyperparameters are the tunable
aspects of the model, that the learning
algorithm does not select



Model Selection

Example: Decision Tree

model = set of all possible trees, possibly
restricted by some hyperparameters (e.g.
max depth)

parameters = structure of a specific decision
tree

learning algorithm = ID3, CART, etc.

hyperparameters = max-depth, threshold for
splitting criterion, etc.

Machine Learning

Def: (loosely) a model defines the hypothesis
space over which learning performs its
search

Def: model parameters are the numeric
values or structure selected by the learning
algorithm that give rise to a hypothesis

Def: the learning algorithm defines the data-
driven search over the hypothesis space (i.e.
search for good parameters)

Def: hyperparameters are the tunable
aspects of the model, that the learning
algorithm does not select



Model Selection

Example: k-Nearest Neighbors

model = set of all possible nearest neighbors
classifiers

parameters = none
(KNN is an instance-based or non-parametric
method)

learning algorithm = for naive setting, just
storing the data

hyperparameters = k, the number of
neighbors to consider

Machine Learning

Def: (loosely) a model defines the hypothesis
space over which learning performs its
search

Def: model parameters are the numeric
values or structure selected by the learning
algorithm that give rise to a hypothesis

Def: the learning algorithm defines the data-
driven search over the hypothesis space (i.e.
search for good parameters)

Def: hyperparameters are the tunable
aspects of the model, that the learning
algorithm does not select



Model Selection

Statistics Machine Learning

* Def: a model defines the data generation * Def: (loosely) a model defines the hypothesis
process (l.e. a set or.famlly If “learning” is all about hich learning performs its
probability distributions) .

picking the best

* Def: model parameters are] parameters how do we |parameters are the numeric
give rise to a particular prof pick the best ructure selected by the learning
distribution in the model fa = at give rise to a hypothesis

hyperparameters?

* Def: learning (aka. estimati : ing algorithm defines the data-
of finding the paramet at best fit the driven sear& \er the hypothesis space (i.e.
data search for go rameters)

* Def: hyperparameters are the parameters of * Def: hyperparameters are the tunable
a prior distribution over parameters aspects of the model, that the learning
algorithm does not select



Model Selection

* Two very similar definitions:
— Def: model selection is the process by which we choose the “best”

model from among a set of candidates
— Def: hyperparameter optimization is the process by which we choose
the “best” hyperparameters from among a set of candidates (could be

called a special case of model selection)

* Both assume access to a function capable of measuring the
quality of a model

* Both are typically done “outside” the main training algorithm -
typically training is treated as a black box



Experimental Design

Input Output Notes

Training training dataset * best model parameters  We pick the best model

hyperparameters parameters by learning on
the training dataset for a

fixed set of
hyperparameters

Hyperparameter training dataset * best hyperparameters We pick the best

Optimization validation dataset hyperparameters by
learning on the training data

and evaluating error on the
validation error

Testing test dataset * testerror We evaluatg a hypothe_f,i§
hypothesis (i.e. fixed corresponding to a decision

el rule with fixed model
model parameters) parameters on a test

dataset to obtain test error




Special Cases of k-NN

k=1: Nearest Neighbor

3-Class classification (k = 1, weights = 'uniform’)
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Slide credit: CMU MLD Matt Gormley

k=N: Majority Vote

3-Class classification (k = 150, weights = 'uniform’)
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Example of Hyperparameter Optimization
Choosing k for k-NN




Classification with KNN (k = 1, weights = 'uniform’) Classification with KNN (k = 144, weights = ‘uniform’)

K-NN: Choosing k

o Train / Test Errors with k-NN .

07- @ train
v validation

0.6 -
0.5-

0.4 -

error

0.3 -

0.2 -

0.1-

10° 10! 102

Fisher Iris Data: varying the value of k
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Classification with KNN (k = 1, weights = 'uniform’) Classification with KNN (k = 81, weights = ‘uniform’) |
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Validation

Why do we need validation?

=" Choose hyperparameters
" Choose technique

" Help make any choices beyond our parameters

But now, we have another choice to make!
" How do we split training and validation?

Trade-offs

" More held-out data, better meaning behind validation numbers
= More held-out data, less data to train on!



Cross-validation

K-fold cross-validation

Create K-fold partition of the dataset.
Do K runs: train using K-1 partitions and calculate validation error

on remaining partition (rotating validation partition on each run).
Report average validation error

Total number of examples I:I training I:Ivalidation

Run 1

Run 2

Run K




Cross-validation

Leave-one-out (LOQO) cross-validation

Special case of K-fold with K=N partitions
Equivalently, train on N-1 samples and validate on only one
sample per run for N runs

|:| training I:Ivalidation
Total number of examples

¢ >

Run 1

Run 2

Run K




Cross-validation

Random subsampling

Randomly subsample a fixed fraction aN (0< a <1) of the dataset

for validation.

Compute validation error with remaining data as training data.

Repeat K times
Report average valid

ation error

Total number of examples

I:I training I:Ivalidation

4

Run 1

Run 2

Run K




Practical Issues in Cross-validation

How to decide the values for Kand a ?

= largeK
+ Validation error can approximate test error well
- Observed validation error will be unstable (few validation pts)
- The computational time will be very large as well (many experiments)

= Small K
+ The # experiments and, therefore, computation time are reduced
+ Observed validation error will be stable (many validation pts)
- Validation error cannot approximate test error well

Common choice: K=10,a=0.1©



Model Selection

WARNING (again):
— This section is only scratching the surface!
— Lots of methods for hyperparameter optimization: (to talk about

later)
e Grid search
* Random search
* Bayesian optimization
e Graduate-student descent

Main Takeaway:
— Model selection [ hyperparameter optimization is just another
form of learning



Model Selection Learning Objectives

You should be able to...

* Plan an experiment that uses training, validation, and test
datasets to predict the performance of a classifier on unseen
data (without cheating)

 Explain the difference between (1) training error, (2)
validation error, (3) cross-validation error, (4) test error, and
(5) true error

* Foragiven learning technique, identify the model, learning
algorithm, parameters, and hyperparamters



