Recitation 3: Worksheet

Note: LaTeX template courtesy of UC Berkeley EECS dept.

3.1 Linear and Convex Functions

Recall the following definitions

1. f is a linear function if f has the properties:

- $f(u+z)=f(u)+f(z)$
- $f(c x)=c f(x)$, for a constant c.

2. f is a convex function it has the property that

$$
f(\alpha u+(1-\alpha) z) \leq \alpha f(u)+(1-\alpha) f(z)
$$

Question 1.1 Show that $f(x)=m x$ is a linear function.
Solution. For the first property...

$$
f(u+z)=m(u+z)=m u+m z=f(u)+f(z)
$$

For the second property...

$$
f(c x)=m(c x)=c m x=c f(x)
$$

Question 1.2 We saw $f(x)=m x+b$, where $m, b \in \mathbb{R}$, is not linear during lecture. Is it convex? Show why or why not.

Solution. For the left-hand side of $f(\alpha u+(1-\alpha) z) \leq \alpha f(u)+(1-\alpha) f(z) \ldots$

$$
f(\alpha u+(1-\alpha) z)=m(\alpha u+(1-\alpha) z)+b=m \alpha u+m(1-\alpha) z+b
$$

For the right-hand side...

$$
\begin{aligned}
\alpha f(u)+(1-\alpha) f(z) & =\alpha(m u+b)+(1-\alpha)(m z+b) \\
& =\alpha m u+\alpha b+(1-\alpha) m z+(1-\alpha) b \\
& =m \alpha u+m(1-\alpha) z+b
\end{aligned}
$$

Since the left-hand side equals the right-hand side, the inequality holds and we see that f is indeed convex.
Question 1.3 Show that if f is a linear function, it is also a convex function.
Solution.

$$
\begin{array}{rlrl}
f(\alpha u+(1-\alpha) z) & =f(\alpha u)+f((1-\alpha) z) \\
& =\alpha f(u)+(1-\alpha) f(z) & (\text { Using } f(a+b)=f(a)+f(b) \text { where } a=\alpha u \text { and } b=(1-\alpha) z) \\
\quad(\text { using } f(c x)=c f(x) \text { two times })
\end{array}
$$

Since $f(\alpha u+(1-\alpha) z) \leq \alpha f(u)+(1-\alpha) f(z)$ it is convex.
Question 1.4 (Bonus) Let $f(x)=a x^{2}+b x+c$ for $a, b, c \in \mathbb{R}$ and $a>0$. Show that f is convex. Hint: Note that $x y \leq x^{2}+y^{2}$.

Solution. For the left-hand side of the inequality...

$$
\begin{aligned}
f(\alpha u+(1-\alpha) z) & =a(\alpha u+(1-\alpha) z)^{2}+b(\alpha u+(1-\alpha) z)+c \\
& =a \alpha^{2} u^{2}+a(1-\alpha)^{2} z^{2}+a \alpha(1-\alpha) u z+b \alpha u+b(1-\alpha) z+c
\end{aligned}
$$

For the right-hand side of the inequality...

$$
\begin{aligned}
\alpha f(u)+(1-\alpha) f(z) & =\alpha\left(a u^{2}+b u+c\right)+(1-\alpha)\left(a z^{2}+b z+c\right) \\
& =a \alpha u^{2}+a(1-\alpha) z^{2}+b \alpha u+b(1-\alpha) z+c
\end{aligned}
$$

Since $b \alpha u+b(1-\alpha) z+c$ is a common term in both of the expression, we just need to show that

$$
a \alpha^{2} u^{2}+a(1-\alpha)^{2} z^{2}+a \alpha(1-\alpha) u z \leq a \alpha u^{2}+a(1-\alpha) z^{2}
$$

or equivalently that

$$
\alpha(1-\alpha) u z \leq \alpha u^{2}+(1-\alpha) z^{2}-\alpha^{2} u^{2}-(1-\alpha)^{2} z^{2}
$$

For the right-hand side of the above equality note that

$$
\begin{aligned}
& \alpha u^{2}+(1-\alpha) z^{2}-\alpha^{2} u^{2}-(1-\alpha)^{2} z^{2} \\
& =\alpha\left(u^{2}-\alpha u^{2}\right)+(1-\alpha)\left(z^{2}-(1-\alpha) z^{2}\right) \\
& =\alpha(1-\alpha) u^{2}+(1-\alpha) \alpha z^{2}
\end{aligned}
$$

By the hint we see that

$$
\alpha(1-\alpha) u z \leq \alpha u^{2}+(1-\alpha) z^{2}-\alpha^{2} u^{2}-(1-\alpha)^{2} z^{2}
$$

Why is the hint true? Because...

$$
\begin{aligned}
0 & \leq(x-y)^{2}=x^{2}+y^{2}-2 x y \\
2 x y & \leq x^{2}+y^{2} \\
x y & \leq \frac{x^{2}+y^{2}}{2} \leq x^{2}+y^{2}
\end{aligned}
$$

3.2 A Refresher on (Scalar) Derivatives

There are a few important derivative rules to remember.

- The Product Rule.

$$
\frac{d}{d x}(f(x) g(x))=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

- The Quotient Rule.

$$
\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{g(x)^{2}}
$$

- The Chain Rule.

$$
\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) g^{\prime}(x)
$$

Compute the following derivatives and state which rule (if any) you used for each step:
Question 2.1 Let $f(x)=x e^{x} . f^{\prime}(x)=\ldots$
Remember that $\frac{d}{d x} e^{x}=e^{x}$.
Solution.

$$
\begin{aligned}
f^{\prime}(x) & =\left(\frac{d}{d x} x\right) e^{x}+x\left(\frac{d}{d x} e^{x}\right) \quad \text { (Product Rule) } \\
& =e^{x}+x e^{x}
\end{aligned}
$$

Question 2.2 Let $f(x)=\frac{x}{e^{x}} . f^{\prime}(x)=\ldots$
Solution.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\left(\frac{d}{d x} x\right) e^{x}-x\left(\frac{d}{d x} e^{x}\right)}{\left(e^{x}\right)^{2}} \quad \text { (Quotient Rule) } \\
& =\frac{e^{x}-x e^{x}}{e^{2 x}} \\
& =\frac{1-x}{e^{x}}
\end{aligned}
$$

Question 2.3 Let $f(x)=e^{3 x} . f^{\prime}(x)=\ldots$
Solution.

$$
\begin{aligned}
f^{\prime}(x) & =e^{3 x}\left(\frac{d}{d x} 3 x\right) \quad \text { (Chain Rule) } \\
& =3 e^{3 x}
\end{aligned}
$$

Question 2.4 Let $f(x)=(1+2 x)^{563} \cdot f^{\prime}(x)=\ldots$
Solution.

$$
\begin{aligned}
f^{\prime}(x) & =563(1+2 x)^{562}\left(\frac{d}{d x}(1+2 x)\right) \quad \text { (Chain Rule) } \\
& =1126(1+2 x)^{562}
\end{aligned}
$$

Question 2.5 Let $f(x)=\frac{3 x}{(2+3 x)^{3}} . f^{\prime}(x)=\ldots$

Solution.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\left(\frac{d}{d x} 3 x\right)(2+3 x)^{3}-3 x\left(\frac{d}{d x}(2+3 x)^{3}\right)}{(2+3 x)^{6}} \\
& =\frac{3(2+3 x)^{3}-3 x\left(3(2+3 x)^{2}\left(\frac{d}{d x}(2+3 x)\right)\right)}{(2+3 x)^{6}} \\
& =\frac{3(2+3 x)^{3}-27 x(2+3 x)^{2}}{(2+3 x)^{6}} \\
& =\frac{6-18 x}{(2+3 x)^{4}}
\end{aligned}
$$

(Quotient Rule)
(Chain Rule)

Question 2.6 Let $f(x)=e^{4 x e^{2 x}} . f^{\prime}(x)=\ldots$
Solution.

$$
\begin{align*}
f^{\prime}(x) & =e^{4 x e^{2 x}}\left(\frac{d}{d x} 4 x e^{2 x}\right) \tag{ChainRule}\\
& =e^{4 x e^{2 x}}\left(\left(\frac{d}{d x} 4 x\right) e^{2 x}+4 x\left(\frac{d}{d x} e^{2 x}\right)\right) \tag{ProductRule}\\
& =e^{4 x e^{2 x}}\left(4 e^{2 x}+4 x e^{2 x}\left(\frac{d}{d x} 2 x\right)\right) \\
& =e^{4 x e^{2 x}}\left(4 e^{2 x}+8 x e^{2 x}\right)
\end{align*}
$$

