
The perceptron algorithm

The perceptron algorithm is a simple method for learning a linear classifier. It
works on a stream of examples where is in some vector space and

.

The state of the perceptron algorithm is a vector that represents our
linear classifier: we predict according to whether has positive or negative
inner product with the next example,

(We can break ties arbitrarily if .)

The perceptron algorithm initializes to , and updates as it processes the
stream of examples. The perceptron update has three cases:

If we predict correctly for example (that is, if), then we
keep .

If we make a mistake on a positive example, we update .

If we make a mistake on a negative example, we update .

The perceptron update makes sense since it moves us toward a correct
prediction. For example, on a positive example , if we see the same
again, our dot product increases:

Mistake bound

(x , y)t t xt V

y ∈t {−1, 1}

w ∈t V

wt

=ŷt sgn(w ⋅t x) .t

w ⋅t x =t 0

w1 0 wt

t y =t sgn(x ⋅t w)t

w =t+1 wt

w =t+1 w +t xt

w =t+1 w −t xt

x =t 0 xt

w ⋅t+1 x =t w ⋅t x +t x ⋅t x >t w ⋅t x .t

The perceptron algorithm satisfies many nice properties. Here we'll prove a
simple one, called a mistake bound: if there exists an optimal parameter vector

 that can classify all of our examples correctly, then the perceptron algorithm
will make at most a bounded number of mistakes before discovering some
optimal parameter vector.

In more detail, suppose that for all positive examples, and
 for all negative ones. Also assume that our examples are bounded:

there is a constant such that for all .

Then, we will show that the perceptron algorithm will make at most

mistakes in total. For example, if our examples have norm at most 2, if our
optimal parameter vector has norm , and if , then we make no
more than mistakes in total.

To track mistakes, define to be the total number of mistakes we make up to
(but not including) example . So, (we have not yet had a chance to
make any mistakes yet), and is equal to either (if we get example
right) or (if we make a mistake on example).

Tools

In our proof we'll use some properties of inner product spaces. One of the key
ones is Hölder's inequality: for any two vectors , we have

We'll also use the usual axioms for addition, scalar multiplication, norm, and
inner product, such as the fact that inner product distributes over addition and
the fact that .

Proof I:

First we show a lower bound on . We'll use induction and proof by cases.

After a mistake on a positive example, we have

w∗

w ⋅∗ x ≥t ϵ

w ⋅∗ x ≤t −ϵ

U ∥x ∥ ≤t U t

ϵ2

U ∥w ∥2 ∗ 2

∥w ∥ =∗ 3 ϵ = 2
1

144

Mt

t M =1 0

Mt+1 Mt t

1 + Mt t

u, v

u ⋅ v ≤ ∥u∥ ∥v∥

∥u∥ =2 u ⋅ u

w ⋅t w∗

w ⋅ w∗ = w ⋅ w + x ⋅ w∗ ∗

since, by assumption, . Similarly, on a negative example, we have

since, by assumption, . So, for all , we have by induction that

The LHS starts at , doesn't change when we predict correctly, and
increases by at least with each mistake; the RHS starts at , doesn't
change when we predict correctly, and increases by exactly with each
mistake.

Proof II:

Next we show an upper bound on . Again we use induction and proof by
cases.

After a mistake on a positive example, we have

To see why, note that , since we (mistakenly) classified this example
as negative. And, by assumption.

Similarly, after a mistake on a negative example, we have

In this case, , since we (mistakenly) classified this example as
positive.

Just as in the previous section, we can now do induction on : for all , we have

w ⋅ wt+1
∗ = w ⋅ w + x ⋅ wt

∗
t

∗

≥ w ⋅ w + ϵt
∗

x ⋅t w ≥∗ ϵ

w ⋅ wt+1
∗ = w ⋅ w − x ⋅ wt

∗
t

∗

≥ w ⋅ w + ϵt
∗

x ⋅t w ≤∗ −ϵ t

w ⋅t w ≥∗ ϵMt

w ⋅1 w =∗ 0

ϵ ϵM =1 0

ϵ

∥w ∥t

w ⋅ wt+1 t+1 = w ⋅ w + 2w ⋅ x + x ⋅ xt t t t t t

≤ w ⋅ w + 0 + Ut t
2

w ⋅t x ≤t 0

x ⋅t x =t ∥x ∥ ≤t
2 U 2

w ⋅ wt+1 t+1 = w ⋅ w − 2w ⋅ x + x ⋅ xt t t t t t

≤ w ⋅ w + 0 + Ut t
2

w ⋅t x ≥t 0

t t

w ⋅t w ≤t M U .t
2

The LHS starts at zero when , doesn't change unless we make a
mistake, and increases by at most on each mistake; the RHS starts at
 when , doesn't change unless we make a mistake, and increases by

exactly on each mistake.

Proof III:

If we divide the conclusion of part I by and then square both sides, we get

(We are implicitly using so that squaring preserves order.) By Hölder's
inequality, we therefore have

Substituting in the conclusion of part II using , we get

and dividing through by we get

as claimed.

w ⋅t wt t = 1

U 2 M Ut
2

0 t = 1

U 2

ϵ

M ≤t
2 (

ϵ

w ⋅ wt
∗)2

M ≥t 0

M ≤t
2 (

ϵ

∥w ∥∥w ∥t
∗)2

w ⋅t w =t ∥w ∥t
2

M ≤t
2

ϵ2

M U ∥w ∥t
2 ∗ 2

Mt

M ≤t
ϵ2

U ∥w ∥2 ∗ 2

