The perceptron algorithm

The perceptron algorithm is a simple method for learning a linear classifier. It
works on a stream of examples (z, y:) where z; is in some vector space V and

Yr € {—].,].}

The state of the perceptron algorithm is a vector w; € V' that represents our
linear classifier: we predict according to whether w; has positive or negative
inner product with the next example,

gt = sgn(wt . .’Et) .

(We can break ties arbitrarily if w; - z; = 0.)

Q

)

I
—
o0
—

The perceptron algorithm initializes w; to 0, and updates w; as it processes the
stream of examples. The perceptron update has three cases:

e If we predict correctly for example ¢ (that is, if y, = sgn(x; - w;)), then we
keep w1 = wy.

¢ |f we make a mistake on a positive example, we update w1 = wy + ;.

¢ |f we make a mistake on a negative example, we update w;,1 = w; — x;.

The perceptron update makes sense since it moves us toward a correct
prediction. For example, on a positive example z; # 0, if we see the same z;
again, our dot product increases:

Wil * Tt = Wt = Tt + Tt + Tt > Wy * Tt -

Mistake bound

The perceptron algorithm satisfies many nice properties. Here we'll prove a
simple one, called a mistake bound: if there exists an optimal parameter vector
w* that can classify all of our examples correctly, then the perceptron algorithm
will make at most a bounded number of mistakes before discovering some
optimal parameter vector.

In more detail, suppose that w*-z; > ¢ for all positive examples, and
w* - z; < —e for all negative ones. Also assume that our examples are bounded:
there is a constant U such that ||z:|| < U for all ¢.

Then, we will show that the perceptron algorithm will make at most

U?||w*||?

€2

mistakes in total. For example, if our examples have norm at most 2, if our
optimal parameter vector has norm |w*|| =3, and if e = 1, then we make no
more than 144 mistakes in total.

To track mistakes, define M; to be the total number of mistakes we make up to
(but not including) example t. So, M; =0 (we have not yet had a chance to
make any mistakes yet), and M;,; is equal to either M, (if we get example ¢
right) or 1 + M; (if we make a mistake on example t).

Tools

In our proof we'll use some properties of inner product spaces. One of the key
ones is Holder's inequality: for any two vectors u, v, we have

w-v < ul vl

We'll also use the usual axioms for addition, scalar multiplication, norm, and
inner product, such as the fact that inner product distributes over addition and
the fact that ||u|]* = u - u.

Proof I:

First we show a lower bound on w, - w*. We'll use induction and proof by cases.

After a mistake on a positive example, we have

* * *
Wi W =W W + Ty W

> w,-w' + €

since, by assumption, z; - w* > €. Similarly, on a negative example, we have

x * *
Wi W =W W — T W

> w, - w' + €
since, by assumption, z; - w* < —e. So, for all ¢, we have by induction that

wy - w* > eM;

The LHS starts at w; - w* = 0, doesn't change when we predict correctly, and
increases by at least € with each mistake; the RHS starts at eM; = 0, doesn't
change when we predict correctly, and increases by exactly ¢ with each
mistake.

Proof Il:

Next we show an upper bound on ||w;||. Again we use induction and proof by
cases.

After a mistake on a positive example, we have
Wiy - Wiy = Wy - Wy + 2w - Ty + Xy - Ty

< wy-wg + 0+ U?

To see why, note that w; - z; < 0, since we (mistakenly) classified this example
as negative. And, z; - z; = ||z:||> < U? by assumption.

Similarly, after a mistake on a negative example, we have
Wiy - Wiy = Wy - Wy — 2Wy - Ty + Ty - Ty

< wy-wg + 0+ U?

In this case, w;-z; >0, since we (mistakenly) classified this example as
positive.

Just as in the previous section, we can now do induction on ¢: for all ¢, we have

Wt - Wt S MtUz.

The LHS w; - w; starts at zero when t = 1, doesn't change unless we make a
mistake, and increases by at most U? on each mistake; the RHS M,U? starts at
0 when t =1, doesn't change unless we make a mistake, and increases by
exactly U? on each mistake.

Proof lll;

If we divide the conclusion of part | by € and then square both sides, we get

w, - w2
€

(We are implicitly using M; > 0 so that squaring preserves order.) By Holder's
inequality, we therefore have

2 (Jwlll?
e = (F)

€

Substituting in the conclusion of part Il using w; - w; = ||w||?, we get

MtU2H7~U*H2

M? < .

€

and dividing through by M; we get

as claimed.

