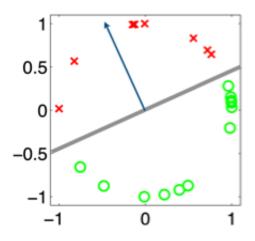
The perceptron algorithm

The perceptron algorithm is a simple method for learning a linear classifier. It works on a stream of examples (x_t, y_t) where x_t is in some vector space V and $y_t \in \{-1, 1\}$.

The state of the perceptron algorithm is a vector $w_t \in V$ that represents our linear classifier: we predict according to whether w_t has positive or negative inner product with the next example,

 $\hat{y}_t = \operatorname{sgn}(w_t \cdot x_t)$.

(We can break ties arbitrarily if $w_t \cdot x_t = 0$.)



The perceptron algorithm initializes w_1 to 0, and updates w_t as it processes the stream of examples. The perceptron update has three cases:

- If we predict correctly for example t (that is, if $y_t = \operatorname{sgn}(x_t \cdot w_t)$), then we keep $w_{t+1} = w_t$.
- If we make a mistake on a positive example, we update $w_{t+1} = w_t + x_t$.
- If we make a mistake on a negative example, we update $w_{t+1} = w_t x_t$.

The perceptron update makes sense since it moves us toward a correct prediction. For example, on a positive example $x_t \neq 0$, if we see the same x_t again, our dot product increases:

$$w_{t+1}\cdot x_t = w_t\cdot x_t + x_t\cdot x_t > w_t\cdot x_t$$
 .

Mistake bound

The perceptron algorithm satisfies many nice properties. Here we'll prove a simple one, called a mistake bound: if there exists an optimal parameter vector w^* that can classify all of our examples correctly, then the perceptron algorithm will make at most a bounded number of mistakes before discovering some optimal parameter vector.

In more detail, suppose that $w^* \cdot x_t \ge \epsilon$ for all positive examples, and $w^* \cdot x_t \le -\epsilon$ for all negative ones. Also assume that our examples are bounded: there is a constant U such that $||x_t|| \le U$ for all t.

Then, we will show that the perceptron algorithm will make at most

$$rac{U^2\|w^*\|^2}{\epsilon^2}$$

mistakes in total. For example, if our examples have norm at most 2, if our optimal parameter vector has norm $||w^*|| = 3$, and if $\epsilon = \frac{1}{2}$, then we make no more than 144 mistakes in total.

To track mistakes, define M_t to be the total number of mistakes we make up to (but not including) example t. So, $M_1 = 0$ (we have not yet had a chance to make any mistakes yet), and M_{t+1} is equal to either M_t (if we get example t right) or $1 + M_t$ (if we make a mistake on example t).

Tools

In our proof we'll use some properties of inner product spaces. One of the key ones is Hölder's inequality: for any two vectors u, v, we have

$$u\cdot v\leq \|u\|\,\|v\|$$

We'll also use the usual axioms for addition, scalar multiplication, norm, and inner product, such as the fact that inner product distributes over addition and the fact that $||u||^2 = u \cdot u$.

Proof I:

First we show a lower bound on $w_t \cdot w^*$. We'll use induction and proof by cases.

After a mistake on a positive example, we have

$$egin{aligned} & w_{t+1} \cdot w^* = w_t \cdot w^* + x_t \cdot w^* \ & \geq w_t \cdot w^* + \epsilon \end{aligned}$$

since, by assumption, $x_t \cdot w^* \ge \epsilon$. Similarly, on a negative example, we have

$$egin{aligned} & w_{t+1} \cdot w^* = w_t \cdot w^* - x_t \cdot w^* \ & \geq w_t \cdot w^* + \epsilon \end{aligned}$$

since, by assumption, $x_t \cdot w^* \leq -\epsilon$. So, for all t, we have by induction that

$$w_t \cdot w^* \geq \epsilon M_t$$

The LHS starts at $w_1 \cdot w^* = 0$, doesn't change when we predict correctly, and increases by at least ϵ with each mistake; the RHS starts at $\epsilon M_1 = 0$, doesn't change when we predict correctly, and increases by exactly ϵ with each mistake.

Proof II:

Next we show an upper bound on $||w_t||$. Again we use induction and proof by cases.

After a mistake on a positive example, we have

$$egin{aligned} w_{t+1} \cdot w_{t+1} &= w_t \cdot w_t + 2w_t \cdot x_t + x_t \cdot x_t \ &\leq w_t \cdot w_t + 0 + U^2 \end{aligned}$$

To see why, note that $w_t \cdot x_t \leq 0$, since we (mistakenly) classified this example as negative. And, $x_t \cdot x_t = ||x_t||^2 \leq U^2$ by assumption.

Similarly, after a mistake on a negative example, we have

$$egin{aligned} & w_{t+1} \cdot w_{t+1} = w_t \cdot w_t - 2w_t \cdot x_t + x_t \cdot x_t \ & \leq w_t \cdot w_t + 0 + U^2 \end{aligned}$$

In this case, $w_t \cdot x_t \ge 0$, since we (mistakenly) classified this example as positive.

Just as in the previous section, we can now do induction on t: for all t, we have

$$w_t \cdot w_t \leq M_t U^2$$
 .

The LHS $w_t \cdot w_t$ starts at zero when t = 1, doesn't change unless we make a mistake, and increases by at most U^2 on each mistake; the RHS $M_t U^2$ starts at 0 when t = 1, doesn't change unless we make a mistake, and increases by exactly U^2 on each mistake.

Proof III:

If we divide the conclusion of part I by ϵ and then square both sides, we get

$$M_t^2 \leq \left(rac{w_t \cdot w^*}{\epsilon}
ight)^2$$

(We are implicitly using $M_t \ge 0$ so that squaring preserves order.) By Hölder's inequality, we therefore have

$$M_t^2 \leq \left(rac{\|w_t\|\|w^*\|}{\epsilon}
ight)^2$$

Substituting in the conclusion of part II using $w_t \cdot w_t = \|w_t\|^2$, we get

$$M_t^2 \leq rac{M_t U^2 \|w^*\|^2}{\epsilon^2}$$

and dividing through by M_t we get

$$M_t \leq rac{U^2 \|w^*\|^2}{\epsilon^2}$$

as claimed.