

10-607 Computational Foundations for Machine Learning

Computational Complexity

Instructor: Pat Virtue

Plan

Computational Complexity

- Counting operations
- Big-O
- Complexity classes
- Proving a Big-O relationship holds
- Proving a Big-O relationship does not hold

How many statements are executed?

```
int search(int x, int[] A, int n)
16
      for (int i = 0; i < n; i++)</pre>
                                           If x is not in A...
18
19
                                            how times are these
         if (A[i] == x) {
20
           return i;
                                           statements executed?
21
                                                   i = 0
22
23
      return -1;
                                            1+1
                                                   i < n
24
                                                    if (A[i] == x)
                                                    <u>i</u>++
                                                    return -1
```

How many operations are executed?

```
int search(int x, int[] A, int n)
16
       for (int i = 0; i < n; i++)</pre>
                                            If x is not in A...
18
19
         if (A[i] == x) {
                                            how times operations are
20
           return i;
                                            executed?
21
                                               i = 0
22
                                              \gamma + 1 = 1 < n
23
       return -1;
24
                                                    if (A[i] == x)
                                                    <u>i</u>++
                                                            (=(+)
```

How many operations are executed?

How many program operations are required to compute:

- L2 norm of vector
- Vector dot product
- Frobenius norm of matrix
- Matrix-vector multiplication
- Matrix-matrix multiplication

```
def norm(a):
    ss=0
    for i in range(len(a)):
        ss = ss + a[i]*a[i]
    norm = np.sqrt(ss)
    return norm
```

Operations:

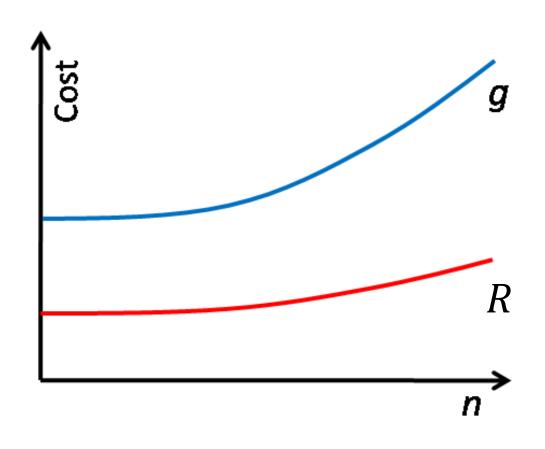
- Arithmetic operations (e.g. + or **)
- Logical operations (e.g., and)
- Comparison operations (e.g., <=)
- Structure accessing operations (e.g. array indexing like A[i])
- Simple assignment such as copying a value into a variable
- Calls to library functions that don't depend on size of input (e.g., print)
- Control Statements (e.g. if X>5)

Be careful with function calls that scale with the size of the input

Exercise

Counting operations handout

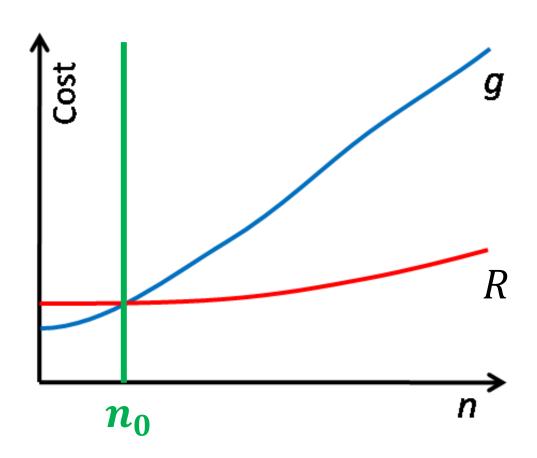
Which is better?



R is better than g if

$$R(n) \le g(n)$$
 for all n

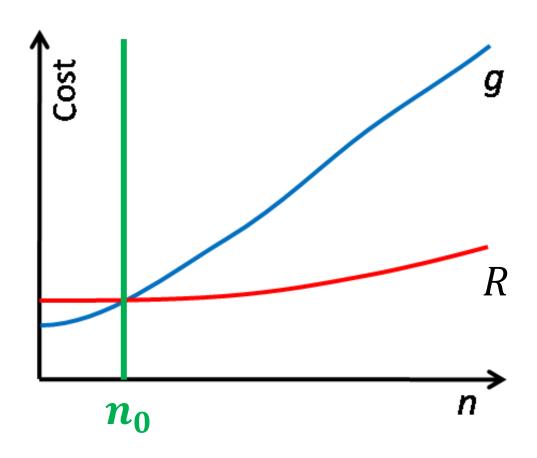
Which is better?



R is better than g if

$$R(n) \le g(n)$$
 for all n

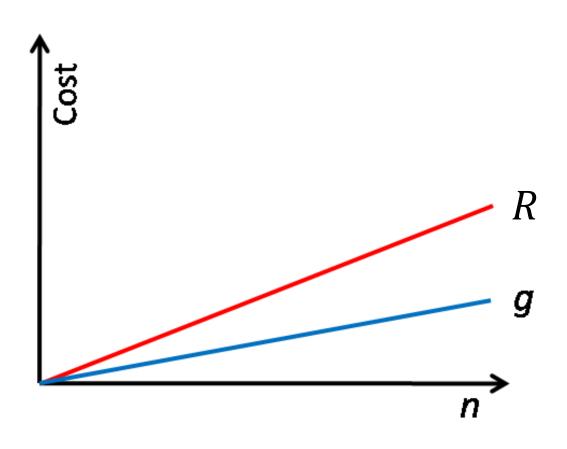
Which is better?



R is better than g if there exists n_0 , such that

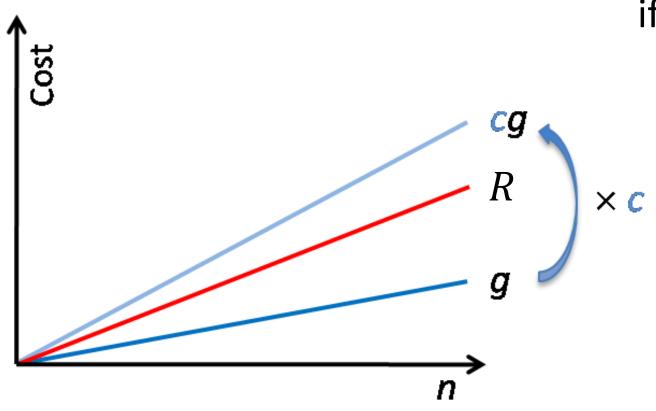
$$R(n) \le g(n)$$
 for all $n \ge n_0$

Which is better?



R is better than g if there exists n_0 , such that $R(n) \leq g(n)$ for all $n \geq n_0$

Which is better?

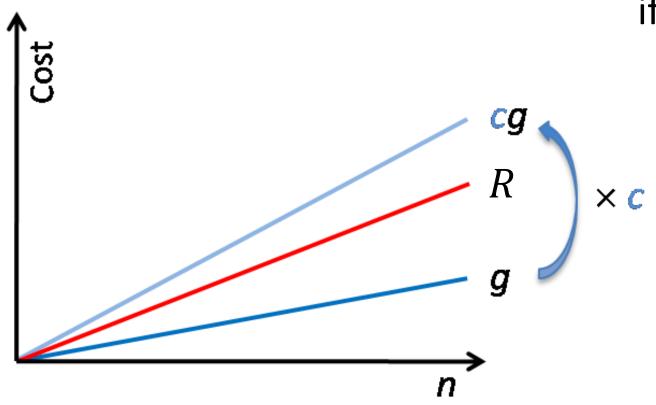


R is better than g if there exists n_0 , such that

$$R(n) \le g(n)$$

for all $n \ge n_0$

Which is better?



R is better than g if there exists n_0 and c, s.t.

$$R(n) \leq cg(n)$$

for all $n \ge n_0$

R is better than g if there exists n_0 and c, s.t. $R(n) \leq cg(n)$ for all $n \geq n_0$

The set of all functions R where

there exists n_0 and c, s.t.

$$R(n) \le cg(n)$$

for all $n \ge n_0$

Definition of Big O of g

Definition of Big O of g

The set of all functions R where there exists n_0 and c, s.t.

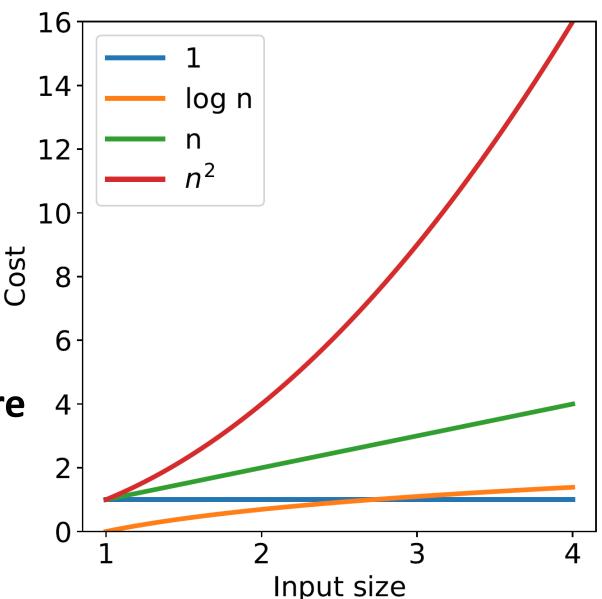
$$R(n) \le cg(n)$$

for all $n \ge n_0$

e.g. The set of all functions R where

there exists n_0 and c, s.t.

$$R(n) \le c n^2$$
 for all $n \ge n_0$



Definition of Big O of g

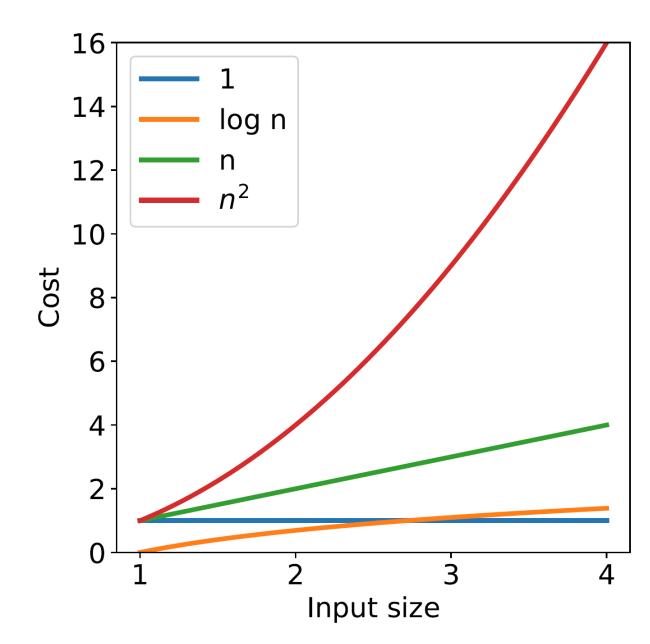
The set of all functions R where there exists n_0 and c, s.t.

$$R(n) \le cg(n)$$

for all $n \ge n_0$

e.g. $O(n^2)$ is a set that includes:

$$R_1(n) = 1$$
 $R_3(n) = n$
 $R_2(n) = \log n$ $R_4(n) = n^2$



Definition of Big O of g

The set of all functions R where there exists n_0 and c, s.t.

$$R(n) \le cg(n)$$

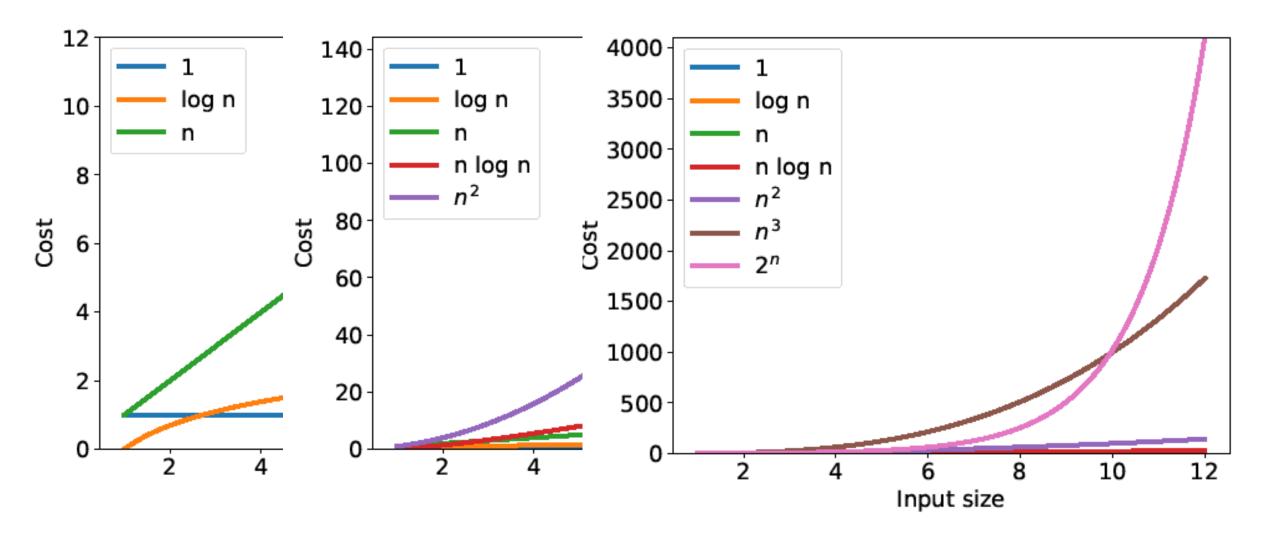
for all $n \ge n_0$

e.g. $O(n^2)$ is a set that includes:

$$R_1(n) = 1$$
 $R_3(n) = n$
 $R_2(n) = \log n$ $R_4(n) = n^2$

$$R_1 \in O(n^2)$$
 $R_2 \in O(n^2)$
 $R_3 \in O(n^2)$
 $R_4 \in O(n^2)$

Complexity Classes



Complexity Classes

Complexity class	Conventional name		
0(1)	Constant		
$O(\log n)$	Logarithmic		
O(n)	Linear		
$O(n \log n)$	"n log n"		
$O(n^2)$	Quadratic		
$O(n^3)$	Cubic		
$O(2^n)$	Exponential		

$$O(1) \subseteq O(\log n) \subseteq O(n) \subseteq O(n \log n) \subseteq O(n^2) \subseteq O(n^3) \subseteq O(2^n)$$

Complexity Classes

Can determine whether or not a problem can be solved at all!

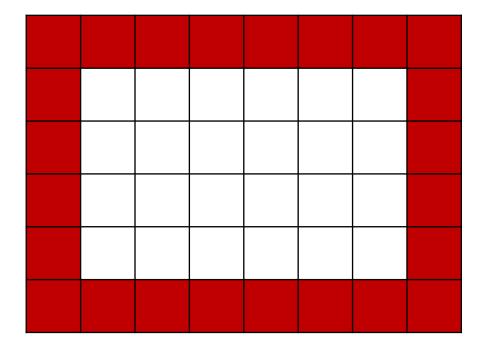
	п	$n \log_2 n$	n^2	n^3	1.5 ⁿ	2 ⁿ	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10^{25} years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10^{17} years	very long
n = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
n = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

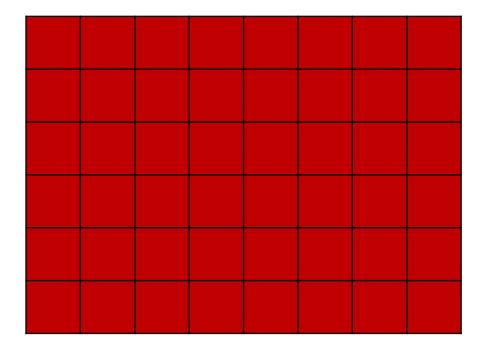
Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10²⁵ years, we simply record the algorithm as taking a very long time.

Input

Nothing special about variable n, we could have input variables w and h

$$O(w+h)$$





Plan

Computational Complexity

- ✓ Counting operations
- ✓ Big-O
- ✓ Complexity classes
- Proving a Big-O relationship holds
- Proving a Big-O relationship does not hold

Definition of Big O

Definition of $R(n) \in O(f(n))$

Let R(n) be a function, be the running time of some program as a function of the input size n. We assume that:

- 1. n is an integer ≥ 0
- 2. $R(n) \ge 0$ for all n
- f(n) is a function defined on n. We say that "R(n) is in O(f(n))" if there exists a constant c > 0 and an integer n_0 such that, for all integers $n \ge n_0$, we have $R(n) \le cf(n)$.

Witnesses

 n_0 and c are called witnesses that R(n) is in O(f(n)). Finding such witnesses is a form of proof of R(n) being in O(f(n)).

Template to prove $R(n) \in O(f(n))$

- 1. State the witnesses n_0 and c as specific constants, e.g., $n_0=32$ and c=5.
- 2. By appropriate algebraic manipulation, show that if $n \ge n_0$ then $R(n) \le cf(n)$.

Example: Prove $(n+1)^2 \in O(n^2)$

Suppose R(0) = 1, R(1) = 4, R(2) = 9, and in general $R(n) = (n + 1)^2$.

Example: Prove $(n+1)^2 \in O(n^2)$

Suppose R(0) = 1, R(1) = 4, R(2) = 9, and in general $R(n) = (n + 1)^2$.

We can say that $R(n) \in O(n^2)$, by choosing witnesses $n_0 = 1$ and c = 4:

- Expand $(n+1)^2 = n^2 + 2n + 1$
- if $n \ge 1$, we know that $n \le n^2$ and $1 \le n^2$
- Thus $n^2 + 2^n + 1 \le n^2 + 2n^2 + n^2 = 4n^2$.

Example: Prove $(n+1)^2 \in O(n^2)$

Suppose R(0) = 1, R(1) = 4, R(2) = 9, and in general $R(n) = (n + 1)^2$.

We can say that $R(n) \in O(n^2)$, by choosing witnesses $n_0 = 1$ and c = 4:

- Expand $(n+1)^2 = n^2 + 2n + 1$
- if $n \ge 1$, we know that $n \le n^2$ and $1 \le n^2$
- Thus $n^2 + 2^n + 1 \le n^2 + 2n^2 + n^2 = 4n^2$.

Choosing witnesses

We could have also picked $n_0 = 3$ and c = 2.

However, we can't pick $n_0 = 0$ with any c (why?). But that doesn't matter, because we only need to find one pair of witnesses n_0 and c.

Example: Prove $(n+1)^2 \in O(n^2)$

But $(n + 1)^2$ is bigger than $n^2!!!$

It may seem odd that $(n+1)^2 \in O(n^2)$ even though $(n+1)^2 > n^2$.

But being in O(f(n)) does not mean "less than" f(n).

In fact, $(n+1)^2$ is also in big-O of any fraction of n^2 , for example:

 $(n+1)^2 \in O(n^2/100)$ with witnesses $n_0 = 1$ and c = 400

Quick tips and important points

Constant factors don't matter

For any positive constant d and any function that is O(f(n)) is also O(df(n)). (Choose $n_0 = 0$ and c = 1/d.)

Low-order terms don't matter

Consider a polynomial $R(n) = a_k n^k + a_{k-1} n^{k-1} + \cdots + a_2 n^2 + a_1 n + a_0$ where the leading coefficient, a_k , is positive. We can throw away all terms except the term with the highest exponent, k, and we can ignore a_k (a constant), replacing it by 1. $R(n) \in O(n^k)$. (To prove, choose $n_0 = 1$, and $c = \sum_{i \in \{1, \dots, k\} \mid a^i > 0} a^i$.)

Poll 1

Which of the following functions are in $O(n^2)$? Select all that apply.

- 1. 1
- 2. n
- $3. n \log(n)$
- 4. n^2
- 5. $4n^2$
- 6. $4n^2 + n \log(n)$
- 7. $4n^2 + n \log(n) + n$
- 8. n^3
- 9. $n^3 + n^2$

Proving a Big-O Relationship Does Not Hold

Template to disprove $R(n) \in O(f(n))$

- 1. Assume that witnesses n_0 and c exist
- 2. Derive a contradiction

Proving a Big-O Relationship Does Not Hold

Example: Prove that n^2 is not in O(n)

- Assume $n^2 \in O(n)$
- Then there exist n_0 and c such that $n^2 \le cn$ for all $n \ge n_0$.

Proving a Big-O Relationship Does Not Hold

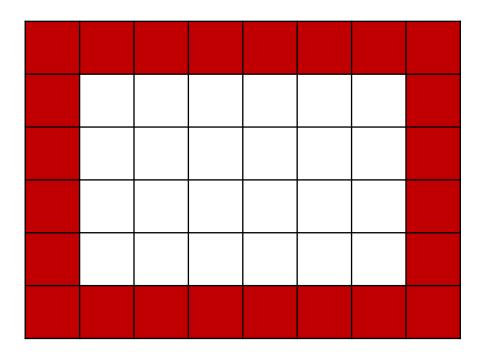
Example: Prove that n^2 is not in O(n)

- Assume $n^2 \in O(n)$
- Then there exist n_0 and c such that $n^2 \le cn$ for all $n \ge n_0$.
- Let n_a be a value $n_a > \max(n_0, c) + 1$
- Then $(n_a)^2 \le c n_a$
- Dividing both sides by n_a , we have $n_a \le c$. Contradiction!
- Therefore $n^2 \notin O(n)$

Input

Nothing special about variable n, we could have input variables w and h. However, be careful to pay attention to which inputs we care about analyzing.

$$O(w+h)$$



Input

Nothing special about variable n, we could have input variables w and h. However, be careful to pay attention to which inputs we care about analyzing.

Nearest neighbor example

Exercise

What is the computation complexity of matrix multiplication of two $N \times N$ matrices? Give the tightest complexity in its simplest form.

Exercise

Prove that n^3 is in $O(2^n)$

Prove that $n^2 + 100$ is in $O(n^4)$

Prove that
$$\frac{1}{4}n^2 + n\log(n) + n$$
 is in $O(n^2)$