10-607
 Computational
 Foundations for Machine Learning

Computational Complexity

Instructor: Pat Virtue

Plan

Computational Complexity

- Counting operations
- Big-O
- Complexity classes
- Proving a Big-O relationship holds
- Proving a Big-O relationship does not hold

How many statements are executed?

```
int search(int x, int[] A, int n)
1 6
1 7
18
1 9
20
21
22
23
24
{
```

```
for (int i = 0; i < n; i++)
```

for (int i = 0; i < n; i++)
{
if (A[i] == x) {
return i;
}
}
return -1;
}

```

If \(x\) is not in A...
how times are these statements executed?

\[
i=0
\]

\(i<n\)

if \((A[i]==x)\)
\(\square\)
\[
i++
\]
1 return -1

\section*{How many operations are executed?}
1 6
1 7
18
1 9
20
21
22
2 3
24
```

```
```

int search(int x, int[] A, int n)

```
```

int search(int x, int[] A, int n)

```
{\mp@code{search(int x, int[] A, int n)}
```

{\mp@code{search(int x, int[] A, int n)}
{
{
for (int i = 0; i < n; i++)
for (int i = 0; i < n; i++)
{
{
if (A[i] == x) {
if (A[i] == x) {
return i;
return i;
}
}
}
}
return -1;
return -1;
}

```
}
```

If x is not in A...
how times operations are executed?

$$
\begin{array}{ll}
l & i=0 \\
n+1 & i<n \\
3 n & \text { if (ALi] }==x) \\
2 n & i++\quad \frac{i=i+1}{-1} \\
1 & \text { return }
\end{array}
$$

How many operations are executed?

How many program operations are required to compute:

- L2 norm of vector
- Vector dot product
- Frobenius norm of matrix
- Matrix-vector multiplication
- Matrix-matrix multiplication

```
def norm(a):
    ss=0
    for i in range(len(a)):
        ss = ss + a[i]*a[i]
    norm = np.sqrt(ss)
    return norm
```

Operations:

- Arithmetic operations (e.g. + or **)
- Logical operations (e.g., and)
- Comparison operations (e.g., <=)
- Structure accessing operations (e.g. array indexing like $A[i])$
- Simple assignment such as copying a value into a variable
- Calls to library functions that don't depend on size of input (e.g., print)
- Control Statements (e.g. if $X>5$)

Be careful with function calls that scale with the size of the input

Exercise

Counting operations handout

Comparing functions of n

Which is better?

R is better than g if

$$
\begin{aligned}
& R(n) \leq g(n) \\
& \text { for all } n
\end{aligned}
$$

Comparing functions of n

Which is better?

R is better than g
if

$$
\begin{aligned}
& R(n) \leq g(n) \\
& \text { for all } n
\end{aligned}
$$

Comparing functions of n

Which is better?

R is better than g if there exists n_{0}, such that

$$
\begin{aligned}
& R(n) \leq g(n) \\
& \text { for all } n \geq \boldsymbol{n}_{0}
\end{aligned}
$$

Comparing functions of n

Which is better?

R is better than g if there exists n_{0}, such that

$$
\begin{aligned}
& R(n) \leq g(n) \\
& \text { for all } n \geq n_{0}
\end{aligned}
$$

Comparing functions of n

Which is better?
R is better than g
if there exists n_{0}, such that

$$
R(n) \leq g(n)
$$

for all $n \geq n_{0}$

Comparing functions of n

Which is better?
R is better than g if there exists n_{0} and c, s.t.

$$
R(n) \leq c g(n)
$$

A set of better functions
R is better than g
if there exists n_{0} and c, s.t.

$$
R(n) \leq c g(n)
$$

$$
\text { for all } n \geq n_{0}
$$

A set of better functions

The set of all functions \mathbf{R} where
there exists n_{0} and c, s.t.
$R(n) \leq c g(n)$
for all $n \geq n_{0}$
Definition of Big O of g

A set of better functions Definition of Big O of g
The set of all functions \mathbf{R} where there exists n_{0} and c, s.t.

$$
\begin{aligned}
& R(n) \leq c g(n) \\
& \text { for all } n \geq n_{0}
\end{aligned}
$$

e.g. The set of all functions \mathbf{R} where there exists n_{0} and c, s.t.

$$
\begin{aligned}
& R(n) \leq c n^{2} \\
& \text { for all } n \geq n_{0}
\end{aligned}
$$

A set of better functions Definition of Big O of g

The set of all functions R where there exists n_{0} and c, s.t.

$$
R(n) \leq c g(n)
$$

$$
\text { for all } n \geq n_{0}
$$

e.g. $O\left(n^{2}\right)$ is a set that includes:

$$
\begin{array}{ll}
R_{1}(n)=1 & R_{3}(n)=n \\
R_{2}(n)=\log n & R_{4}(n)=n^{2}
\end{array}
$$

A set of better functions
Definition of Big O of g
The set of all functions R where there exists n_{0} and c, s.t.

$$
R(n) \leq c g(n)
$$

$$
\text { for all } n \geq n_{0}
$$

e.g. $O\left(n^{2}\right)$ is a set that includes:

$$
\begin{array}{ll}
R_{1}(n)=1 & R_{3}(n)=n \\
R_{2}(n)=\log n & R_{4}(n)=n^{2}
\end{array}
$$

Complexity Classes

Complexity Classes

Complexity class	Conventional name
$O(1)$	Constant
$O(\log n)$	Logarithmic
$O(n)$	Linear
$O(n \log n)$	" n log $n^{\prime \prime}$
$O\left(n^{2}\right)$	Quadratic
$O\left(n^{3}\right)$	Cubic
$O\left(2^{n}\right)$	Exponential

$$
O(1) \subseteq O(\log n) \subseteq O(n) \subseteq O(n \log n) \subseteq O\left(n^{2}\right) \subseteq O\left(n^{3}\right) \subseteq O\left(2^{n}\right)
$$

Complexity Classes

Can determine whether or not a problem can be solved at all!

	n	$n \log _{2} n$	n^{2}	n^{3}	1.5^{n}	2^{n}	$n!$
$n=10$	$<1 \mathrm{sec}$	4 sec					
$n=30$	$<1 \mathrm{sec}$	18 min	10^{25} years				
$n=50$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	11 min	36 years	very long
$n=100$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	1 sec	12,892 years	10^{17} years	very long
$n=1,000$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	1 sec	18 min	very long	very long	very long
$n=10,000$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	2 min	12 days	very long	very long	very long
$n=100,000$	$<1 \mathrm{sec}$	2 sec	3 hours	32 years	very long	very long	very long
$n=1,000,000$	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10^{25} years, we simply record the algorithm as taking a very long time.

Input

Nothing special about variable n, we could have input variables w and h

$$
O(w+h)
$$

$O(w h)$

Plan

Computational Complexity

\checkmark Counting operations
\checkmark Big-O
\checkmark Complexity classes

- Proving a Big-O relationship holds
- Proving a Big-O relationship does not hold

Definition of Big O

Definition of $R(n) \in O(f(n))$

Let $R(n)$ be a function, be the running time of some program as a function of the input size n. We assume that:

1. n is an integer ≥ 0
2. $R(n) \geq 0$ for all n

- $f(n)$ is a function defined on n. We say that " $R(n)$ is in $O(f(n))^{\prime}$ " if there exists a constant $c>0$ and an integer n_{0} such that, for all integers $n \geq n_{0}$, we have $R(n) \leq c f(n)$.

Witnesses

n_{0} and c are called witnesses that $R(n)$ is in $O(f(n))$. Finding such witnesses is a form of proof of $R(n)$ being in $O(f(n))$.

Proving a Big-O Relationship Holds

Template to prove $R(n) \in O(f(n))$

1. State the witnesses n_{0} and c as specific constants, e.g., $n_{0}=32$ and $c=5$.
2. By appropriate algebraic manipulation, show that if $n \geq n_{0}$ then $R(n) \leq c f(n)$.

Proving a Big-O Relationship Holds
Example: Prove $(n+1)^{2} \in O\left(n^{2}\right)$
Suppose $R(0)=1, R(1)=4, R(2)=9$, and in general $R(n)=(n+1)^{2}$.

$$
\begin{array}{ll}
n_{0}=1(n+1)^{2}=n^{2}+2 n+1 & \leq n^{2}+2 n^{2}+1 \\
n \leq n^{2} & \leq n^{2}+2 n^{2}+n^{2} \\
1 \leq n^{2} & \leq 4 n^{2} \\
& \leq c n^{2} \quad c=4 \\
& \\
& n_{0}=1
\end{array}
$$

Proving a Big-O Relationship Holds

Example: Prove $(n+1)^{2} \in O\left(n^{2}\right)$
Suppose $R(0)=1, R(1)=4, R(2)=9$, and in general $R(n)=(n+1)^{2}$.
We can say that $R(n) \in O\left(n^{2}\right)$, by choosing witnesses $n_{0}=1$ and $c=4$:

- Expand $(n+1)^{2}=n^{2}+2 n+1$
- if $n \geq 1$, we know that $n \leq n^{2}$ and $1 \leq n^{2}$
- Thus $n^{2}+2^{n}+1 \leq n^{2}+2 n^{2}+n^{2}=4 n^{2}$.

Proving a Big-O Relationship Holds

Example: Prove $(n+1)^{2} \in O\left(n^{2}\right)$
Suppose $R(0)=1, R(1)=4, R(2)=9$, and in general $R(n)=(n+1)^{2}$.
We can say that $R(n) \in O\left(n^{2}\right)$, by choosing witnesses $n_{0}=1$ and $c=4$:

- Expand $(n+1)^{2}=n^{2}+2 n+1$
- if $n \geq 1$, we know that $n \leq n^{2}$ and $1 \leq n^{2}$
- Thus $n^{2}+2^{n}+1 \leq n^{2}+2 n^{2}+n^{2}=4 n^{2}$.

Choosing witnesses

We could have also picked $n_{0}=3$ and $c=2$.
However, we can't pick $n_{0}=0$ with any c (why?). But that doesn't matter, because we only need to find one pair of witnesses n_{0} and c.

Proving a Big-O Relationship Holds

Example: Prove $(n+1)^{2} \in O\left(n^{2}\right)$
But $(n+1)^{2}$ is bigger than $n^{2}!!!$
It may seem odd that $(n+1)^{2} \in O\left(n^{2}\right)$ even though $(n+1)^{2}>n^{2}$.
But being in $O(f(n))$ does not mean "less than" $f(n)$. In fact, $(n+1)^{2}$ is also in big-O of any fraction of n^{2}, for example:

$$
(n+1)^{2} \in O\left(n^{2} / 100\right) \text { with witnesses } n_{0}=1 \text { and } c=400
$$

Proving a Big-O Relationship Holds

Quick tips and important points

Constant factors don't matter

For any positive constant d and any function that is $O(f(n))$ is also $O(d f(n))$. (Choose $n_{0}=0$ and $c=1 / d$.)

Low-order terms don't matter

Consider a polynomial $R(n)=a_{k} n^{k}+a_{k-1} n^{k-1}+\cdots+a_{2} n^{2}+a_{1} n+a_{0}$ where the leading coefficient, a_{k}, is positive. We can throw away all terms except the term with the highest exponent, k, and we can ignore a_{k} (a constant), replacing it by 1 . $R(n) \in O\left(n^{k}\right)$. (To prove, choose $n_{0}=1$, and $\left.c=\sum_{i \in\{1, \ldots, k\} \mid a^{i}>0} a^{i}.\right)$

Poll 1

Which of the following functions are in $\mathrm{O}\left(\mathrm{n}^{2}\right)$?
Select all that apply.

1. $\begin{array}{ll}1 \\ \text { 2. } \\ n\end{array}$
2. $n \log (n) \leq n \cdot n$
3. n^{2}
4. $4 \mathrm{n}^{2}$
5. $4 n^{2}+n \log (n)$
6. $4 n^{2}+n \log (n)+n$
7. n^{3}
8. $n^{3}+n^{2}$

Proving a Big-O Relationship Does Not Hold

Template to disprove $R(n) \in O(f(n))$

1. Assume that witnesses n_{0} and c exist
2. Derive a contradiction

Proving a Big-O Relationship Does Not Hold
Example: Prove that n^{2} is not in $O(n)$
$R(n) \geq$

- Assume $n^{2} \in O(n)$
- Then there exist n_{0} and c such that $n^{2} \leq c n$ for all $n \geq n_{0}$.

Def

$$
n \leqslant c
$$

$n_{a}>c \longleftrightarrow n_{a} \leq c \quad$ Contradiction $n_{a}>n_{0}$

Proving a Big-O Relationship Does Not Hold

Example: Prove that n^{2} is not in $O(n)$

- Assume $n^{2} \in O(n)$
- Then there exist n_{0} and c such that $n^{2} \leq c n$ for all $n \geq n_{0}$.
- Let n_{a} be a value $n_{a}>\max \left(n_{0}, c\right)+1$
- Then $\left(\mathrm{n}_{\mathrm{a}}\right)^{2} \leq c n_{a}$
- Dividing both sides by n_{a}, we have $n_{a} \leq c$. Contradiction!
- Therefore $n^{2} \notin O(n)$

Input

Nothing special about variable n, we could have input variables w and h. However, be careful to pay attention to which inputs we care about analyzing.

$$
O(w+h)
$$

Input
Nothing special about variable n, we could have input variables w and h. However, be careful to pay attention to which inputs we care about analyzing.

Nearest neighbor example
N : datapoints
$\vec{x}^{(i)} \in \mathbb{R}^{M}$
$\vec{x}_{\text {new }} \in \mathbb{R}^{\mu}$
find i st. min $\left\|\vec{x}_{\text {new }}-\vec{x}^{(1)}\right\|_{2}$
$O(M N) \quad O(N) O^{\prime}(N)$

Exercise
What is the computation complexity of matrix multiplication of two $N \times N$ matrices? Give the tightest complexity in its simplest form.

$$
\begin{array}{ll}
A \in \mathbb{R}^{N \times N}, ~ B \in R^{N \times N}, & C \in \mathbb{R}^{N \times N} \\
C=A B & O\left(n^{3}+n^{3}-n^{2}\right) \\
\forall i \in\{1 \ldots N\}, \forall j \in\{1 . . N\} & C=\operatorname{resos}(N, N) \\
C_{i, j}=\sum_{k=1}^{N} A_{i k} B_{k j} \quad \text { for } i \text { in } 1 \ldots N & O\left(n^{4}\right) \\
& \text { for } j \text { in } 1 \ldots N
\end{array} \quad O\left(2^{n}\right)
$$

Exercise

Prove that n^{3} is in $O\left(2^{n}\right)$

Prove that $n^{2}+100$ is in $O\left(n^{4}\right)$

Prove that $\frac{1}{4} n^{2}+n \log (n)+n$ is in $O\left(n^{2}\right)$

