

10-607 Computational Foundations for Machine Learning

Computational Complexity

Instructor: Pat Virtue

Plan

Computational Complexity

- Counting operations
- Big-O
- Complexity classes
- Proving a Big-O relationship holds
- Proving a Big-O relationship does *not* hold

How many statements are executed?

```
int search(int x, int[] A, int n)
15
16
    {
      for (int i = 0; i < n; i++)</pre>
17
18
       {
19
         if (A[i] == x) {
20
           return i;
21
22
       }
23
      return -1;
24
    }
```

If x is not in A... how times are these statements executed? i = 0 $\wedge +1$ i < n **if** (A[i] == x) i++ n **return** -1

How many **operations** are executed?

```
int search(int x, int[] A, int n)
15
16
    {
       for (int i = 0; i < n; i++)</pre>
17
18
       {
19
         if (A[i] == x) {
20
           return i;
21
22
23
      return -1;
24
    }
```

If x is not in A... how times **operations** are executed? i = 0 $n + l \leq n$ 3n **if** (A[i] == x) 2ni++ (= (+)return

How many **operations** are executed?

How many program operations are required to compute:

- L2 norm of vector
- Vector dot product
- Frobenius norm of matrix
- Matrix-vector multiplication
- Matrix-matrix multiplication

```
def norm(a):
    ss=0
    for i in range(len(a)):
        ss = ss + a[i]*a[i]
        norm = np.sqrt(ss)
        return norm
```

Operations:

- Arithmetic operations (e.g. + or **)
- Logical operations (e.g., and)
- Comparison operations (e.g., <=)</p>
- Structure accessing operations (e.g. array indexing like A[i])
- Simple assignment such as copying a value into a variable
- Calls to library functions that don't depend on size of input (e.g., print)
- Control Statements (e.g. if X>5)

Be careful with function calls that scale with the size of the input

Counting operations handout

Which is better?

R is better than g if $R(n) \leq g(n)$ for all n

Which is better?

R is better than g if $R(n) \le g(n)$ for all n

Which is better?

R is better than g if there exists n_0 , such that $R(n) \le g(n)$ for all $n \ge n_0$

Which is better?

R is better than g if there exists n_0 , such that $R(n) \le g(n)$ for all $n \ge n_0$

Which is better?

R is better than g if there exists n_0 , such that $R(n) \le g(n)$ for all $n \ge n_0$

Which is better?

R is better than g if there exists n_0 and c, s.t. $R(n) \le cg(n)$ for all $n \ge n_0$

A set of better functions

R is better than g if there exists n_0 and c, s.t. $R(n) \le cg(n)$ for all $n \ge n_0$

A set of better functions

The set of all functions R where

there exists n_0 and c, s.t. $R(n) \le cg(n)$

for all $n \ge n_0$

Definition of Big O of g

A set of better functions Definition of Big O of g The set of all functions R where there exists n_0 and c, s.t. $R(n) \le cg(n)$ for all $n \ge n_0$ e.g. $O(n^2)$ is a set that includes: $R_1(n) = 1 \qquad R_3(n) = n$ $R_2(n) = \log n \qquad R_4(n) = n^2$


```
A set of better functions
Definition of Big O of g
The set of all functions R where
there exists n_0 and c, s.t.
     R(n) \leq cg(n)
     for all n \ge n_0
```

e.g. $O(n^2)$ is a set that includes: $R_1(n) = 1$ $R_3(n) = n$ $R_2(n) = \log n$ $R_4(n) = n^2$

Complexity Classes

Complexity Classes

Complexity class	Conventional name		
0(1)	Constant		
$O(\log n)$	Logarithmic		
<i>O</i> (<i>n</i>)	Linear		
$O(n \log n)$	"n log n"		
$O(n^2)$	Quadratic		
$O(n^3)$	Cubic		
$O(2^n)$	Exponential		

 $\mathcal{O}(1) \subseteq \mathcal{O}(\log n) \subseteq \mathcal{O}(n) \subseteq \mathcal{O}(n\log n) \subseteq \mathcal{O}\left(n^2\right) \subseteq \mathcal{O}\left(n^3\right) \subseteq \mathcal{O}(2^n)$

Complexity Classes

Can determine whether or not a problem can be solved at all!

	п	$n \log_2 n$	n ²	n ³	1.5 ⁿ	2 ⁿ	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10 ²⁵ years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10 ¹⁷ years	very long
<i>n</i> = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
n = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10²⁵ years, we simply record the algorithm as taking a very long time.

Input

Nothing special about variable n, we could have input variables w and h

O(w+h)

Plan

Computational Complexity

- ✓ Counting operations
- ✓ Big-O
- ✓ Complexity classes
- Proving a Big-O relationship holds
- Proving a Big-O relationship does not hold

Definition of Big O

Definition of $R(n) \in O(f(n))$

Let R(n) be a function, be the running time of some program as a function of the input size n. We assume that:

1. n is an integer ≥ 0

2. $R(n) \ge 0$ for all n

• f(n) is a function defined on n. We say that "R(n) is in O(f(n))" if there exists a constant c > 0 and an integer n_0 such that, for all integers $n \ge n_0$, we have $R(n) \le cf(n)$.

Witnesses

 n_0 and c are called witnesses that R(n) is in O(f(n)). Finding such witnesses is a form of proof of R(n) being in O(f(n)).

Template to prove $R(n) \in O(f(n))$

- 1. State the witnesses n_0 and c as specific constants, e.g., $n_0 = 32$ and c = 5.
- 2. By appropriate algebraic manipulation, show that if $n \ge n_0$ then $R(n) \le cf(n)$.

Example: Prove $(n + 1)^2 \in O(n^2)$ Suppose R(0) = 1, R(1) = 4, R(2) = 9, and in general $R(n) = (n + 1)^2$. $n_0 = 1 \quad (n+1)^2 = n^2 + 2n + 1 \quad \leq n^2 + 2n^2 + 1$ $\leq n^2 + 2n^2 + n^2$ $n \leq n^2$ $\leq 4n^2$ $1 \le n^2$ $\leq cn^2 c=4$ $N_{n}=1$

Example: Prove $(n + 1)^2 \in O(n^2)$ Suppose R(0) = 1, R(1) = 4, R(2) = 9, and in general $R(n) = (n + 1)^2$.

We can say that $R(n) \in O(n^2)$, by choosing witnesses $n_0 = 1$ and c = 4:

- Expand $(n + 1)^2 = n^2 + 2n + 1$
- if $n \ge 1$, we know that $n \le n^2$ and $1 \le n^2$
- Thus $n^2 + 2^n + 1 \le n^2 + 2n^2 + n^2 = 4n^2$.

Example: Prove $(n + 1)^2 \in O(n^2)$ Suppose R(0) = 1, R(1) = 4, R(2) = 9, and in general $R(n) = (n + 1)^2$.

We can say that $R(n) \in O(n^2)$, by choosing witnesses $n_0 = 1$ and c = 4:

• Expand
$$(n + 1)^2 = n^2 + 2n + 1$$

- if $n \ge 1$, we know that $n \le n^2$ and $1 \le n^2$
- Thus $n^2 + 2^n + 1 \le n^2 + 2n^2 + n^2 = 4n^2$.

Choosing witnesses

We could have also picked $n_0 = 3$ and c = 2.

However, we can't pick $n_0 = 0$ with any c (why?). But that doesn't matter, because we only need to find one pair of witnesses n_0 and c.

Example: Prove $(n + 1)^2 \in O(n^2)$

But $(n + 1)^2$ is bigger than $n^2!!!$

It may seem odd that $(n + 1)^2 \in O(n^2)$ even though $(n + 1)^2 > n^2$. But being in O(f(n)) does not mean "less than" f(n). In fact, $(n + 1)^2$ is also in big-O of any fraction of n^2 , for example: $(n + 1)^2 \in O(n^2/100)$ with witnesses $n_0 = 1$ and c = 400

Quick tips and important points

Constant factors don't matter

For any positive constant d and any function that is O(f(n)) is also O(df(n)). (Choose $n_0 = 0$ and c = 1/d.)

Low-order terms don't matter

Consider a polynomial $R(n) = a_k n^k + a_{k-1} n^{k-1} + \dots + a_2 n^2 + a_1 n + a_0$ where the leading coefficient, a_k , is positive. We can throw away all terms except the term with the highest exponent, k, and we can ignore a_k (a constant), replacing it by 1. $R(n) \in O(n^k)$. (To prove, choose $n_0 = 1$, and $c = \sum_{i \in \{1, \dots, k\} \mid a^i > 0} a^i$.) Poll 1

Which of the following functions are in O(n²)?

Select all that apply.

Proving a Big-O Relationship Does Not Hold

Template to disprove $R(n) \in O(f(n))$

- 1. Assume that witnesses n_0 and c exist
- 2. Derive a contradiction

Proving a Big-O Relationship Does Not Hold

Example: Prove that n^2 is not in O(n)R(n)

- Assume $n^2 \in O(n)$
- Then there exist n_0 and c such that $n^2 \leq cn$ for all $n \geq n_0$.

Def $n \leq C$ $n_q > C \leq n_a \leq C$ (ontradiction $n_a > n_o$

c+(n)

Proving a Big-O Relationship Does Not Hold

Example: Prove that n^2 is not in O(n)

- Assume $n^2 \in O(n)$
- Then there exist n_0 and c such that $n^2 \le cn$ for all $n \ge n_0$.
- Let n_a be a value $n_a > \max(n_0, c) + 1$
- Then $(n_a)^2 \leq cn_a$
- Dividing both sides by n_a , we have $n_a \leq c$. Contradiction!
- Therefore $n^2 \notin O(n)$

Input

Nothing special about variable n, we could have input variables w and h. However, be careful to pay attention to which inputs we care about analyzing.

O(w+h)

Input

Nothing special about variable n, we could have input variables w and h. However, be careful to pay attention to which inputs we care about analyzing.

Nearest neighbor example

N: data points $\vec{\mathbf{x}}^{(i)} \in \mathbb{R}^{M}$ X_{new} ERM find i s.t. min $\|\vec{x}_{new} - \vec{x}^{(i)}\|_{2}$ O(MN) O(N) O(N)

Exercise

What is the computation complexity of matrix multiplication of two $N \times N$ matrices? Give the tightest complexity in its simplest form.

$$A \in \mathbb{R}^{N \times N} \quad B \in \mathbb{R}^{N \times N} \quad C \in \mathbb{R}^{N \times N} \quad O(n^3)$$

$$C = AB \qquad O(n^3)$$

$$C = AB \qquad O(n^3 + n^3 - n^2)$$

$$C = zeros(N,N) \qquad O(n^4)$$

$$C = \sum_{k=1}^{N} A_{ik} B_{kj} \qquad for \quad i \quad i \quad 1...N \qquad O(2^n)$$

$$for \quad j \quad i \quad 1...N \qquad O(n^n)$$

$$for \quad k \quad i \quad 1...N \qquad O(n^n)$$

$$C[i,j] + = A[i,k] \times B[k,j]$$

Exercise

Prove that n^3 is in $O(2^n)$

Prove that $n^2 + 100$ is in $O(n^4)$

Prove that
$$\frac{1}{4}n^2 + n\log(n) + n$$
 is in $O(n^2)$