
10-607
Computational
Foundations for
Machine Learning

Computational
Complexity

Instructor: Pat Virtue

Plan
Computational Complexity

▪ Counting operations

▪ Big-O

▪ Complexity classes

▪ Proving a Big-O relationship holds

▪ Proving a Big-O relationship does not hold

How many statements are executed?

15 int search(int x, int[] A, int n)

16 {

17 for (int i = 0; i < n; i++)

18 {

19 if (A[i] == x) {

20 return i;

21 }

22 }

23 return -1;

24 }

If x is not in A…
how times are these
statements executed?

i = 0

i < n

if (A[i] == x)

i++

return -1

Slide credit: CMU 15-122

How many operations are executed?

15 int search(int x, int[] A, int n)

16 {

17 for (int i = 0; i < n; i++)

18 {

19 if (A[i] == x) {

20 return i;

21 }

22 }

23 return -1;

24 }

If x is not in A…
how times operations are
executed?

i = 0

i < n

if (A[i] == x)

i++

return -1

Slide credit: CMU 15-122

How many operations are executed?
How many program operations
are required to compute:

▪ L2 norm of vector

▪ Vector dot product

▪ Frobenius norm of matrix

▪ Matrix-vector multiplication

▪ Matrix-matrix multiplication

Operations:

▪ Arithmetic operations (e.g. + or **)

▪ Logical operations (e.g., and)

▪ Comparison operations (e.g., <=)

▪ Structure accessing operations (e.g.
array indexing like A[i])

▪ Simple assignment such as copying a
value into a variable

▪ Calls to library functions that don’t
depend on size of input (e.g., print)

▪ Control Statements (e.g. if X>5)

Be careful with function calls that
scale with the size of the input

def norm(a):

ss=0

for i in range(len(a)):

ss = ss + a[i]*a[i]

norm = np.sqrt(ss)

return norm

Exercise
Counting operations handout

Comparing functions of n
Which is better? R is better than g

if

𝑅 𝑛 ≤ 𝑔 𝑛

for all 𝑛

𝑅

Slide credit: CMU 15-122

Comparing functions of n
Which is better?

𝒏𝟎

R is better than g

if

𝑅 𝑛 ≤ 𝑔 𝑛

for all 𝑛

𝑅

Slide credit: CMU 15-122

Comparing functions of n
Which is better? R is better than g

if there exists 𝒏𝟎, such that

𝑅 𝑛 ≤ 𝑔 𝑛

for all 𝑛 ≥ 𝒏𝟎

𝒏𝟎

𝑅

Slide credit: CMU 15-122

Comparing functions of n
Which is better? R is better than g

if there exists 𝑛0, such that

𝑅 𝑛 ≤ 𝑔 𝑛

for all 𝑛 ≥ 𝑛0
𝑅

Slide credit: CMU 15-122

Comparing functions of n
Which is better? R is better than g

if there exists 𝑛0, such that

𝑅 𝑛 ≤ 𝑔 𝑛

for all 𝑛 ≥ 𝑛0
𝑅

Slide credit: CMU 15-122

Comparing functions of n
Which is better? R is better than g

if there exists 𝑛0 and 𝒄, s.t.

𝑅 𝑛 ≤ 𝒄𝑔 𝑛

for all 𝑛 ≥ 𝑛0
𝑅

Slide credit: CMU 15-122

A set of better functions

R is better than g

if there exists 𝑛0 and 𝑐, s.t.

𝑅 𝑛 ≤ 𝑐𝑔 𝑛

for all 𝑛 ≥ 𝑛0

Slide credit: CMU 15-122

A set of better functions

The set of all functions R where

there exists 𝑛0 and 𝑐, s.t.

𝑅 𝑛 ≤ 𝑐𝑔 𝑛

for all 𝑛 ≥ 𝑛0

Definition of Big O of g

Slide credit: CMU 15-122

A set of better functions

The set of all functions R where

there exists 𝑛0 and 𝑐, s.t.

𝑅 𝑛 ≤ 𝑐𝑔 𝑛

for all 𝑛 ≥ 𝑛0

e.g. The set of all functions R where

there exists 𝑛0 and 𝑐, s.t.

𝑅 𝑛 ≤ 𝑐𝒏𝟐

for all 𝑛 ≥ 𝑛0

Definition of Big O of g

A set of better functions

The set of all functions R where

there exists 𝑛0 and 𝑐, s.t.

𝑅 𝑛 ≤ 𝑐𝑔 𝑛

for all 𝑛 ≥ 𝑛0

e.g. 𝑂(𝑛2) is a set that includes:

𝑅1(𝑛) = 1 𝑅3 𝑛 = 𝑛

𝑅2(𝑛) = log 𝑛 𝑅4(𝑛) = 𝑛2

Definition of Big O of g

Slide credit: CMU 15-122

A set of better functions

The set of all functions R where

there exists 𝑛0 and 𝑐, s.t.

𝑅 𝑛 ≤ 𝑐𝑔 𝑛

for all 𝑛 ≥ 𝑛0

e.g. 𝑂(𝑛2) is a set that includes:

𝑅1(𝑛) = 1 𝑅3 𝑛 = 𝑛

𝑅2(𝑛) = log 𝑛 𝑅4(𝑛) = 𝑛2

Definition of Big O of g

𝑅1 ∈ 𝑂(𝑛2)
𝑅2 ∈ 𝑂(𝑛2)
𝑅3 ∈ 𝑂(𝑛2)
𝑅4 ∈ 𝑂(𝑛2)

Slide credit: CMU 15-122

Complexity Classes

Complexity Classes

Complexity class Conventional name

𝑂(1) Constant

𝑂(log 𝑛) Logarithmic

𝑂(𝑛) Linear

𝑂(𝑛 log 𝑛) “n log n”

𝑂(𝑛2) Quadratic

𝑂(𝑛3) Cubic

𝑂(2𝑛) Exponential

𝑂 1 ⊆ 𝑂 log 𝑛 ⊆ 𝑂 𝑛 ⊆ 𝑂 𝑛 log 𝑛 ⊆ 𝑂 𝑛2 ⊆ 𝑂 𝑛3 ⊆ 𝑂 2𝑛

Slide credit: CMU 15-122

Complexity Classes
Can determine whether or not a problem can be solved at all!

Slide credit: Algorithm Design, Tardos, Kleinberg (table), UC Berkeley CS 61B, Hug (slide)

Input
Nothing special about variable 𝑛, we could have input variables 𝑤 and ℎ

𝑂(𝑤 + ℎ) 𝑂(𝑤ℎ)

Slide credit: CMU 15-122

Plan
Computational Complexity

✓ Counting operations

✓ Big-O

✓ Complexity classes

▪ Proving a Big-O relationship holds

▪ Proving a Big-O relationship does not hold

Definition of Big O

Definition of 𝑅 𝑛 ∈ 𝑂 𝑓 𝑛

Let 𝑅(𝑛) be a function, be the running time of some program as a
function of the input size 𝑛. We assume that:

1. 𝑛 is an integer ≥ 0

2. 𝑅 𝑛 ≥ 0 for all 𝑛
▪ 𝑓(𝑛) is a function defined on 𝑛. We say that “𝑅(𝑛) is in 𝑂 𝑓 𝑛 ” if there exists a

constant 𝑐 > 0 and an integer 𝑛0 such that, for all integers 𝑛 ≥ 𝑛0, we have
𝑅 𝑛 ≤ 𝑐𝑓(𝑛).

Witnesses

𝑛0 and 𝑐 are called witnesses that 𝑅(𝑛) is in 𝑂 𝑓 𝑛 . Finding such
witnesses is a form of proof of 𝑅(𝑛) being in 𝑂 𝑓 𝑛 .

Proving a Big-O Relationship Holds

Template to prove 𝑅 𝑛 ∈ 𝑂 𝑓 𝑛

1. State the witnesses 𝑛0 and 𝑐 as specific constants, e.g., 𝑛0 = 32
and 𝑐 = 5.

2. By appropriate algebraic manipulation, show that if 𝑛 ≥ 𝑛0 then
𝑅 𝑛 ≤ 𝑐𝑓(𝑛).

Proving a Big-O Relationship Holds

Example: Prove 𝑛 + 1 2 ∈ 𝑂 𝑛2

Suppose 𝑅(0) = 1, 𝑅(1) = 4, 𝑅(2) = 9, and in general 𝑅(𝑛) = 𝑛 + 1 2.

Proving a Big-O Relationship Holds

Example: Prove 𝑛 + 1 2 ∈ 𝑂 𝑛2

Suppose 𝑅(0) = 1, 𝑅(1) = 4, 𝑅(2) = 9, and in general 𝑅(𝑛) = 𝑛 + 1 2.

We can say that 𝑅 𝑛 ∈ 𝑂 𝑛2 , by choosing witnesses 𝑛0 = 1 and 𝑐 = 4:

▪ Expand 𝑛 + 1 2 = 𝑛2 + 2𝑛 + 1

▪ if 𝑛 ≥ 1, we know that 𝑛 ≤ 𝑛2 and 1 ≤ 𝑛2

▪ Thus 𝑛2 + 2𝑛 + 1 ≤ 𝑛2 + 2𝑛2 + 𝑛2 = 4𝑛2.

Proving a Big-O Relationship Holds

Example: Prove 𝑛 + 1 2 ∈ 𝑂 𝑛2

Suppose 𝑅(0) = 1, 𝑅(1) = 4, 𝑅(2) = 9, and in general 𝑅(𝑛) = 𝑛 + 1 2.

We can say that 𝑅 𝑛 ∈ 𝑂 𝑛2 , by choosing witnesses 𝑛0 = 1 and 𝑐 = 4:

▪ Expand 𝑛 + 1 2 = 𝑛2 + 2𝑛 + 1

▪ if 𝑛 ≥ 1, we know that 𝑛 ≤ 𝑛2 and 1 ≤ 𝑛2

▪ Thus 𝑛2 + 2𝑛 + 1 ≤ 𝑛2 + 2𝑛2 + 𝑛2 = 4𝑛2.

Choosing witnesses

We could have also picked 𝑛0 = 3 and 𝑐 = 2.

However, we can't pick 𝑛0 = 0 with any 𝑐 (why?). But that doesn't matter,
because we only need to find one pair of witnesses 𝑛0 and 𝑐.

Proving a Big-O Relationship Holds

Example: Prove 𝑛 + 1 2 ∈ 𝑂 𝑛2

But 𝑛 + 1 2 is bigger than 𝑛2!!!

It may seem odd that 𝑛 + 1 2 ∈ 𝑂 𝑛2 even though 𝑛 + 1 2 > 𝑛2.

But being in 𝑂 𝑓 𝑛 does not mean “less than” 𝑓(𝑛).

In fact, 𝑛 + 1 2 is also in big-O of any fraction of 𝑛2, for example:

𝑛 + 1 2 ∈ 𝑂(𝑛2/100) with witnesses 𝑛0 = 1 and 𝑐 = 400

Proving a Big-O Relationship Holds
Quick tips and important points

Constant factors don’t matter

For any positive constant 𝑑 and any function that is 𝑂(𝑓(𝑛)) is also
𝑂(𝑑𝑓(𝑛)). (Choose 𝑛0 = 0 and 𝑐 = 1/𝑑.)

Low-order terms don’t matter

Consider a polynomial 𝑅 𝑛 = 𝑎𝑘𝑛
𝑘 + 𝑎𝑘−1𝑛

𝑘−1 +⋯ + 𝑎2𝑛
2 + 𝑎1𝑛 + 𝑎0

where the leading coefficient, 𝑎𝑘, is positive. We can throw away all terms
except the term with the highest exponent, 𝑘, and we can ignore 𝑎𝑘 (a
constant), replacing it by 1. 𝑅 𝑛 ∈ 𝑂(𝑛𝑘). (To prove, choose 𝑛0 = 1, and
𝑐 = σ

𝑖∈ 1,…,𝑘 ∣ 𝑎𝑖>0𝑎
𝑖.)

Poll 1
Which of the following functions are in O(n2)?

Select all that apply.

1. 1

2. n

3. n log(n)

4. n2

5. 4n2

6. 4n2 + n log(n)

7. 4n2 + n log(n) + n

8. n3

9. n3+ n2

Proving a Big-O Relationship Does Not Hold

Template to disprove 𝑅 𝑛 ∈ 𝑂 𝑓 𝑛

1. Assume that witnesses 𝑛0 and 𝑐 exist

2. Derive a contradiction

Proving a Big-O Relationship Does Not Hold
Example: Prove that 𝑛2 is not in 𝑂(𝑛)

▪ Assume 𝑛2 ∈ 𝑂 𝑛

▪ Then there exist 𝑛0 and 𝑐 such that 𝑛2 ≤ 𝑐𝑛 for all 𝑛 ≥ 𝑛0.

Proving a Big-O Relationship Does Not Hold
Example: Prove that 𝑛2 is not in 𝑂(𝑛)

▪ Assume 𝑛2 ∈ 𝑂 𝑛

▪ Then there exist 𝑛0 and 𝑐 such that 𝑛2 ≤ 𝑐𝑛 for all 𝑛 ≥ 𝑛0.

▪ Let 𝑛𝑎 be a value 𝑛𝑎 > max 𝑛0, 𝑐 + 1

▪ Then na
2 ≤ 𝑐𝑛𝑎

▪ Dividing both sides by 𝑛𝑎, we have 𝑛𝑎 ≤ 𝑐. Contradiction!

▪ Therefore 𝑛2 ∉ 𝑂(𝑛)

Input
Nothing special about variable 𝑛, we could have input variables 𝑤 and ℎ.

However, be careful to pay attention to which inputs we care about analyzing.

𝑂(𝑤 + ℎ)

Input
Nothing special about variable 𝑛, we could have input variables 𝑤 and ℎ.

However, be careful to pay attention to which inputs we care about analyzing.

Nearest neighbor example

Exercise
What is the computation complexity of matrix multiplication of two
𝑁 × 𝑁 matrices? Give the tightest complexity in its simplest form.

Exercise
Prove that 𝑛3 is in 𝑂 2𝑛

Prove that 𝑛2 + 100 is in 𝑂 𝑛4

Prove that
1

4
𝑛2 + 𝑛 log(𝑛) + 𝑛 is in 𝑂(𝑛2)

