
fullName:_______________________________andrewID:_______________________________
recitationLetter:______

15-112 N22

Quiz4 [30 min.]
You MUST stop writing and hand in this entire quiz when instructed in lecture.

You may not unstaple any pages.
You may not use your own scrap paper. If you must use additional scrap paper, raise
your hand and we will provide some. You must hand this in with your paper quiz, and
we will not grade it.
Failure to hand in an intact quiz will be considered cheating. Discussing the quiz with
anyone in any way, even briefly, is cheating. (You may discuss it only once the quiz has
been posted to the course website.)
You may not use any concepts (including builtin functions) we have not covered in the
notes this semester.
You may not use recursion.
We may test your code using additional test cases. Do not hardcode.
We do not deduct points for bad style on quizzes
Assume almostEqual(x, y) and roundHalfUp(n) are both supplied for you. You must
write all other helper functions you wish to use.

CT1: Code Tracing [9pts]
Indicate what the following code prints. Place your answers (and nothing else) in the box
below.

#Hint: Draw a box and arrow diagram!
Note: this prints 3 lines
import copy
def ct1(L, A, n):
 A[-1][0] += n
 A[n%2] += [10*n]
 L.append(n)
 print(A)

L = [[3], [4]]
C = copy.copy(L)
D = copy.deepcopy(L)
ct1(L, C, 1)
ct1(L, D, 2)
print(L)

CT2: Code Tracing [9pts]
Indicate what the following code prints. Place your answers (and nothing else) in the box
below.

#Hint: Draw a box and arrow diagram!
Note: this prints 3 lines

def ct2(L):
 A = [set()]
 for item in L:
 if item in A[0]:
 print(A[0])
 A.insert(0, {item})
 else:
 A[0].add(item)
 return A

print(ct2([1, 2, 2, 4, 3, 4, 5]))

Free Response 1: makeTable(n) [32 points]
Write the function makeTable(n) that takes a positive integer n and returns a multiplication
table in the form of a 2D list with n rows and n columns. Each cell should be the product of
the integer at the beginning of its row and the top of its column. Look at the test cases to
identify this pattern.

def testMakeTable():
 print("Testing makeTable(n)...", end="")
 assert(makeTable(1) == [[1]])

 assert(makeTable(2) == [[1, 2],
 [2, 4]])

 assert(makeTable(3) == [[1, 2, 3],
 [2, 4, 6],
 [3, 6, 9]])

 assert(makeTable(4) == [[1, 2, 3, 4],
 [2, 4, 6, 8],
 [3, 6, 9, 12],
 [4, 8, 12, 16]])

 assert(makeTable(5) == [[1, 2, 3, 4, 5],
 [2, 4, 6, 8, 10],
 [3, 6, 9, 12, 15],
 [4, 8, 12, 16, 20],
 [5, 10, 15, 20, 25]])
 print('Passed!')

You may continue your FR1 answer here, if you wish

Free Response 2: makeAuthorDict(books) [32pts]
Write the function makeAuthorDict(books) which takes a dictionary that maps book titles
to their authors, and returns a new dictionary mapping each author to a set of their books,
like so:

books = {"The Farthest Shore" : "Ursula K. Le Guin",
 "Uzumaki" : "Junji Ito",
 "I, Robot" : "Isaac Asimov",
 "Gyo" : "Junji Ito",
 "A Wizard of Earthsea" : "Ursula K. Le Guin"}

assert(makeAuthorDict(books) == {"Ursula K. Le Guin" : {"The Farthest Shore",
 "A Wizard of Earthsea"},
 "Junji Ito" : {"Uzumaki",
 "Gyo"},
 "Isaac Asimov" : {"I, Robot"} })

You may assume each book only has one author.

You may continue your FR2 answer here, if you wish

True or False [2pts ea]
Write only the whole word "True" or "False" (and not just T or F).

Also, assume we are always talking about very large values of n, and we are not trying to
trick you.
__________ TF1: The Big-O of merge sort is O(n*logn)

__________ TF2: The Big-O of selection sort is O(n*logn)

__________ TF3: Selection sort is generally faster than merge sort

__________ TF4: Sets cannot contain duplicate values

__________ TF5: Sets cannot contain immutable values

__________ TF6: Dictionary keys must be immutable

__________ TF7: Dictionary values must be immutable

__________ TF8: Binary search can only be used when a list is known to be sorted

__________ TF9: O(100N) is faster than O(N**100)

bonusCT: Code Tracing [2pts]
This question is optional. Indicate what the following code prints. Place your answers (and
nothing else) in the box below.

def bonusCt(L, s):
 L = [chr(ord('a')+L[i]+i) for i in range(len(L))]
 s = sorted(set(s) - set(L)) * len(set(s))**len(L)
 return ''.join(s).count('rb')
print(bonusCt([2, -1], 'abracadabra'))

a

