
fullName:_______________________________andrewID:_______________________________ recitationLetter:______

15-112 S24

WS8+Quiz8 version B
You MUST stop writing and hand in this entire quiz when instructed in lecture.

You may not unstaple any pages.
Failure to hand in an intact quiz will be considered cheating. Discussing the quiz with anyone in
any way, even briefly, is cheating. (You may discuss it only once the quiz has been posted to the
course website.)
You may not use your own scrap paper. If you must use additional scrap paper, raise your hand
and we will provide some. You must hand any scrap paper in with your paper quiz, and we will
not grade it.
You may not ask questions during the quiz, except for English-language clarifications. If you are
unsure how to interpret a problem, take your best guess.
You may not use any concepts (including builtin functions) which we have not covered in the
notes in weeks 1-8.
You may not use dictionaries, sets, or recursion.
We may test your code using additional test cases.
Assume almostEqual(x, y) and rounded(n) are both supplied for you. You must write all other
helper functions you wish to use, unless we specify otherwise.

Writing Session 8 (10% of HW8)
WS1. mutatingInsertRowAndCol
Here is the start to the hw8 writeup for mutatingInsertRowAndCol:
Write the function mutatingInsertRowAndCol(L, row, col, val) which takes a rectangular 2d list L,
and inserts one new row and one new column at the locations specified by row and col. The cells in
the new row and column are all set to val.
With that in mind, fill in the blanks with the missing code to make this function work properly. You
may not insert multiple lines in one blank:

def mutatingInsertRowAndCol(L, row, col, val):
 cols = len(L[0])

 L.insert(row, ______________________________________) # <-- fill in this blank
 for rowList in L:

 __ # <-- fill in this blank

WS2. rotate2dListClockwise (from Tetris Step 4)
Fill in the blanks with the missing code to make this function work properly:

def rotate2dListClockwise(L):
 oldRows, oldCols = len(L), len(L[0])
 newRows, newCols = oldCols, oldRows
 M = [([None] * newCols) for row in range(newRows)]
 for oldRow in range(oldRows):
 for oldCol in range(oldCols):

 newRow = __ # <-- fill in this blank

 newCol = __ # <-- fill in this blank
 M[newRow][newCol] = L[oldRow][oldCol]
 return M

Quiz8
CT1: Code Tracing [16pts]
Indicate what the following code prints. Place your answers (and nothing else) in the box below.

def ct1(L):
 M = copy.copy(L)
 N = copy.deepcopy(L)
 L += [1]
 M[0] += [2]
 L = L[::-1]
 N += [[3]]
 print(M)
 print(N)
 return L

L = [[4]]
print(ct1(L))
print(L)

CT2: Code Tracing [12pts]
Indicate what the following code prints. Place your answers (and nothing else) in the box below.

Hint for ct2: before you trace each line, take a moment to think
about what this code is doing in general.

def ct2(L, M):
 for x,y in L:
 for i in range(len(M)):
 for j in range(len(M[i])):
 if M[i][j] == x:
 ct2Helper(M, i, j, y)

def ct2Helper(L, r, c, v):
 rows, cols = len(L), len(L[0])
 for drow, dcol in [[-1, 0], [+1, 0], [0, -1], [0, +1]]:
 row = r + drow
 col = c + dcol
 if ((row >= 0) and (row < rows) and (col >= 0) and (col < cols)):
 L[row][col] += v

M = [[21, 22, 23],
 [24, 25, 26]]
L = [[22, 10], [25, 20], [24, 30]]
ct2(L, M)
for v in M: print(v)

Note: You may use this empty page for any scrap work, but nothing on this page will be
graded for any problem.

Free Response 1: rowColMax(L) [30pts]
Write the mutating function rowColMax(L) that takes a non-empty rectangular 2d list L of integers,
and mutates L so that each value is set to the max of any value in the same row or same column as
that value. For example:

 L = [[2, 4, 7],
 [1, 0, 5],
 [6, 3, 8]]

When we call rowColMax(L), it returns None, because it is mutating:

 assert(rowColMax(L) == None)

But then L was modified as noted, so:

 assert(L == [[7, 7, 8],
 [6, 5, 8],
 [8, 8, 8]])

For example, consider the middle value (at row 1, col 1). This was 0 to start, but it is set to the largest
value in row 1 ([1, 0, 5]) and column 1 ([4, 0, 3]). The largest of these values is 5, so the middle value
of L becomes 5.

def testRowColMax():
 print('Testing rowColMax()...', end='')
 L = [[2, 4, 7],
 [1, 0, 5],
 [6, 3, 8]]
 assert(rowColMax(L) == None)
 assert(L == [[7, 7, 8],
 [6, 5, 8],
 [8, 8, 8]])
 # Remember, we will consider additional test
 # cases when grading your code

Begin your FR1 answer on the following page:

Write your FR1 answer here:

Free Response 2: Animation [42pts]
Write an animation such that:

When started, the app draws a 400x400 canvas that looks like this:

This is a 5x5 grid of squares
Each square contains a letter followed by a count (a number)
The letters are A to Y, in order, where the first row in A,B,C,D,E, and the second row is
F,G,H,I,J, and so on.
The counts are all 0 to start

When the user presses a letter key (using the keyboard not the mouse), that letter's count
increases by 1.
This is case-insensitive, so both 'a' or 'A' increase the count in the top-left cell by 1.
When the user presses 'z' or 'Z', that zeroes out the board, so every count is set to 0 (as when the
app started).
When the user presses the mouse in a cell, that cell's count increases by 1.
Also: be sure not to have any MVC Violations!

Note that we have provided function headers for the necessary cmu_graphics functions, but you must
write any additional helper functions you wish to call (except almostEqual and rounded, which are
always provided, but may or may not be relevant to this problem).

Begin your FR2 answer on the following page.

Begin your FR2 answer here:

from cmu_graphics import *

def onAppStart(app):

def redrawAll(app):

Continue your FR2 answer here:

def onMousePress(app, mouseX, mouseY):

def onKeyPress(app, key):

Continue your FR2 answer here:

def main():
 runApp()

main()

The problems below are not required. Indicate what the following code prints. Place your answers
(and nothing else) in the boxes below.

bonusCt1 [optional, 1pt]

def bonusCt1(M):
 z = 0
 while M:
 z += max(M.pop()) ** min(M.pop(0))
 N = []
 while z:
 N.insert(0, str(z%2))
 z//=2
 return ''.join(N)
M = [[3, 8, 1, 3, 4],
 [6, 5, 2],
 [9, 7],
 [-1, -2]]
print(bonusCt1(M))

bonusCt2 [optional, 1pt]

def bonusCt2(M):
 def s(L): return sum(sum(z) for z in L)
 L = []
 while M:
 N = [Q[1:-1] for Q in M[1:-1]]
 L.append(s(M) - s(N))
 M = N
 return L
print(bonusCt2([list(range(i, i+5)) for i in range(5)]))

