
Name: Andrew Id:

15-112 Fall 2024 Quiz 6
Up to 25 minutes. No calculators, no notes, no books, no computers. Show your work!

Do not use dictionaries, sets, try/except, or recursion on this quiz.

1. (6 points) Code Tracing: Indicate what the following program prints. Place your answer (and nothing
else) in the box below the code.
def ct1(a, b, c):

a.append(9)
b[0] = 5
c.append(10)
a = [20, 21, 22]
c[1] = 11
b += [17]
c = c + [27]
print(f"a: {a}")
print(f"b: {b}")
print(f"c: {c}")

lst1 = [1, 2, 3]
lst2 = lst1
lst3 = copy.copy(lst1)

ct1(lst1, lst2, lst3)
print(f"lst1: {lst1}")
print(f"lst2: {lst2}")
print(f"lst3: {lst3}")

Page 1 of 4



2. Free Response: Lists of Anagrams

An anagram is a word formed by rearranging the letters of another word, typically using all the original
letters exactly once. For example, the word “listen” is an anagram of “silent” because both words contain
the exact same letters, just arranged differently.

In this problem, you will write the function removeNonAnagrams(lst) two different ways: Destructive and
non-destructive. Given a list of strings lst, calling removeNonAnagrams(lst) results in a list that only
contains the words in lst that are anagrams of the first word in lst.

For example, if removeNonAnagrams is called on list
["acres", "acers", "purple", "cares", "escar", "serac", "race", "races"]
it results in list ["acres", "acers", "cares", "escar", "serac", "races"]
because neither “purple” nor “race” are anagrams of “acres”.

You may assume that lst only contains strings and will always contain at least one string.

(a) (1 point) Write the helper function areAnagrams(s1, s2) that takes two strings, s1 and s2 and
returns True if they are anagrams and False otherwise.

(b) (2 points) Write the non-destructive function removeNonAnagrams(lst). Your approach must be
non-destructive in nature. You may not, for example, simply make a copy of lst and use a destructive
approach on it. You may assume that you have a working implementation of areAnagrams(s1, s2),
even if yours does not work.

Page 2 of 4



(c) (4 points) Write the destructive function removeNonAnagrams(lst). Your approach must be de-
structive in nature. You may not, for example, use a non-destructive approach and then directly
manipulate lst to contain the correct answer. You may assume that you have a working implementa-
tion of areAnagrams(s1, s2), even if yours does not work.

Page 3 of 4



3. (7 points) Free Response: Longest Sublist with Distinct Elements

Write the function longestDistinctSublist(lst) that takes a list of integers lst as input and returns the
longest sublist that contains only distinct elements. If there are multiple sublists with the same maximum
length, return the one that appears last.

Consider the following test cases:

assert longestDistinctSublist([1, 2, 3, 1, 4, 2, 7, 9, 2]) == [3, 1, 4, 2, 7, 9]
assert longestDistinctSublist([1, 2, 3, 1, 4, 1, 4, 9, 2, 4]) == [1, 4, 9, 2]
assert longestDistinctSublist([2, 1, 2, 3, 4, 1, 4]) == [2, 3, 4, 1]
assert longestDistinctSublist([1, 2, 3, 4, 5]) == [1, 2, 3, 4, 5]
assert longestDistinctSublist([1, 1, 1, 1]) == [1]
assert longestDistinctSublist([]) == []

Page 4 of 4


