
Name: Andrew Id:

15-112 Spring 2025 Quiz 2
Up to 20 minutes. No calculators, no notes, no books, no computers. Show your work!

Do not use strings, loops, lists, dictionaries, try/except, or recursion on this quiz.

1. (6 points) Code Tracing: Indicate what the following program prints. Place your answer (and nothing
else) in the box next to the code.
def g(x):

print('g', x, f(x))
if x > 10:

print('big x', x)
if type(x) == int:

x = x / 2
if type(x) == float:

x = x * 10
if x < 10:

print('small x', x)

def f(x):
print('f', x)
x *= 2
return x + 1

x = 4
print(g(f(4)))
print(x)



2. (6 points) Free Response: Crunch Encryption
Crunch Encryption encodes an integer by splitting each digit d into two parts:

• If the digit d is even, it splits into d
2 ,

d
2 .

• If the digit d is odd, it splits into
⌊
d
2

⌋
+ 1,

⌊
d
2

⌋
.

The encryption preserves the sign of the number. For example:

• Encrypting 42 produces 2211: 4 → 22, 2 → 11.
• Encrypting −37 produces −2143: 3 → 21, 7 → 43, with the negative sign unchanged.

Your task is to write a function encryptCrunch(n) that encrypts a given integer n using Crunch Encryption.
You may assume n has at most 2 digits.
Examples:

assert encryptCrunch(42) == 2211
assert encryptCrunch(-37) == -2143
assert encryptCrunch(8) == 44
assert encryptCrunch(-5) == -32
assert encryptCrunch(0) == 0 # Zero remains unchanged (00 = 0)
assert encryptCrunch(1) == 10

Notes:

• In the description above, ⌊x⌋ is the mathematical notation for the floor of x.
• Do not use strings or loops to solve this problem.

Page 2



3. (8 points) Free Response: Crunch Decryption
Now that you understand Crunch Encryption, let’s reverse the process! Your task is to write a function
decryptCrunch(m) that takes a value m and returns the original number before encryption. If m cannot be
decrypted, return None.
Examples:

assert decryptCrunch(2211) == 42
assert decryptCrunch(-2143) == -37
assert decryptCrunch("hello") == None # Not an integer
assert decryptCrunch(87) == None # Invalid: 8+7 cannot be a digit
assert decryptCrunch(12) == None # Invalid split: 2 cannot be to the right of 1
assert decryptCrunch(21) == 3 # now it's ok 3 -> 2+1
assert decryptCrunch(2188) == None # cannot form valid digit from pair 88
assert decryptCrunch(4321) == 73 # Valid: 7 -> 43, 3 -> 21,
assert decryptCrunch(-1122) == -24 # Valid: 2 -> 11, 4 -> 22

Notes:

• When m is an integer, it will have at most 4 digits.
• Do not use strings or loops to solve this problem.

Page 3


