
Introduction

Existing Work

Design Architecture

Multi-Modal Model on Edge
Android app for near real-time zero-shot object detection

Result

Future Work

ReferencesChallenges and Learnings

We have developed an Android application that takes dual mode

input. From the Camera we get the image/video feed (vision

modality) and from the keyboard we get the user prompt (text

modality). The application sends both the inputs (via Gabriel

networking) to the cloudlet for further processing.

Our Cloudlet is a hosting a GPU (1080 Ti) for ML workload

acceleration. The Grounding DINO model runs on the GPU cores

to provide accelerated inferencing. The result of the model is the

image/video annotated with box(es) around the object, wherever

the object is present in the frame. The model understands what

object to detect based on the text prompt from user.

This result is then relayed back to the handheld device (client),

and the android application shows the result (frame with boxes

around the objects) on the display.

Since we are using Gabriel platform which is optimized for low-

latency communication between mobile device and the cloudlet

and with GPU acceleration we are getting a very low latency (~2

seconds) to see the result of this compute heavy operation.

This suggests that with the above hybrid Edge based approach

we can have a good balance between latency and performance

to see near real-time processing of compute heavy workloads,

especially AI and ML inferencing.

 Screenshots of using the

 application.

 Text prompts given by the

 user are Window (left) and

 Pillow (right).

 Original image is at the

 bottom, result is at the top

 with box around the object

A lot can be done to extend the work which we have done so far.

If time permits, we would like to explore the following:

• We have added speech to text input functionality on android

device to ease the user experience of providing text prompt

instead of typing. We can further explore integration with

voice assistants (e.g. Google Assistant) for hands-free

operation where the app can be controlled using the assistant.

• Optimize server-side code deployment using containerization

tools like Docker. We have already made progress towards

this and currently in between the process of deploying to a

bigger cloudlet server.

• Once the project is docked, we can Investigate hardware

upgrades or alternative architectures (hybrid model of

opportunistic offloading between cloudlet and cloud) for

better performance with complex workloads.

• Publishing the Android app on play store, so that it can be

downloaded and used by anyone with an Android device. This

will help in extensive user testing. Our application is currently

in the 2-week closed testing phase, as per the policies of

Google Play Console.

• Finally, we will document all the progress we made and create

our code’s GitHub repository, so that it can be referred in

future and the above tasks can be carried forward.

Edge computing minimizes latency by processing data locally on

cloudlets, rather than relying on cloud servers, making it ideal for

mobile applications. Cloudlet is a small-scale data center located

at the edge of a network, designed to provide computing power

and services directly to nearby devices like smartphones and

wearables.

This project demonstrates the feasibility of running multi-modal

deep learning models on edge devices to achieve near real-time

inference for applications like zero-shot image captioning, object

recognition, and image segmentation.

Aksara Bayyapu, Naman Gupta, Mihir Bala (Mentor)

Grounding Dino: A state-of-the-art open-set, zero-shot object

detection model that integrates language and vision modalities to

detect arbitrary objects specified by human inputs. For this

project we have used Grounding DINO running in the cloudlet for

near real-time object detection. Grounding DINO framework:

Gabriel Platform: A framework designed for low-latency

communication between mobile devices and nearby cloudlets.

For this project we have leveraged Gabriel for communication
between the Edge Device (android smartphone) and the cloudlet.

The above table shows the time taken in two major components

of executing a request in our application. The latency to get the

result back to the client depends on network latency (round trip

time) and the latency to process the request on the server. The

server processing latency is measured using time profiling code

in the server script, and RTT is calculated by subtracting total

time (measured at client) with processing time. Image Processing

time is ~90% of total latency and increases with video feeds.

Typical network latency using Gabriel is in the range of 80-150ms

for most applications over Wi-Fi connections. The time taken can

vary because of physical proximity to cloudlet, network

congestion and whether the wireless medium is Wi-Fi or 5G/LTE.

The processing time on the cloudlet depends on the workload

complexity, for example Lightweight tasks like symbolic

representation extraction or guidance generation may take only a

few milliseconds. However, computationally intensive tasks, such

as deep neural network inference, can take several seconds.

This time can be reduced be using a more powerful machine in

the cloudlet which has dedicated hardware acceleration (GPUs).

We faced the following challenges during the project and most of

them resulted in new learnings for us:

• Learning Curve: We had no prior experience with Android

Development, or working with Deep Neural Network Models.

We quickly ramped-up on Android development for the client

side, Basics of Gabriel for networking and how to use

Grounding DINO for the server side.

• Limited Hardware: Cloudlet GPU struggled to provide real-

time inferencing even with single frame photo. For video

processing the latency would not be close to near real-time,

defeating the purpose of using the cloudlet and not offloading

to the cloud.

• Containerizing: Learnt to containerize the server-side code

using docker, so that if can be seamlessly migrated to any

machine, potentially a higher performance machine to reduce

the processing latency for video feeds. The challenge was to

manually port multiple environment dependencies to the

docker which are required to to execute the server-side code.

• Publishing the App: For developer using personal account,

Google mandates a 2-week rigorous testing with 20 users,

before the app can be made available to download. Logistics

of working with 20 users is a challenge.

https://www.researchgate.net/figure/Latency-of-Cloud-and-Edge-

computing-of-Application-and-database-server_fig3_344218742

https://arxiv.org/pdf/2303.05499

https://www.cs.cmu.edu/~satya/docdir/chen-sec2017.pdf

https://github.com/IDEA-Research/GroundingDINO

https://github.com/cmusatyalab/gabriel/tree/master/examples/rou

nd_trip

https://github.com/cmusatyalab/gabriel

https://play.google.com/console/about/publishingoverview/

https://developer.android.com/courses

Process Time (in ms)

Network Latency - RTT 200-300*

Processing Latency (images) 2000-2500*

Aksara Bayyapu - abayyapu@andrew.cmu.edu

Naman Gupta - namang2@andrew.cmu.edu

https://www.researchgate.net/figure/Latency-of-Cloud-and-Edge-computing-of-Application-and-database-server_fig3_344218742
https://www.researchgate.net/figure/Latency-of-Cloud-and-Edge-computing-of-Application-and-database-server_fig3_344218742
https://arxiv.org/pdf/2303.05499
https://www.cs.cmu.edu/~satya/docdir/chen-sec2017.pdf
https://github.com/IDEA-Research/GroundingDINO
https://github.com/cmusatyalab/gabriel/tree/master/examples/round_trip
https://github.com/cmusatyalab/gabriel/tree/master/examples/round_trip
https://github.com/cmusatyalab/gabriel
https://play.google.com/console/about/publishingoverview/
https://developer.android.com/courses

	Slide 1

