
	 Page	1	

	
Reading	to	and	Writing	from	Files:	A	Quick	Primer	
	
To	read	from	a	data	file,	you	need	to	open	the	file	using	a	file	name	and	the	option	'r'	for	read.	For	
example,	let's	say	we	have	the	following	data	file	named	months.txt	containing	text:	

	

To	open	the	file	for	reading,	we	would	execute	the	command:
	
inputfile = open("months.txt", 'r')
	
The	variable	inputfile	represents	the	contents	of	the	file.	Once	the	file	is	open,	we	can	read	each	
line,	one	at	a	time	using	a	loop.	In	the	example	below,	we	create	a	list	of	the	months	that	are	in	the	
inputfile:	
	
monthlist = []
for line in inputfile:
 monthlist.append(line)

Note	that	each	line	of	the	file	is	a	string	and	the	line	included	the	newline	character	('\n').	So	if	we	
run	the	code	above,	the	monthlist	would	be:	
	
['January\n', 'February\n', 'March\n', 'April\n']
	
If	a	line	is	blank	in	the	file,	then	the	loop	above	will	read	the	blank	line	as	'\n'	(i.e.	only	a	newline	
character).	
	
We	probably	don't	want	to	store	an	extra	newline	with	each	data	item,	so	we	can	eliminate	the	last	
character	by	appending	line[0:len(line)-1]	or	line[0:-1])	instead	of	line.	This	will	
append	everything	in	the	string	except	the	last	character,	which	eliminates	the	newlines:	
	
monthlist = []
for line in inputfile:
 monthlist.append(line[0:-1])

Now	monthlist	is:	
	
['January', 'February', 'March', 'April']
	
	
	

January
February
March
April	

	 Page	2	

Now	let's	see	how	to	output	the	contents	of	a	list	to	a	file.	Say	we	have	a	list	daylist	stored	as	follows:	
	
daylist = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday']
	
To	write	to	a	file,	we	open	up	a	text	file	for	writing	with	the	option	'w'	(for	writing):	
	
outputfile = open("days.txt", 'w')
	
Then	we	can	use	a	loop	to	write	each	day	into	the	file,	one	per	line:	
	
for day in daylist:
 outputfile.write(day + '\n')
	
Note	that	we	need	to	include	an	extra	newline	for	each	day	so	that	each	day	is	written	on	its	own	line	
in	the	output	file.		
	
Be	careful:	If	you	open	a	file	for	writing	and	the	file	exists	already,	it	will	be	erased!	
	
By	default,	input	from	a	file	gives	you	a	string,	and	you	have	to	write	strings	to	files.	If	you	want	to	read	
an	integer	from	a	file,	you	read	it	in	as	a	string,	remove	the	newline	and	then	convert	it	to	an	integer	
using	the	int()	function.	If	you	want	to	store	an	integer	in	a	file,	you	need	to	convert	it	to	a	string	
first	using	the	str()	function	and	then	you	can	write	that	to	the	output	file	along	with	a	newline.		
	
For	example,	let's	say	our	input	file	measurements.txt	has	the	following	integers:	
	

Then	to	read	these	into	a	list	called	datalist,	we	can	use	the	following	code:	
	
inputfile = open("measurements.txt", 'r')
datalist = []
for line in inputfile:
 datalist.append(int(line[0:-1]))	
	
This	yields	the	datalist	:	
	
[18, 32, 91, 4, -75, 42]
	
	

18
32
91
4
-75
42
	

	 Page	3	

	
Likewise,	to	write	this	datalist	to	the	output	file	scores.txt,	we	can	use	the	following	code:	
	
outputfile = open("scores.txt", 'w')
for value in datalist:
 outputfile.write(str(value)+'\n')	
	
Remember:	if	scores.txt	already	existed,	you	would	lose	its	original	contents!	Be	careful!		
	
	
Reading	in	multiple	values	per	line	
	
Let's	say	your	file	numbers.txt	has	multiple	values	per	line,	like	this:	

	
	
	
	
	

	
How	do	you	read	in	these	values	individually?	If	you	just	read	in	line	by	line,	you	get	strings	that	
contain	everything	in	each	line	together,	not	as	separate	values.	But	there	is	a	string	function	split	
that	takes	a	string	and	splits	it	into	a	list	based	on	a	delimiter	which	is	a	special	character	that	
separates	values.	For	the	file	above,	the	delimiter	is	the	comma.	
	
Here	is	a	function	that	reads	the	file	above	and	adds	up	all	of	the	values	in	the	file:	
	
def addup(filename):
 datafile = open(filename, 'r')
 sum = 0
 for line in datafile:
 cleanstring = line[0:-1] # remove the newline
 datalist = cleanstring.split(',')
 for value in datalist:
 sum = sum + int(value)
 return sum	
	
Sample	usage:	
	
>>> addup("numbers.txt")
55

1, 2, 3, 4
5
6, 7
8, 9, 10
	

