UNIT 3B
Conditionals and
Introduction to Lists

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

Data Types

* Booleans
True False

* Relational Operations
Example: while (x < 100):

* Logical Operations
and or not
grade >= 80 and grade < 90
grade < 0 or grade > 100
grade >= 80 or grade < 90 =2 True
grade < 0 and grade > 100 = False

George Boole,
1815-1864

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

2/1/18



if statement

Format:
if condition :
statement_list

if (x $ 2 == 0):
print("x is even!")

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

if/else statement

Format:

if condition : true false
statement_list1 @

’ statement_listl

’ statement_list2 ‘

else:
statement _list2 T
if (x $ 2 == 0):

print("x is even!")
else:
print("x is odd!")

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

2/1/18



2/1/18

Flow chart:

if/elif/else statement
Format:

if conditionl :

’ statement_list1 ‘

statement_list1

true false
elif condition2: w

statement_list2 [_statement_list2 |
else:

’ statement_list3 ‘

statement_list3 T T |

Grader for Letter Grades

true

true
set grade to “A” false

print “you got an A”

true false
set grade to “B”

print “you got a B”

set grade to “C” set grade to “D or lower”
print “you gota C” print “your grade is less
than C”




Nested if statements

def grader(score):
if score >= 90:

grade = "A"
print("You got an A")
else:
if score >= 80:
grade = "B"
print("You got a B")
else:
if score >= 70:
grade = "C"
print("You got a C")
else:
grade = "D or lower"

print("Your grade is less than C")
return grade

Equivalently

def grader2(score):
if score >= 90:
grade = "A"
print("You got an A")
elif score >= 80:
grade = "B"
print("You got a B")
elif score >= 70:

grade = "C"

print("You got a C")
else:

grade = "D or lower"

print("Your grade is less than C")
return grade

2/1/18



2/1/18

What's wrong?

def grader2(score):
if score >= 90:
grade = "A"
print("You got an A")
if score >= 80:
grade = "B"
print("You got a B")
if score >= 70:

grade = "C"

print("You got a C")
else:

grade = "D or lower"

print("Your grade is less than C")
return grade

(DRAW A FLOWCHART.)

Recursive Solution

A recursive algorithm is an algorithm that uses a
simpler version of itself as part of its solution.

Input: two non-negative integers x and y
Algorithm:
1. If y is equal to O, return x as the GCD.
2. Otherwise,
return the GCD of y and (x modulo y) as the GCD.
Output: the GCD of the initial x and y

15110 Principles of Computing, Carnegie

Mellon Umver'\lw—(,ORVT\NA 10




Recursive Solution using Python

def gcd2(x, y):
if y ==
return x
else:

return gcd2(y, x % y)

This is recursive since
gcd2 calls itself.
More about recursion soon.

15110 Principles of Computing, Carnegie 1
Mellon University - CORTINA

Representing Lists in Python

We will use a list to represent a collection of data
values.

scores = [78, 93, 80, 68, 100, 94, 85]

colors ['red', 'green', 'blue']

A list is an ordered sequence of values.

15110 Principles of Computing, Carnegie 12
Mellon University - CORTINA

2/1/18



List Operations and Indices

78 93 80 68 100 94 85

0 1 2 3 4 5 6
6\\\\\\\\“~ indices

>>> scores = [78, 93, 80, 68, 100, 94, 85]
>>> scores

[78, 93, 80, 68, 100, 94, 85]

>>> scores[0]

78

>>> scores[6]

85

>>> scores[7]

IndexError: list index out of range

lterating over Lists

def print colors(colors):
for i in range(0,len(colors)):

print(colors[i])\\\\

for each index i

in the range 0 up to but
not including the length
of the list named colors,

print colors]i]
def print colors2(colors):

for ¢ in colors: for each color ¢

in the list named
colors, print ¢

14

print(c)

2/1/18



