

UNIT 3B Conditionals and Introduction to Lists

15110 Principles of Computing, Carnegie Mellon University - CORTINA

1

Data Types

Booleans

True False

George Boole, 1815-1864

Relational Operations

Logical Operations

```
and or not
grade >= 80 and grade < 90
grade < 0 or grade > 100
grade >= 80 or grade < 90 → True
grade < 0 and grade > 100 → False
```

15110 Principles of Computing, Carnegie Mellon University - CORTINA

if statement Format: if condition : statement_list if (x % 2 == 0): print("x is even!")

if/else statement Format: if condition: true false condition statement_list1 statement list2 statement list1 else: statement_list2 if (x % 2 == 0): print("x is even!") else: print("x is odd!") 15110 Principles of Computing, Carnegie Mellon University - CORTINA

Flow chart: if/elif/else statement Format: false condition1 if condition1: statement_list1 statement list1 false true condition2 elif condition2: statement_list2 statement_list2 else: statement_list3 statement list3

Nested if statements

```
def grader(score):
    if score >= 90:
        grade = "A"
        print("You got an A")
    else:
        if score >= 80:
            grade = "B"
            print("You got a B")
        else:
            if score >= 70:
                grade = "C"
                print("You got a C")
            else:
                grade = "D or lower"
                print("Your grade is less than C")
    return grade
```

7

Equivalently

```
def grader2(score):
    if score >= 90:
        grade = "A"
        print("You got an A")
    elif score >= 80:
        grade = "B"
        print("You got a B")
    elif score >= 70:
        grade = "C"
        print("You got a C")
    else:
        grade = "D or lower"
        print("Your grade is less than C")
    return grade
```

What's wrong?

```
def grader2(score):
    if score >= 90:
        grade = "A"
        print("You got an A")
    if score >= 80:
        grade = "B"
        print("You got a B")
    if score >= 70:
        grade = "C"
        print("You got a C")
    else:
        grade = "D or lower"
        print("Your grade is less than C")
    return grade
```

(DRAW A FLOWCHART.)

9

Recursive Solution

A recursive algorithm is an algorithm that uses a simpler version of itself as part of its solution.

Input: two non-negative integers x and y Algorithm:

- 1. If y is equal to 0, return x as the GCD.
- 2. Otherwise,

return the GCD of y and (x modulo y) as the GCD.

Output: the GCD of the initial x and y

15110 Principles of Computing, Carnegie Mellon University - CORTINA

Recursive Solution using Python

```
def gcd2(x, y):
    if y == 0:
        return x
    else:
        return gcd2(y, x % y)
```

This is <u>recursive</u> since gcd2 calls itself.

More about recursion soon.

15110 Principles of Computing, Carnegie Mellon University - CORTINA

11

Representing Lists in Python

We will use a list to represent a collection of data values.

```
scores = [78, 93, 80, 68, 100, 94, 85]
colors = ['red', 'green', 'blue']
```

A list is an *ordered* sequence of values.

15110 Principles of Computing, Carnegie Mellon University - CORTINA

13

List Operations and Indices

Iterating over Lists