2/2/18

UNIT 3C
Using Loops and Conditionals

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

Finding the maximum
Required: a non-empty list of integers.

1. Set max equal to the first number
in the list.
2. For each number n in the list:
a. If nis greater than max,
then set max equal to n.

Return: max as the maximum of the list.

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

def

Finding the max using Python

findmax (numlist):
numlist[O0]
for i in range(l,len(numlist)):

max

n numlist[i]
if n > max:
max = n

return max

def

Alternate Version (lterator)

findmax2 (numlist):
max = numlist[O0] “For each item
for item in numlist: & in numlist...”
if item > max:
max = item

return max

Is there a redundant relational test done here?

2/2/18

Lists Are Mutable

>>> scores

[78, 93, 80, 68, 100, 94, 85]

>>> scores.append(95)

>>> scores

[78, 93, 80, 68, 100, 94, 85, 95]

78 93 80 68 100 94 85

95

0 1 2 3 4 5 6

>>> scores.remove(68) e\\\\\\§\\\.WhathappenS\Nhen
>>> scores there is more than one

[78, 93, 80, 100, 94, 85, 95] match?
>>> scores.remove(42)
ValueError: list.remove(x): x not in list

7

&

sIEVe
OF

RATOSTHINSS

A 2000 year old algorithm (procedure) for
generating a table of prime numbers.

2,3,5,7,11,13,17, 23, 29, 31, ...

A positive integer is “prime” if it is not
divisible by any smaller positive integers
except 1.

2/2/18

Sieve of Eratosthenes - Example

primelist = []
numlist = [2,3,4,5,6,7,8,9,10,11,12,13,
14,15,16,17,18,19,20,21,22,23,24,25]

primelist = [2]
numlist = [3,5,7,9,11,13,15,17,19,21,23,25]

primelist = [2,3]
numlist = [5,7,11,13,17,19,23,25]

primelist = [2,3,5]
numlist = [7,11,13,17,19,23] etc.

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

Sieve of Eratosthenes

To make a list of every prime number less than n:

1. Create a list numlist with every integer from 2 to n, in
order. (Assume n > 1.)

2. Create an empty list primelist.

3. Copy the first number in numlist to the end of primelist.

(It must be prime. Why?)

4. lterate over numlist to remove every number that is a
multiple of the most recently discovered prime
number.

5. Halt if numlist is empty. Otherwise, go back to step 3.

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

2/2/18

Lists: Two Special Cases

values = []
This is the empty list (a list with length 0).

values = []
for i in range(1,10):
values.append (i)
This is the list with the first 9 positive integers in
order: [1,2,3,4,5,6, 7,8, 9]

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

Starting the algorithm in Python

To make a list of every prime number less than n:

1. Create a list numlist with every integer from 2 to n, in
order. (Assume n > 1.)

2. Create an empty list primelist.

def sieve(n):
numlist = []
for i in range(2,n+l):
numlist.append(i)
primelist = []

15110 Principles of Computing, Carnegie

Mellon University - CORTINA 10

2/2/18

Continuing...

3. Copy the first number in numlist to the end of primelist.

(It must be prime. Why?)

primelist.append(numlist[0])

Does this operation remove the first element
from numlist?

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

Removing multiples of a prime

4. lterate over numlist to remove every number that is a
multiple of the most recently discovered prime number.

Where is the most recently discovered prime added to the
primelist list?

primelist[len(primelist)-1]
(i.e. last element)

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

2/2/18

Removing multiples of a prime

4. lterate over numlist to remove every number that is a
multiple of the most recently discovered prime number.

How do we determine whether
a number x is a multiple of y?

Use the modulo operator!

if x 8y ==
print("It's a multiple!")

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

Sifting:
Removing Multiples of a Number

def sift(numlist,k):
remove all multiples of k from numlist
index = 0
while index < len(numlist):
if numlist[index] % k ==
numlist.remove(numlist[index])
else:
index = index + 1

return numlist

2/2/18

Sifting Example

sift([1,2,3,4,6,7], 2)

list index
[1,2,3,4,6,7] 0
[1,2,3,4,6,7] 1
[1,3,4,6,7] 1
[1,3,4,6,7] 2
[1,3,6,7] 2
[1,3,7] 2

3

[1,3,7] (stop)

Removing multiples of a prime

Steps 3 & 4 together:

3. Copy the first number in numlist to the end of primelist.

4. lterate over numlist to remove every number that is a
multiple of the most recently discovered prime number.

primelist.append(numlist[0])
lastprime = primelist[len(primelist)-1]
numlist = sift(numlist, lastprime)

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

2/2/18

Removing multiples of a prime

5. Halt if numlist is empty. Otherwise, go back to step 3.
We need to repeat steps 3 and 4:
primelist.append(numlist[0])
lastprime = primelist[len(primelist)-1]

numlist = sift(numlist, lastprime)

until numlist is empty. How do we do this?

15110 Principles of Computing, Carnegie 17
Mellon University - CORTINA

Repeating a task

Since we want to repeat a task, use a loop!
Since we don't know how many iterations are
necessary, we will use a while loop.

while len(numlist) > 0
primelist.append(numlist[0])
lastprime = primelist[len(primelist)-1]
numlist = sift(numlist, lastprime)

15110 Principles of Computing, Carnegie 18
Mellon University - CORTINA °©

2/2/18

Repeating a task

Since we want to repeat a task, use a loop!
Since we don't know how many iterations are
necessary, we will use a while loop.

while len(numlist) >= 1
primelist.append(numlist[0])

lastprime = primelist[len(primelist)-1]

numlist = sift(numlist, lastprime)

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

Repeating a task

Since we want to repeat a task, use a loop!
Since we don't know how many iterations are
necessary, we will use a while loop.

while len(numlist) != 0
primelist.append(numlist[0])

lastprime = primelist[len(primelist)-1]

numlist = sift(numlist, lastprime)

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

20

2/2/18

10

Repeating a task

Since we want to repeat a task, use a loop!
Since we don't know how many iterations are
necessary, we will use a while loop.

while numlist != [] .

primelist.append(numlist[0])
lastprime = primelist[len(primelist)-1]
numlist = sift(numlist, lastprime)

15110 Principles of Computing, Carnegie 21
Mellon University - CORTINA

Final Algorithm in Python

def sift(numlist,k):
remove all multiples of k from numlist
index = 0
while index < len(numlist):
if numlist[index] % k == 0:
numlist.remove(numlist[index])
else:
index = index + 1

return numlist

15110 Principles of Computing, Carnegie 29
Mellon University - CORTINA

2/2/18

11

Final Algorithm in Python (cont'd)

def sieve(n)
numlist [1]
for i in range(2,n+1):
numlist.append(1i)
primelist = []
while len(numlist) > O0:
primelist.append(numlist[0])

lastprime = primelist[len(primelist)-1]

remove all multiples of lastprime

from numlist using sift function:

numlist = sift(numlist, lastprime)
return primelist

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

Some More List Operations

>>>scores = [78, 93, 80, 68, 100, 94, 85]
>>>80 in scores

True

>>>scores + scores

[78, 93, 80, 68, 100, 94, 85, 78, 93, 80, 68, 100, 94, 85]
>>>scores

[78, 93, 80, 68, 100, 94, 85]
>>>scores[1:3]

[93, 80]

>>>scores[1:7:2]

[93, 68, 94]

>>>scores.index(100)

4

>>>scores|[-1]

85

15110 Principles of Computing, Carnegie

Mellon University - CORTINA 2

2/2/18

12

