WU L)L
a'a'a'a'aa’s'a
PRI
PRI R SRR SRR
Seoecves
COLCL @)

UNIT 4C
Iteration:

Correctness and Efficiency

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

General Idea: Any one Iteration

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Look Closer at Insertion Sort

L[0..i) means:

Given a list L of length n, n > 0. List L from index 0
) up to but not including i
1. Seti=1.

2. Whileiis not equal to n, do the following:

Precondition for each iteration: L[0..i) is sorted
a. Insert L[i] into its correct position in L between
index 0 and index i inclusive.
b.Add 1toi.
Postcondition for each iteration: L[0..i) is sorted
3. Return the list L which will now be sorted.

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Look Closer at Insertion Sort

Given a list L of length n, n > 0.
1. Seti=1.
2. Whileiis not equal to n, do the following:
Loop invariant: L[0..i) is sorted
a. Insert L[i] into its correct position in L between
index 0 and index i inclusive.
b.Add 1toi.

3. Return the list L which will now be sorted.

A loop invariant is a condition that is true at the start and end of
each iteration of a loop.

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Reasoning with the Loop Invariant

The loop invariant is true at the end of each iteration,
including the last iteration. After the last iteration, when
we go to step 3:

L[O..i) is sorted (from the last iteration)
AND
i is equal to n (due to the while loop terminating)

These 2 conditions imply that L[0..n) is sorted, but this
range is the entire list, so the list must always be sorted
when we return our final answer!

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Counting Operations

We measure time efficiency by counting the
number of operations performed by the
algorithm.
But what is an operation?

— assignment statements

— comparisons

— return statements

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Linear Search: Worst Case

let n = the length of datalist.
def search(datalist, key):

index = 0 1
while index < len(datalist): n+l
if datalist[index] == key: n

return index
index = index + 1 n
return None 1
Total: 3n+3

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Counting Operations

* How do we know that each operation we count takes
the same amount of time? (We don’ t.)

* So generally, we look at the process more abstractly
and count whatever operation depends on the amount

or size of the data we’ re processing.
— We don't consider what machine we're using, what compiler
we use, what language we use, etc.
* For linear search, we would count the number of times

we compare elements in the list to the key.

15110 Principles of Computing, 8
Carnegie Mellon University - CORTINA

Linear Search: Worst Case Simplified

let n = the length of datalist.
def search(datalist, key):
index = 0
while index < len(datalist):
if datalist[index] == key: n
return index
index = index + 1

return None
Total: n

15110 Principles of Computing, 9
Carnegie Mellon University - CORTINA

Order of Complexity

* Forvery large n, we express the number of
operations as the (time) order of complexity.

* Order of complexity is often expressed using
Big-O notation:

Number of operations Order of Complexity

n O(n) Usually doesn't
matter what the

3n+3 O(n) constants are...

2n+8 O(n) we are only

concerned about
the highest power
of n.

15110 Principles of Computing, 10
Carnegie Mellon University - CORTINA

O(n) (“Linear”)

2n+8
4 3n+3 n

Number of
Operations

>
>

n
(amount of data)

15110 Principles of Computing, 1
Carnegie Mellon University - CORTINA

O(n)

Number of

Operations n
40 For a linear algorithm,
if you double the amount
of data, the amount of work
you do doubles
(approximately).
20

Put another way:

The amount of work done
10 is linearly proportional to
the amount of data.

»
»

10 20 40 n
(amount of data)

15110 Principles of Computing, 12
Carnegie Mellon University - CORTINA

Linear Search: Best Case

let n = the length of datalist.
def search(datalist, key):

index = 0 1
while index < len(datalist): 1
if datalist[index] == key: 1
return index 1
index = index + 1
return None
Total: 4

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Linear Search: Best Case Simplified

let n = the length of datalist.
def search(datalist, key):
index = 0
while index < len(datalist):
if datalist[index] == key: 1
return index
index = index + 1
return None

Total: 1

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

O(1) (“Constant-Time”)

Number of a
Operations

For a constant-time algorithm,
if you double the amount
of data, the amount of work
you do stays the same.

v

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

(amount of data)

* Worst Case:

* Best Case:

* Average Case:

Linear Search

O(n)

0(1)

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Insertion Sort: Worst Case
J i

* Oniteration i, we need to examine j elements
and then shift i-j elements to the right, so we
have to do j + (i-j) = i units of work.

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Insertion Sort: Worst Case

When i =1, we have 1 unit of work.
When i = 2, we have 2 units of work.

When i = n-1, we have n-1 units of work.
The total amount of work done is:
1+2+..+(n-1)

=n(n-1)/2

= (n?-n)/2 (a quadratic function)

= 0(n?)

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Order of Complexity

Number of operations Order of Complexity

n2 O(n?)

n%/2+3n/2-1 O(n?)

2n% +7 0(n?)
Usually doesn't
matter what the
constants are...
we are only
concerned about
the highest power
of n.

15110 Principles of Computing, 19

Carnegie Mellon University - CORTINA

O(n2?) (“Quadratic”)

n2
4 on2+7 n%/2 + 3n/2 -1
Number of
Operations
n
(amount of data)
15110 Principles of Computing, 20

Carnegie Mellon University - CORTINA

10

Number of
Operations
1600} N2
For a quadratic algorithm,
if you double the amount
of data, the amount of work
you do quadruples
(approximately).
Put another way:
400 The amount of work you
do is proportional to the
100 square of the amount of data.
10 20 40 N
(amount of data)
15110 Principles of Computing, 2
Carnegie Mellon University - CORTINA
Our Insertion Sort
* Worst Case: O(n?)

* Best Case: In our insertion sort implementation,
the worst case and best case are the same!

It doesn't matter where we do the inserts.

— If we insert near the front, we have fewer elements
to compare, but more shifts.

— If we insert near the end, we have more elements to
compare, but fewer shifts.

— But we can get the best case to be O(n). (See PS4!)

15110 Principles of Computing,

Carnegie Mellon University - CORTINA 22

11

