
1

UNIT	4C	
Itera,on:		

Correctness	and	Efficiency	
15110 Principles of Computing,

Carnegie Mellon University - CORTINA 1

General	Idea:	Any	one	Itera,on	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 2

SORTED	

SORTED	

	
	

i

i

L

L

2

Look	Closer	at	Inser,on	Sort	

Given	a	list	L	of	length	n,	n	>	0.	
1.  Set	i	=	1.	
2.  While	i	is	not	equal	to	n,	do	the	following:	

	Precondi)on	for	each	itera)on:	L[0..i)	is	sorted	
	a.	Insert	L[i]	into	its	correct	posi,on	in	L	between	

											index	0	and	index	i	inclusive.	
	b.	Add	1	to	i.	
	Postcondi)on	for	each	itera)on:	L[0..i)	is	sorted	

3. 	Return	the	list	L	which	will	now	be	sorted.	
15110 Principles of Computing,

Carnegie Mellon University - CORTINA 3

L[0..i)	means:	
List	L	from	index	0	
up	to	but	not	including	i	

Look	Closer	at	Inser,on	Sort	
Given	a	list	L	of	length	n,	n	>	0.	
1.  Set	i	=	1.	
2.  While	i	is	not	equal	to	n,	do	the	following:	

	Loop	invariant:	L[0..i)	is	sorted	
	a.	Insert	L[i]	into	its	correct	posi,on	in	L	between	

											index	0	and	index	i	inclusive.	
	b.	Add	1	to	i.	

3.  Return	the	list	L	which	will	now	be	sorted.	
A	loop	invariant	is	a	condi)on	that	is	true	at	the	start	and	end	of	

each	itera)on	of	a	loop.	
15110 Principles of Computing,

Carnegie Mellon University - CORTINA 4

3

Reasoning	with	the	Loop	Invariant	

The	loop	invariant	is	true	at	the	end	of	each	itera,on,	
including	the	last	itera,on.	AWer	the	last	itera,on,	when	
we	go	to	step	3:	

	L[0..i)	is	sorted	(from	the	last	itera,on)	
	AND		
	i	is	equal	to	n	(due	to	the	while	loop	termina,ng)	

These	2	condi,ons	imply	that	L[0..n)	is	sorted,	but	this	
range	is	the	en,re	list,	so	the	list	must	always	be	sorted	
when	we	return	our	final	answer!	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 5

Coun,ng	Opera,ons	

•  We	measure	,me	efficiency	by	coun,ng	the	
number	of	opera,ons	performed	by	the	
algorithm.	

•  But	what	is	an	opera,on?	
–  assignment	statements	
–  comparisons	
–  return	statements	
–  ...	

	 15110 Principles of Computing,
Carnegie Mellon University - CORTINA 6

4

Linear	Search:	Worst	Case	
let n = the length of datalist.
def search(datalist, key):
 index = 0 1
 while index < len(datalist): n+1
 if datalist[index] == key: n
 return index
 index = index + 1 n
 return None 1
 Total: 3n+3

	
	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 7

Coun,ng	Opera,ons	

•  How	do	we	know	that	each	opera,on	we	count	takes	
the	same	amount	of	,me?	(We	don’t.)	

•  So	generally,	we	look	at	the	process	more	abstractly	
and	count	whatever	opera,on	depends	on	the	amount	
or	size	of	the	data	we’re	processing.		
– We	don't	consider	what	machine	we're	using,	what	compiler	
we	use,	what	language	we	use,	etc.	

•  For	linear	search,	we	would	count	the	number	of	,mes	
we	compare	elements	in	the	list	to	the	key.	

	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 8

5

Linear	Search:	Worst	Case	Simplified	
let n = the length of datalist.
def search(datalist, key):
 index = 0
 while index < len(datalist):
 if datalist[index] == key: n
 return index
 index = index + 1
 return None
 Total: n

	
	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 9

Order	of	Complexity	

•  For	very	large	n,	we	express	the	number	of	
opera,ons	as	the	(,me)	order	of	complexity.	

•  Order	of	complexity	is	oWen	expressed	using		
Big-O	nota,on:	
Number	of	opera,ons 	Order	of	Complexity	
n 	 	 	 	 	O(n)	
3n+3 	 	 	 	O(n)	
2n+8 	 	 	 	O(n)	

	 15110 Principles of Computing,
Carnegie Mellon University - CORTINA 10

Usually doesn't
matter what the
constants are...
we are only
concerned about
the highest power
of n.

6

O(n)	(“Linear”)	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 11

n
(amount of data)

Number of
Operations

n 3n+3
2n + 8

O(n)	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 12

n
(amount of data)

Number of
Operations n

10 20 40

10

20

40 For a linear algorithm,
if you double the amount
of data, the amount of work
you do doubles
(approximately).

Put another way:
The amount of work done
is linearly proportional to
the amount of data.

7

Linear	Search:	Best	Case	
let n = the length of datalist.
def search(datalist, key):
 index = 0 1
 while index < len(datalist): 1
 if datalist[index] == key: 1
 return index 1
 index = index + 1
 return None
 Total: 4

	
	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 13

Linear	Search:	Best	Case	Simplified	
let n = the length of datalist.
def search(datalist, key):
 index = 0
 while index < len(datalist):
 if datalist[index] == key: 1
 return index
 index = index + 1
 return None
 Total: 1

	
	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 14

8

O(1)	(“Constant-Time”)	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 15

n
(amount of data)

Number of
Operations

4
4 = O(1)

1
1 = O(1)

For a constant-time algorithm,
if you double the amount
of data, the amount of work
you do stays the same.

Linear	Search	

•  Worst	Case: 	 	O(n)	
	

•  Best	Case: 	 	O(1)	
	

•  Average	Case:	 	____________	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 16

9

Inser,on	Sort:	Worst	Case	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 17

•  On	itera,on	i,	we	need	to	examine	j	elements	
and	then	shiW	i-j	elements	to	the	right,	so	we	
have	to	do	j	+	(i-j)	=	i	units	of	work.	

SORTED	

i j

Inser,on	Sort:	Worst	Case	
•  When	i	=	1,	we	have	1	unit	of	work.	
•  When	i	=	2,	we	have	2	units	of	work.	
•  ...	
•  When	i	=	n-1,	we	have	n-1	units	of	work.	
•  The	total	amount	of	work	done	is:	
1	+	2	+	...	+	(n-1)		
=	n(n-1)/2		
=	(n2	-	n)/2		(a	quadra,c	func,on)	
=	O(n2)	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 18

10

Order	of	Complexity	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 19

Number	of	opera,ons 	Order	of	Complexity	
n2 	 	 	 	 	O(n2)	
n2/2	+	3n/2	-	1 	 	O(n2)	
2n2		+	7	 	 	 	O(n2)	
	

Usually doesn't
matter what the
constants are...
we are only
concerned about
the highest power
of n.

O(n2)	(“Quadra,c”)	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 20

n
(amount of data)

Number of
Operations

n2/2 + 3n/2 – 1 2n2 + 7
n2

11

O(n2)	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 21

N
(amount of data)

Number of
Operations

10 20 40

100

400

1600 N2

For a quadratic algorithm,
if you double the amount
of data, the amount of work
you do quadruples
(approximately).

Put another way:
The amount of work you
do is proportional to the
square of the amount of data.

Our	Inser,on	Sort	

•  Worst	Case: 	 	O(n2)	
•  Best	Case:	In	our	inser,on	sort	implementa,on,		
the	worst	case	and	best	case	are	the	same!	
It	doesn't	maier	where	we	do	the	inserts.	
–  If	we	insert	near	the	front,	we	have	fewer	elements	
to	compare,	but	more	shiWs.	

–  If	we	insert	near	the	end,	we	have	more	elements	to	
compare,	but	fewer	shiWs.	

– But	we	can	get	the	best	case	to	be	O(n).	(See	PS4!)	
	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 22

